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Exercise 8.6. Suppose S, T ∈ L(V ) and ST is nilpotent. Prove that TS is nilpotent.

Solution 8.6. Since ST is nilpotent, then there exists m such that (ST )m = 0. Then

(TS)m+1 = T (ST )mS = 0. So TS is also nilpotent.

Exercise 8.7. Prove or give a counterexample: The set of nilpotent operators on V is a

subspace of L(V ).

Solution 8.7. Let T, S ∈ L(C2) be two operators defined by T =

0 1

0 0

 and S =

0 0

1 0

.

Then since T 2 = S2 = 0, both of them are nilpotent. However T + S =

0 1

1 0

 which is not

nilpotent. So this statement is wrong.

Exercise 8.8. Give an example of an operator T on a finite-dimensional real vector space such

that 0 is the only eigenvalue of T but T is not nilpotent.

Solution 8.8.


0 1 0

−1 0 0

0 0 0

 is one example.

Remark 8.0.1. The key point of the problem is to really understand the relation between the

characteristic polynomials, eigenvalues, and nilpotency. Eigenvalues are solutions to the char-

acteristic polynomials in the working field, and nilpotency requires that the solutions to the

characteristic polynomials are all zeroes in the complex field.

Exercise 8.9. Suppose T ∈ L(C4) is such that the eigenvalues of T are 3, 5, 8. Prove that

(T − 3I)2(T − 5I)2(T − 8I)2 = 0.

Solution 8.9. Since there are three eigenvalues of T , and the size of T is 4, then the biggest

size of Jordan block of T is 2. Then the highest degree of factors of the minimal polynomial of

T is 2. Then there are only four possible minimal polynomials:

• (x− 3)2(x− 5)(x− 8),

• (x− 3)(x− 5)2(x− 8),

• (x− 3)(x− 5)(x− 8)2,



5

• (x− 3)(x− 5)(x− 8).

No matter which one it is, it divids (x−3)2(x−5)2(x−8)2. Then (T−3I)2(T−5I)2(T−8I)2 = 0.

Exercise 8.10.

(1) Give an example of an operator on C4 whose characteristic polynomial equals (x−1)(x−3)3

and whose minimal polynomial equals (x− 1)(x− 3)2.

Solution 8.10.


1 0 0 0

0 3 1 0

0 0 3 0

0 0 0 3


.

(2) Give an example of an operator on C4 whose characteristic and minimal polynomials both

equal x(x− 1)2(x− 3).

Solution 8.10.


0 0 0 0

0 1 1 0

0 0 1 0

0 0 0 3


.

Exercise 8.11. Suppose V is a complex vector space and T ∈ L(V ). Prove that V has a basis

consisting of eigenvectors of T if and only if the minimal polynomial of T has no repeated zeros.

Solution 8.11. The minimal polynomial of T has no repeated zeros means that the biggest

Jordan block is 1× 1.

(⇒): If V has a basis consisting of eigenvectors of T , then T is diagonalizable. Then the biggest

Jordan block is 1× 1. Then the minimal polynomial of T has no repeated zeros.

(⇐): If the minimal polynomial of T has no repeated zeros, then the biggest Jordan block is

1× 1. Then T is diagonalizable. Therefore V has a basis consisting of eigenvectors of T .
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Exercise 8.12. Let N =


0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0


. Please find the characteristic polynomial and minimal

polynomial of N .

Solution 8.12. The characteristic polynomial is

det(N − xI) = det




−x 1 0 0

0 −x 1 0

0 0 −x 1

0 0 0 −x




= x4.

Since this is already a Jordan block of size 4 with eigenvalue 0, the minimal polynomial is x4.

Exercise 8.13. Let A =


1 2 3

0 1 2

0 0 2

. Please find its Jordan canonical form C and find the

transformation matrix P such that C = P−1AP .

Solution 8.13. First find the characteristic polynomial:

det (A− xI) = det



1− x 2 3

0 1− x 2

0 0 2− x


 = (1− x)2(2− x).

Then the matrix has eigenvalue 1 with multiplicity 2 and eigenvalue 2 with multiplicity 1.

Then try (I − A)(2I − A):

(I − A)(2I − A) =


0 −2 −3

0 0 −2

0 0 −1



1 −2 −3

0 1 −2

0 0 0

 =


0 −2 4

0 0 0

0 0 0

 ̸= 0.
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Therefore the minimal polynomial is not (1− x)(2− x). So the minimal polynomial has to be

the characteristic polynomial. Then the Jordan canonical form of the matrix A is
1 1 0

0 1 0

0 0 2

.
To find the transformation matrix P , we need to find a basis consisting of eigenvectors of

eigenvalue 1 and 2 and a generalized eigenvector of eigenvalue 1.

Eigenvalue 1: Solve (A− I)X = 0: 
0 2 3

0 0 2

0 0 1

X = 0.

The solution is X ∈ Span



1

0

0


. So the first basis vector can be v1 =


1

0

0

.

Generalized eigenvector of eigenvalue 1: Solve (A− I)X = v1:
0 2 3

0 0 2

0 0 1

X =


1

0

0

.

The solution is X ∈ Span



0

1
2

0


. We can choose the second basis vector to be v2 =


0

1
2

0

.

Eigenvalue 2: Solve (A− 2I)X = 0:
−1 2 3

0 −1 2

0 0 0

X = 0.
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The solution is X ∈ Span



7

2

1


. We can choose the third basis vector to be v3 =


7

2

1

.

Therefore B = {v1, v2, v3} is a Jordan basis. The transformation matrix is

P =


1 0 7

0 1
2

2

0 0 1

.
We may jusitify our answer by computing

P−1AP =


1 1 0

0 1 0

0 0 2

.
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Exercise 8.14.

(1) im(T k) ⊃ im(T k+1) for any k ≥ 0.

(2) If im(Tm) = im(Tm+1), then im(Tm+k) = im(Tm+k+1) for any k ≥ 0.

(3) Let dimV = n. Then im(T n) = im(T n+1).

Solution 8.14.

(1) For any v ∈ im(T k+1), there exists w ∈ V such that v = T k+1(w). Then v = T k(t(w)). So

v ∈ im(T k). So im(T k) ⊃ im(T k+1).

(2) Assume that im(Tm) im(Tm+1). For any v ∈ im(Tm+k), there exists w ∈ V such that v =

Tm+k(w) = T k(Tm(w)). Then since Tm(w) ∈ im(Tm) = im(Tm+1), there exists z ∈ V such

that Tm(w) = Tm+1(z). Then v = T k(Tm+1(z)) = Tm+k+1(z). So v ∈ im(Tm+k+1). Then

im(Tm+k) ⊂ im(Tm+k+1). By (1), im(Tm+k) ⊃ im(Tm+k+1). Then im(Tm+k) = im(Tm+k+1).

(3) Assume that im(T n) ̸= im(T n+1). Then by (2), there is a decreasing chain

V ⊋ im(T ) ⊋ im(T 2) ⊋ . . . ⊋ im(T n) ⊋ im(T n+1).

Then we have n = dimV > dim im(T ) > . . . > dim im(T n) > dim im(T n+1). Then

dim im(T n+1) has to be ≤ −1, which is impossible. Then im(T n) = im(T n+1).


