Exercise 6.1. Let V be an inner product space.

- (1) 0 is orthogonal to every vector in V.
- (2) 0 is the only vector in V that is orthogonal to itself.

Solution 6.1.

- (1) For any $u \in V$, $\langle 0, u \rangle = 0$. So 0 is orthogonal to u.
- (2) If $\langle u, u \rangle = 0$, then u = 0. So 0 is the only vector in V that is orthogonal to itself.

Exercise 6.2. Suppose V is a real inner product space.

- (1) Show that $\langle u + v, u v \rangle = ||u||^2 ||v||^2$ for any $u, v \in V$.
- (2) Show that if ||u|| = ||v||, then u + v is orthogonal to u v.

Solution 6.2.

(1) For any
$$u, v \in V$$
, $\langle u + v, u - v \rangle = \langle u, u \rangle - \langle u, v \rangle + \langle v, u \rangle - \langle v, v \rangle = ||u||^2 - ||v||^2$.

(2) If ||u|| = ||v||, since $\langle u + v, u - v \rangle = ||u||^2 - ||v||^2 = 0$, u + v is orthogonal to u - v.

Exercise 6.3. Prove or disprove: there is an inner product on R^2 such that the associated norm is given by $\left\| \begin{bmatrix} x \\ y \end{bmatrix} \right\| = \max \{x, y\}$ for all $\begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{R}^2$.

Solution 6.3. If there is, then ||v|| = 0 if and only if v = 0. However $\left\| \begin{bmatrix} 0 \\ -1 \end{bmatrix} \right\| = 0$ while

 $\begin{bmatrix} 0\\ -1 \end{bmatrix} \neq 0.$ So such an inner product doesn't exist.

Exercise 6.4. Let V be an inner product space with the inner product $\langle \cdot, \cdot \rangle$. Suppose $S \in \mathcal{L}(V)$ is an injective operator on V. Define a new pairing $\langle \cdot, \cdot \rangle_S$ by $\langle u, v \rangle_S = \langle Su, Sv \rangle$ for $u, v \in V$.

- (1) Please show that $\langle \cdot, \cdot \rangle_S$ is an inner product on V.
- (2) Please give a counter example that $\langle \cdot, \cdot \rangle_S$ is not an inner product when S is not injective.

Solution 6.4.

- (1) Let us check the five axioms for ⟨·, ·⟩_S.
 positivity: ⟨v, v⟩_S = ⟨Sv, Sv⟩ ≥ 0 for all v ∈ V.
 definiteness: ⟨v, v⟩_S = 0 if and only if ⟨Sv, Sv⟩ = 0 if and only if Sv = 0. Since S is injective, then Sv = 0 if and only if v = 0.
 additivity in first slot: ⟨u + v, w⟩_S = ⟨S(u + v), Sw⟩ = ⟨Su + Sv, Sw⟩ = ⟨Su, Sw⟩ + ⟨Sv, Sw⟩ = ⟨u, w⟩_S + ⟨v, w⟩_S for all u, v, w ∈ V.
 homogeneity in first slot: ⟨λu, v⟩_S = ⟨S(λu), Sv⟩ = ⟨λSu, Sv⟩ = λ ⟨u, v⟩_S for all u, v ∈ V and λ ∈ F.
 conjugate symmetry: ⟨u, v⟩_S = ⟨Su, Sv⟩ = ⟨Sv, Su⟩ = ⟨v, u⟩_S for all u, v ∈ V.
 Then ⟨·, ·⟩_S is an inner product on V.
- (2) Consider \mathbb{R}^2 and the usual dot product. Let *S* is defined by $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$. $\langle \cdot, \cdot \rangle_S$ is not an inner product.
- **Exercise 6.5.** Let \mathbb{R}^3 be the inner product space with the usual dot product. Let $T \in \mathcal{L}(\mathbb{R}^3)$ has an upper-triangular matrix with respect to the basis $\left\{ w_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, w_2 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, w_3 = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} \right\}$.

Find an orthonormal basis of \mathbb{R}^3 with respect to which T has an upper-triangular matrix.

Solution 6.5. By the proof of Theorem 6.2.13, what we need to do is to apply the Gram-Schmidt procedure to the basis.

(1)
$$e_1 = w_1 / ||w_1|| = \begin{bmatrix} 1\\0\\0 \end{bmatrix}$$
.
(2) $v_2 = w_2 - \langle w_2, e_1 \rangle e_1 = \begin{bmatrix} 1\\1\\1 \end{bmatrix} - \left\langle \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\0 \end{bmatrix} \right\rangle \begin{bmatrix} 1\\0\\0 \end{bmatrix} = \begin{bmatrix} 0\\1\\1 \end{bmatrix}$. Then $e_2 = v_2 / ||v_2|| = \begin{bmatrix} 0\\1/\sqrt{2}\\1/\sqrt{2} \end{bmatrix}$.

$$(3) \ v_{3} = w_{3} - \langle w_{3}, e_{1} \rangle e_{1} - \langle w_{3}, e_{2} \rangle e_{2} = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} - \left\langle \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \right\rangle \left\langle \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix} \right\rangle \left\langle \begin{bmatrix} 0 \\ 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix} = \begin{bmatrix} 0 \\ -1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}.$$

$$(3) \ v_{3} = w_{3} - \langle w_{3}, e_{1} \rangle e_{1} - \langle w_{3}, e_{2} \rangle e_{2} = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} - \left\langle \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix} \right\rangle \left\langle \begin{bmatrix} 0 \\ -1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}.$$

Then $\{e_1, e_2, e_3\}$ is an orthonormal basis such that the matrix of T with respect to this basis is upper-triangular.