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Solutions to Exercises 6

Exercise 6.1. Let V be an inner product space.

(1) 0 is orthogonal to every vector in V .

(2) 0 is the only vector in V that is orthogonal to itself.

Solution 6.1.

(1) For any u ∈ V , ⟨0, u⟩ = 0. So 0 is orthogonal to u.

(2) If ⟨u, u⟩ = 0, then u = 0. So 0 is the only vector in V that is orthogonal to itself.

Exercise 6.2. Suppose V is a real inner product space.

(1) Show that ⟨u+ v, u− v⟩ = ∥u∥2 − ∥v∥2 for any u, v ∈ V .

(2) Show that if ∥u∥ = ∥v∥, then u+ v is orthogonal to u− v.

Solution 6.2.

(1) For any u, v ∈ V , ⟨u+ v, u− v⟩ = ⟨u, u⟩ − ⟨u, v⟩+ ⟨v, u⟩ − ⟨v, v⟩ = ∥u∥2 − ∥v∥2.

(2) If ∥u∥ = ∥v∥, since ⟨u+ v, u− v⟩ = ∥u∥2 − ∥v∥2 = 0, u+ v is orthogonal to u− v.

Exercise 6.3. Prove or disprove: there is an inner product on R2 such that the associated

norm is given by

∥∥∥∥∥∥
x
y

∥∥∥∥∥∥ = max {x, y} for all

x
y

 ∈ R2.

Solution 6.3. If there is, then ∥v∥ = 0 if and only if v = 0. However

∥∥∥∥∥∥
 0

−1

∥∥∥∥∥∥ = 0 while

 0

−1

 ̸= 0. So such an inner product doesn’t exist.

Exercise 6.4. Let V be an inner product space with the inner product ⟨·, ·⟩. Suppose S ∈ L(V )

is an injective operator on V . Define a new pairing ⟨·, ·⟩S by ⟨u, v⟩S = ⟨Su, Sv⟩ for u, v ∈ V .

(1) Please show that ⟨·, ·⟩S is an inner product on V .

(2) Please give a counter example that ⟨·, ·⟩S is not an inner product when S is not injective.
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Solution 6.4.

(1) Let us check the five axioms for ⟨·, ·⟩S.

positivity: ⟨v, v⟩S = ⟨Sv, Sv⟩ ≥ 0 for all v ∈ V .

definiteness: ⟨v, v⟩S = 0 if and only if ⟨Sv, Sv⟩ = 0 if and only if Sv = 0. Since S is

injective, then Sv = 0 if and only if v = 0.

additivity in first slot: ⟨u+ v, w⟩S = ⟨S(u+ v), Sw⟩ = ⟨Su+ Sv, Sw⟩ = ⟨Su, Sw⟩ +

⟨Sv, Sw⟩ = ⟨u,w⟩S + ⟨v, w⟩S for all u, v, w ∈ V .

homogeneity in first slot: ⟨λu, v⟩S = ⟨S(λu), Sv⟩ = ⟨λSu, Sv⟩ = λ ⟨Su, Sv⟩ = λ ⟨u, v⟩S
for all u, v ∈ V and λ ∈ F.

conjugate symmetry: ⟨u, v⟩S = ⟨Su, Sv⟩ = ⟨Sv, Su⟩ = ⟨v, u⟩S for all u, v ∈ V .

Then ⟨·, ·⟩S is an inner product on V .

(2) Consider R2 and the usual dot product. Let S is defined by

1 0

0 0

. ⟨·, ·⟩S is not an inner

product.

Exercise 6.5. Let R3 be the inner product space with the usual dot product. Let T ∈ L(R3)

has an upper-triangular matrix with respect to the basis

w1 =


1

0

0

, w2 =


1

1

1

, w3 =


1

1

2


.

Find an orthonormal basis of R3 with respect to which T has an upper-triangular matrix.

Solution 6.5. By the proof of Theorem 6.2.13, what we need to do is to apply the Gram-

Schmidt procedure to the basis.

(1) e1 = w1/∥w1∥ =


1

0

0

.

(2) v2 = w2 − ⟨w2, e1⟩ e1 =


1

1

1

−

⟨
1

1

1

,

1

0

0


⟩

1

0

0

 =


0

1

1

. Then e2 = v2/∥v2∥ =


0

1/
√
2

1/
√
2

.
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(3) v3 = w3−⟨w3, e1⟩ e1−⟨w3, e2⟩ e2 =


1

1

2

−

⟨
1

1

2

,

1

0

0


⟩

1

0

0

−

⟨
1

1

2

,


0

1/
√
2

1/
√
2


⟩

0

1/
√
2

1/
√
2

 =


0

−1/2

1/2

. Then e3 = v3/∥v3∥ =


0

−1/
√
2

1/
√
2

.

Then {e1, e2, e3} is an orthonormal basis such that the matrix of T with respect to this basis is

upper-triangular.
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