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6.1. Let V be an inner product space. Prove the following:

(1) 0 is orthogonal to every vector in V .

Proof. Let v ∈ V be an arbitrary vector. Then 〈0, v〉 = 0, and so 0 is orthogonal to v. �

(2) 0 is the only vector in V that is orthogonal to itself.

Proof. Let v ∈ V be a vector that is orthogonal to itself. Then we have 〈v, v〉 = 0. By the definiteness property of the
inner product for V , we must have v = 0. So 0 is the only vector in V that is orthogonal to itself. �

6.2. Suppose V is a real inner product space.

(1) Show that 〈u + v, u − v〉 = ‖u‖2 − ‖v‖2 for any u, v ∈ V .

Proof. Since V is a real inner product space, conjugate symmetry is the same as symmetry for the inner product; that is,
〈u, v〉 = 〈v, u〉 = 〈v, u〉. Therefore, for all u, v ∈ V , we have

〈u + v, u − v〉 = 〈u, u〉 − 〈u, v〉 + 〈v, u〉 − 〈v, v〉

= ‖u‖2 − 〈u, v〉 + 〈u, v〉 − ‖v‖2

= ‖u‖2 − ‖v‖2,

as desired. �

(2) Show that if ‖u‖ = ‖v‖, then u + v is orthogonal to u − v.

Proof. Using part (1) and the assumption of part (2), we have

〈u + v, u − v〉 = ‖u‖2 − ‖v‖2

= ‖v‖2 − ‖v‖2

= 0,

and so u + v is orthogonal to u − v. �

6.3. Prove or disprove: There is an inner product on R2 such that the associated norm is given by



[x
y

]



 = max{x, y}

for all
[
x
y

]
∈ R2.

Proof. Disprove. Consider the nonzero vector
[
−1
0

]
∈ R2. Then

〈[
−1
0

]
,

[
−1
0

]〉
=





[−1
0

]



2

= (max{−1, 0})2

= 02

= 0,

which violates the definiteness of the inner product. �

6.4. Let V be an inner product space with the inner product 〈·, ·〉. Suppose S ∈ L(V) is an injective operator on V . Define a new
pairing 〈·, ·〉S by 〈u, v〉S = 〈Su, Sv〉 for all u, v ∈ V .

(1) Please show that 〈·, ·〉S is an inner product on V .



Proof. Positivity: For all u ∈ V , we have

〈u, u〉S = 〈Su, Su〉

= ‖Su‖2

≥ 0.

Definiteness: From 〈u, u〉S = ‖Su‖2, we have 〈u, u〉S = 0 if and only if ‖Su‖2 = 0. Since 〈·, ·〉 is an inner product for V ,
we have ‖Su‖2 = 0 if and only if Su = 0. Finally, since S is injective, it has trivial kernel; that is, Su = 0 if and only if
u = 0.
Additivity in the first slot: For all u, v,w ∈ V , we have

〈u + v,w〉S = 〈S(u + v), Sw〉

= 〈Su + Sv, Sw〉

= 〈Su, Sw〉 + 〈Sv, Sw〉

= 〈u,w〉S + 〈v,w〉S .

Homogeneity in the first slot: For all u, v ∈ V and λ ∈ F, we have

〈λu, v〉S = 〈S(λu), Sv〉

= 〈λSu, Sv〉

= λ〈Su, Sv〉

= λ〈u, v〉S .

Conjugate symmetry: For all u, v ∈ V , we have

〈u, v〉S = 〈Su, Sv〉

= 〈Sv, Su〉

= 〈v, u〉S .

These properties verify that 〈·, ·〉S defines an inner product on V . �

(2) Please give a counterexample that 〈·, ·〉S is not an inner product when S is not injective.

Proof. Let V := R2, let 〈·, ·〉 be the Euclidean dot product, and let v :=
[
1
1

]
∈ R2. Since S is not injective, we can for

instance let S be the zero map. So we have

〈v, v〉S =

〈[
1
1

]
,

[
1
1

]〉
S

=

〈
S

( [
1
1

] )
, S

( [
1
1

] )〉
= 〈0, 0〉
= 0.

This violates the definiteness property of the inner product, and so 〈·, ·〉S is not an inner product. �

6.5. Let R3 be the inner product space with the usual dot product. Let T ∈ L(R3) have an upper-triangular matrix with respect to
the basis w1 =


1
0
0

 ,w2 =


1
1
1

 ,w3 =


1
1
2


 .

Find an orthonormal basis of R3 with respect to which T has an upper-triangular matrix.

Proof. Based on Theorem 6.2.13 and its proof in the Notes, we will use the Gram-Schmidt procedure to find an orthonormal
basis of {w1,w2,w3} such that T is upper-triangular with respect to said orthonormal basis. Following this procedure for the



first basis vector w1, we obtain

e1 =
w1

‖w1‖

=


1
0
0









1
0
0










=


1
0
0

 .
Doing the same procedure for w1,w2, we obtain

e2 =
w2 − 〈w2, e1〉e1

‖w2 − 〈w2, e1〉e1‖

=


1
1
1

 −
〈

1
1
1

 ,

1
0
0


〉 

1
0
0









1
1
1

 −
〈

1
1
1

 ,

1
0
0


〉 

1
0
0










=


1
1
1

 −

1
0
0









1
1
1

 −

1
0
0










=


0
1
1









0
1
1










=
1
√

2


0
1
1


=


0
1√
2

1√
2

 .



Finally, doing the same procedure for w1,w2,w3, we obtain

e3 =
w3 − 〈w3, e1〉e1 − 〈w3, e2〉e2

‖w3 − 〈w3, e1〉e1 − 〈w3, e2〉e2‖

=


1
1
2

 −
〈

1
1
2

 ,

1
0
0


〉 

1
0
0

 −
〈

1
1
2

 ,


0
1√
2

1√
2


〉 

0
1√
2

1√
2










1
1
2

 −
〈

1
1
2

 ,

1
0
0


〉 

1
0
0

 −
〈

1
1
2

 ,


0
1√
2

1√
2


〉 

0
1√
2

1√
2











=


1
1
2

 −

1
0
0

 − 3√
2


0
1√
2

1√
2










1
1
2

 −

1
0
0

 − 3√
2


0
1√
2

1√
2











=


0
− 1

2
1
2










0
− 1

2
1
2










=
√

2


0
− 1

2
1
2


=


0
− 1√

2
1√
2

 .
So {e1, e2, e3} ⊂ R

3 is an orthonormal basis for which T has an upper-triangular matrix. �


