- 6.1. Let V be an inner product space. Prove the following:
 - (1) 0 is orthogonal to every vector in V.

Proof. Let $v \in V$ be an arbitrary vector. Then (0, v) = 0, and so 0 is orthogonal to v.

(2) 0 is the only vector in V that is orthogonal to itself.

Proof. Let $v \in V$ be a vector that is orthogonal to itself. Then we have $\langle v, v \rangle = 0$. By the definiteness property of the inner product for *V*, we must have v = 0. So 0 is the only vector in *V* that is orthogonal to itself. \Box

6.2. Suppose V is a real inner product space.

(1) Show that $\langle u + v, u - v \rangle = ||u||^2 - ||v||^2$ for any $u, v \in V$.

Proof. Since *V* is a real inner product space, conjugate symmetry is the same as symmetry for the inner product; that is, $\langle u, v \rangle = \overline{\langle v, u \rangle} = \langle v, u \rangle$. Therefore, for all $u, v \in V$, we have

$$\langle u + v, u - v \rangle = \langle u, u \rangle - \langle u, v \rangle + \langle v, u \rangle - \langle v, v \rangle$$

= $||u||^2 - \langle u, v \rangle + \langle u, v \rangle - ||v||^2$
= $||u||^2 - ||v||^2$,

as desired.

(2) Show that if ||u|| = ||v||, then u + v is orthogonal to u - v.

Proof. Using part (1) and the assumption of part (2), we have

$$\langle u + v, u - v \rangle = ||u||^2 - ||v||^2$$

= $||v||^2 - ||v||^2$
= 0,

and so u + v is orthogonal to u - v.

6.3. Prove or disprove: There is an inner product on \mathbb{R}^2 such that the associated norm is given by

$$\left\| \begin{bmatrix} x \\ y \end{bmatrix} \right\| = \max\{x, y\}$$

for all $\begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{R}^2$.

Proof. Disprove. Consider the nonzero vector $\begin{bmatrix} -1 \\ 0 \end{bmatrix} \in \mathbb{R}^2$. Then

$$\begin{pmatrix} \begin{bmatrix} -1\\0 \end{bmatrix}, \begin{bmatrix} -1\\0 \end{bmatrix} \end{pmatrix} = \left\| \begin{bmatrix} -1\\0 \end{bmatrix} \right\|^2$$
$$= (\max\{-1,0\})^2$$
$$= 0^2$$
$$= 0.$$

which violates the definiteness of the inner product.

- 6.4. Let V be an inner product space with the inner product $\langle \cdot, \cdot \rangle$. Suppose $S \in \mathcal{L}(V)$ is an injective operator on V. Define a new pairing $\langle \cdot, \cdot \rangle_S$ by $\langle u, v \rangle_S = \langle Su, Sv \rangle$ for all $u, v \in V$.
 - (1) Please show that $\langle \cdot, \cdot \rangle_S$ is an inner product on *V*.

П

$$\langle u, u \rangle_S = \langle Su, Su \rangle$$

= $||Su||^2$
 $\geq 0.$

Definiteness: From $\langle u, u \rangle_S = ||Su||^2$, we have $\langle u, u \rangle_S = 0$ if and only if $||Su||^2 = 0$. Since $\langle \cdot, \cdot \rangle$ is an inner product for *V*, we have $||Su||^2 = 0$ if and only if Su = 0. Finally, since *S* is injective, it has trivial kernel; that is, Su = 0 if and only if u = 0.

Additivity in the first slot: For all $u, v, w \in V$, we have

Homogeneity in the first slot: For all $u, v \in V$ and $\lambda \in \mathbb{F}$, we have

$$\langle \lambda u, v \rangle_S = \langle S(\lambda u), Sv \rangle \\ = \langle \lambda Su, Sv \rangle \\ = \lambda \langle Su, Sv \rangle \\ = \lambda \langle u, v \rangle_S.$$

Conjugate symmetry: For all $u, v \in V$, we have

$$\langle u, v \rangle_S = \langle Su, Sv \rangle \\ = \overline{\langle Sv, Su \rangle} \\ = \overline{\langle v, u \rangle_S}.$$

These properties verify that $\langle \cdot, \cdot \rangle_S$ defines an inner product on *V*.

(2) Please give a counterexample that $\langle \cdot, \cdot \rangle_S$ is not an inner product when *S* is not injective.

Proof. Let $V := \mathbb{R}^2$, let $\langle \cdot, \cdot \rangle$ be the Euclidean dot product, and let $v := \begin{bmatrix} 1 \\ 1 \end{bmatrix} \in \mathbb{R}^2$. Since *S* is not injective, we can for instance let *S* be the zero map. So we have

$$\langle v, v \rangle_{S} = \left\langle \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\rangle_{S}$$

$$= \left\langle S\left(\begin{bmatrix} 1 \\ 1 \end{bmatrix}\right), S\left(\begin{bmatrix} 1 \\ 1 \end{bmatrix}\right) \right\rangle$$

$$= \langle 0, 0 \rangle$$

$$= 0.$$

This violates the definiteness property of the inner product, and so $\langle \cdot, \cdot \rangle_S$ is not an inner product.

6.5. Let \mathbb{R}^3 be the inner product space with the usual dot product. Let $T \in \mathcal{L}(\mathbb{R}^3)$ have an upper-triangular matrix with respect to the basis

$$\left\{w_1 = \begin{bmatrix} 1\\0\\0 \end{bmatrix}, w_2 = \begin{bmatrix} 1\\1\\1 \end{bmatrix}, w_3 = \begin{bmatrix} 1\\1\\2 \end{bmatrix}\right\}.$$

Find an orthonormal basis of \mathbb{R}^3 with respect to which *T* has an upper-triangular matrix.

Proof. Based on Theorem 6.2.13 and its proof in the Notes, we will use the Gram-Schmidt procedure to find an orthonormal basis of $\{w_1, w_2, w_3\}$ such that *T* is upper-triangular with respect to said orthonormal basis. Following this procedure for the

Doing the same procedure for w_1, w_2 , we obtain

$$e_{2} = \frac{w_{2} - \langle w_{2}, e_{1} \rangle e_{1}}{\|w_{2} - \langle w_{2}, e_{1} \rangle e_{1}\|}$$

$$= \frac{\begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} - \left\langle \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\0 \end{bmatrix} \right\rangle \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}}$$

$$= \frac{\begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix} - \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix} \|$$

$$= \frac{\begin{bmatrix} 1\\1\\1\\1\\1\\1 \end{bmatrix} - \begin{bmatrix} 1\\0\\0\\0\\0 \end{bmatrix} \|$$

$$= \frac{\begin{bmatrix} 0\\1\\1\\1\\1\\1\\1 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 0\\1\\1\\1\\1\\1 \end{bmatrix}$$

Finally, doing the same procedure for w_1, w_2, w_3 , we obtain

So $\{e_1, e_2, e_3\} \subset \mathbb{R}^3$ is an orthonormal basis for which *T* has an upper-triangular matrix.