MATH 132 Homework 8

7.1. Consider \mathbb{C}^n with the dot product. Define $T \in \mathcal{L}(\mathbb{C}^n)$ by

$$T\left(\begin{bmatrix}z_1\\z_2\\\vdots\\z_n\end{bmatrix}\right) = \begin{bmatrix}0\\z_1\\\vdots\\z_{n-1}\end{bmatrix}.$$

Find a formula for $T^* \begin{pmatrix} \begin{vmatrix} z_1 \\ z_2 \\ \vdots \\ z_n \end{pmatrix}$.

Proof. Let $\mathcal{E} := \{e_1, \dots, e_n\} \subset \mathbb{C}^n$ be the standard basis, which is by definition orthonormal. Since *T* sends z_1 to 0 and z_i to z_{i-1} for all $i = 2, \dots, n$, and since we have

$$e_i = \begin{bmatrix} 0\\ \vdots\\ 1\\ \vdots\\ 0 \end{bmatrix},$$

where the 1 is located in the i^{th} position of the vector, we get

$$T(e_i) = \begin{cases} e_{i+1} & \text{if } i = 1, \dots, n-1 \\ 0 & \text{if } i = n. \end{cases}$$

Next, since $\mathcal{E} \subset \mathbb{C}^n$ is a basis, we can write the adjoint of *T* as

 $T^*(e_i) = a_{1i}e_1 + \dots + a_{ni}e_n$

for some choice of scalars $a_{ij} \in \mathbb{C}$ for i, j = 1, ..., n. Also we recall the Kronecker delta

$$\delta_{ij} := \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j. \end{cases}$$

Since \mathcal{E} is orthonormal, we can find the complex conjugate of the scalars as follows:

$$\begin{split} \overline{a_{ij}} &= \overline{a_{1j}}0 + \dots + \overline{a_{ij}}1 + \dots + \overline{a_{nj}}0 \\ &= \overline{a_{1j}}\langle e_i, e_1 \rangle + \dots + \overline{a_{ij}}\langle e_i, e_i \rangle + \dots + \overline{a_{nj}}\langle e_i, e_n \rangle \\ &= \langle e_i, a_{1j}e_1 \rangle + \dots + \langle e_i, a_{ij}e_1 \rangle + \dots + \langle e_i, a_{nj}e_1 \rangle \\ &= \langle e_i, a_{1j}e_1 + \dots + a_{nj}e_n \rangle \\ &= \langle e_i, T^*(e_j) \rangle \\ &= \langle T(e_i), e_j \rangle \\ &= \begin{cases} \langle e_{i+1}, e_j \rangle & \text{if } i = 1, \dots, n-1 \\ \langle 0, e_j \rangle & \text{if } i = n \end{cases} \\ &= \begin{cases} \delta_{i+1,j} & \text{if } i = 1, \dots, n-1 \\ 0 & \text{if } i = n \end{cases} \\ &= \begin{cases} 1 & \text{if } i = j-1 \text{ for all } j = 2, \dots, n \\ 0 & \text{otherwise.} \end{cases} \end{split}$$

Our final expression of $\overline{a_{ij}}$ implies that we have $a_{ij} \in \mathbb{R} \subset \mathbb{C}$, depending on our choices of i, j = 1, ..., n; this means in particular $\overline{a_{ij}} = a_{ij}$. Therefore, for j = 1, we have

$$T^*(e_1) = a_{11}e_1 + \dots + a_{n1}e_n$$

= $0e_1 + \dots + 0e_n$
= $0,$

and, for all $j = 2, \ldots, n$, we have

$$T^*(e_j) = a_{1j}e_1 + \dots + a_{nj}e_n$$

= $\overline{a_{1j}}e_1 + \dots + \overline{a_{nj}}e_n$
= $\overline{a_{1j}}e_1 + \dots + \overline{a_{j-1,j}}e_{j-1} + \dots + \overline{a_{nj}}e_n$
= $0e_1 + \dots + 1e_{j-1} + \dots + 0e_n$
= e_{i-1} .

In summary, for all j = 1, ..., n, we have

$$T^*(e_j) = \begin{cases} 0 & \text{if } j = 1 \\ e_{j-1} & \text{if } j = 2, \dots, n \end{cases}$$

which implies that T^* sends z_i to z_{i+1} for all i = 1, ..., n-1 and z_n to 0. In other words,

$$T^* \left(\begin{bmatrix} z_1 \\ \vdots \\ z_{n-1} \\ z_n \end{bmatrix} \right) = \begin{bmatrix} z_2 \\ \vdots \\ z_n \\ 0 \end{bmatrix}$$

is the formula for T^* .

7.2. Suppose V is a complex inner product space and $T \in \mathcal{L}(V)$ is a normal operator such that $T^9 = T^8$. Prove that T is self-adjoint and $T^2 = T$.

Proof. Since T satisfies $T^9 = T^8$, or $T^9 - T^8 = 0$, it follows that $x^8(x - 1)$ is a polynomial multiple of the minimal polynomial of T. This also implies that at least one of 0 and 1 are the only possible eigenvalues of T (up to their multiplicities). In other words, all the eigenvalues of T are real numbers, which means we conclude by Corollary 7.2.4 of the Notes that T is self-adjoint.

Furthermore, since *T* is normal, the Complex Spectral Theorem (Theorem 7.2.1 of the Notes) asserts that *T* has a diagonal matrix with respect to some orthonormal basis of *V*. Since the matrix of *T* is diagonal, it follows that at least one of, if not both, the Jordan blocks J_0 , J_1 is/are of size 1×1 , meaning that the minimal polynomial of *T* either is equal to or divides x(x-1). In either case, we have T(T-I) = 0, or $T^2 = T$.

7.3. Let $S, T \in \mathcal{L}(V)$ be self-adjoint. Show that ST is self-adjoint if and only if ST = TS.

Proof. We will prove the forward direction: If *ST* is self-adjoint, then ST = TS. Since *S*, *T* are self-adjoint by the hypotheses, we have $S = S^*$ and $T = T^*$. Since *ST* is self-adjoint by assumption, we have $ST = (ST)^*$. Finally, by Proposition 7.1.4, part (5), of the Notes, we have $(ST)^* = T^*S^*$. Therefore, we have

$$ST = (ST)^*$$
$$= T^*S^*$$
$$= TS,$$

as desired. Now we will prove the backward direction: If ST = TS, then ST is self-adjoint. Since again we have $S = S^*$ and $T = T^*$, and now we are assuming ST = TS, we have

$$(ST)^* = T^*S^*$$
$$= TS$$
$$= ST,$$

as desired.

7.4. Suppose V is a complex inner product space with $V \neq \{0\}$. Show that the set of self-adjoint operators on V is not a subspace of $\mathcal{L}(V)$.

Proof. Let $V = \mathbb{C}^2$, let $i \in \mathbb{C}$ be a scalar, and let T be the identity map (that is, Tv = v for all $v \in \mathbb{C}^2$). Then T is self-adjoint; that is, $T^* = T$. But we also have $\overline{i}T^* = -iT \neq iT^*$, which signifies that the set of self-adjoint operators on V is not closed under scalar multiplication. So the set of self-adjoint operators on V is not a subspace of $\mathcal{L}(V)$.

7.5. Give an example of an operator T on a complex vector space such that $T^9 = T^8$ but $T^2 \neq T$.

Proof. Let \mathbb{C}^4 be the complex vector space, and let $T \in \mathcal{L}(\mathbb{C}^4)$ be defined by its matrix representation A with respect to the standard basis of \mathbb{C}^4 :

but

as desired.

Explanation for why we chose A as above: We notice that A is a matrix in Jordan canonical form. Since we have $T \in \mathcal{L}(\mathbb{C}^4)$, the matrix A must have size 4×4 , and so the characteristic polynomial of A must have degree 4. Since A also satisfies $A^9 = A^8$, the characteristic polynomial of A divides $x^8(x - 1)$, and so 0, 1 are the only eigenvalues of A. Since A also satisfies $A^2 \neq A$, the minimal polynomial of A cannot be x(x - 1); the minimal polynomial of A must have at least degree 3 and consist of polynomial multiples of the linear factors x, x - 1. Finally, since the minimal polynomial divides the characteristic polynomial, the minimal polynomial of A must be one of $x^2(x-1)$, $x(x-1)^2$, $x^2(x-1)^2$, $x^3(x-1)$, $x(x-1)^3$, which correspond respectively to possible Jordan canonical forms (unique up to permutation of Jordan blocks corresponding to eigenvalues 0, 1 with their possible multiplicities)

Then A_2, A_3, A_5 do not satisfy our requirements because A_2^m, A_3^m, A_5^m will have entries that depend on *m*; in particular, $A_2^9 \neq A_2^8, A_3^9 \neq A_3^8, A_5^9 \neq A_5^8$. However, A_1, A_4 both work as they satisfy $A_1^2 \neq A_2^2, A_4^2 \neq A_4^2$ and $A_1^9 = A_1^8, A_4^9 = A_4^8$. So we chose $A = A_4$ (or we can equally choose $A = A_1$) for our matrix in the beginning of this solution.

7.6. Let V be a finite-dimensional complex vector space. Suppose that $T \in \mathcal{L}(V)$ is a normal operator on V and that 3 and 4 are eigenvalues of T. Prove that there exists a vector $v \in V$ such that $||v|| = \sqrt{2}$ and ||Tv|| = 5.

Proof. Since T is a normal operator on V, the Complex Spectral Theorem (Theorem 7.2.1 of the Notes) asserts that there exists a basis of V consisting of orthonormal eigenvectors as the basis vectors. In particular, there exist basis vectors $v_1, v_2 \in V$ that correspond respectively to the eigenvalues 3 and 4 and both have unit length (that is, $||v_1|| = ||v_2|| = 1$); in other words, $v_1, v_2 \in V$ satisfy $Tv_1 = 3v_1$ and $Tv_2 = 4v_2$. Let $v := v_1 + v_2 \in V$. Then the image of v under T is

$$Tv = T(v_1 + v_2) = Tv_1 + Tv_2 = 3v_1 + 4v_2.$$

Using the Pythagorean Theorem, we obtain

$$||v||^{2} = ||v_{1}||^{2} + ||v_{2}||^{2}$$
$$= 1 + 1$$
$$= 2$$

and

$$||Tv||^{2} = ||3v_{1}||^{2} + ||4v_{2}||^{2}$$

= 9||v_{1}||^{2} + 16||v_{2}||^{2}
= 9 + 16
= 25,

and so we get $||v|| = \sqrt{2}$ and ||Tv|| = 5.

7.7. Give an example of an operator $T \in \mathcal{L}(\mathbb{C}^4)$ such that T is normal but not self-adjoint.

with respect to the standard basis of \mathbb{C}^4 . Then the adjoint (conjugate transpose) of A is

which means A is not self-adjoint. But we also have

which means T is normal.

7.8. Let $T \in \mathcal{L}(V, W)$. Please prove that:

(1) T is injective if and only if T^* is surjective.

Proof. First we will prove the forward direction: If T is injective, then T^* is surjective. We will do a proof by conradiction; suppose to the contrary that T^* is not surjective. Then we have im $T^* \subsetneq V$, and so, after using the Gram-Schmidt procedure if necessary, there exists an orthonormal basis of im T^* that can be extended to a basis of V. In particular, there exists at least one basis vector in V but not in im T^* ; let v be such a vector. Since the basis vectors in im T^* form an orthornomal basis of im T^* , it follows that v is orthogonal to all the basis vectors of that orthornomal basis of im T^* (so that no component of v is in im T^*), which also means that v is orthogonal to all vectors in im T^* ; that is, for all $w \in W$ we have $\langle v, T^*w \rangle = 0$. Therefore, for all $w \in W$, we have

$$\langle Tv, w \rangle = \langle v, T^*w \rangle$$

= 0.

which implies Tv = 0. Since $T \in \mathcal{L}(V, W)$ is injective, we get v = 0, which is a contradiction because we said earlier that v is also a basis vector; a zero vector is never a basis vector.

Now we will prove the backward direction: If T^* is surjective, then T is injective. Let $v \in V$ satisfy Tv = 0. Since $T^* \in \mathcal{L}(W, V)$ is surjective, by definition for any $u \in V$ there exists $w \in W$ such that $T^*w = v$. Therefore, for all $u \in V$, we have

$$\langle v, u \rangle = \langle v, T^* w \rangle \\ = \langle Tv, w \rangle \\ = \langle 0, w \rangle \\ = 0,$$

which implies v = 0. Hence, T is injective.

Alternate proof using the Axler textbook: By 7.7 of Axler (page 207), we have $\operatorname{im} T^* = (\operatorname{nul} T)^{\perp}$, which implies in particular nul $T = \{0\}$ if and only if $\operatorname{im} T = \{0\}^{\perp} = V$. Hence, T is injective if and only if nul T = 0, if and only if $\operatorname{im} T^* = V$, if and only if T^* is surjective.

(2) T is surjective if and only if T^* is injective.

Proof. Replace T with T^* in the statement of part (1); the statement would read: " T^* is injective if and only if T^{**} is surjective." But we also recall that we have $T^{**} = T$. So the statement really reads: " T^* is injective if and only if T is surjective," which is precisely the statement of part (2).

Alternate proof using the Axler textbook: By 7.7 of Axler (page 207), we have nul $T^* = (\text{im } T)^{\perp}$, which implies in particular im T = V if and only if nul $T^* = V^{\perp} = \{0\}$. Hence, T is surjective if and only if im T = V, if and only if nul $T^* = \{0\}$, if and only if T^* is injective.

7.9. Consider \mathbb{C}^3 with the dot product. Let \mathcal{E} be the standard basis. Let $T \in \mathcal{L}(\mathbb{C}^3)$ be defined by

$$\begin{bmatrix} T \end{bmatrix}_{\mathcal{E} \leftarrow \mathcal{E}} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}.$$

Please find an orthonormal basis such that the matrix of T is diagonal, or prove that such a basis does not exist.

Proof. The standard basis \mathcal{E} is an orthonormal basis, which implies that the adjoint of $[T]_{\mathcal{E} \leftarrow \mathcal{E}}$ is the conjugate transpose of $[T]_{\mathcal{E} \leftarrow \mathcal{E}}$; that is,

$$\begin{bmatrix} T \end{bmatrix}_{\mathcal{E}\leftarrow\mathcal{E}}^* = \begin{bmatrix} T \end{bmatrix}_{\mathcal{E}\leftarrow\mathcal{E}}^H$$
$$= \begin{bmatrix} \overline{1} & \overline{0} & \overline{1} \\ \overline{1} & \overline{1} & \overline{0} \\ \overline{0} & \overline{1} & \overline{1} \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

Notice that we have

$$TT^* = \begin{bmatrix} T \end{bmatrix}_{\mathcal{E}\leftarrow\mathcal{E}} \begin{bmatrix} T \end{bmatrix}_{\mathcal{E}\leftarrow\mathcal{E}}^*$$
$$= \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} T \end{bmatrix}_{\mathcal{E}\leftarrow\mathcal{E}}^* \begin{bmatrix} T \end{bmatrix}_{\mathcal{E}\leftarrow\mathcal{E}}$$
$$= T^*T,$$

which means *T* is normal. So the Complex Spectral Theorem (Theorem 7.2.1 of the Notes) asserts that *T* has a diagonal matrix with respect to some orthonormal basis of eigenvectors in \mathbb{C}^3 ; in other words, $[T]_{\mathcal{E} \leftarrow \mathcal{E}}$ is diagonalizable with respect to the orthonormal basis of eigenvectors. This motivates us to find the eigenvalues. From the equation

$$0 = \det(\begin{bmatrix} T \end{bmatrix}_{\mathcal{E}\leftarrow\mathcal{E}} - \lambda I)$$

=
$$\det\left(\begin{bmatrix} 1-\lambda & 1 & 0 \\ 0 & 1-\lambda & 1 \\ 1 & 0 & 1-\lambda \end{bmatrix}\right)$$

=
$$(1-\lambda)^3 + 1$$

=
$$-\lambda^3 + 3\lambda^2 - 3\lambda + 2$$

=
$$-(\lambda - 2)(\lambda^2 - \lambda + 1),$$

from which we obtain the eigenvalues $\lambda = 2, \frac{1-\sqrt{3}i}{2}, \frac{1+\sqrt{3}i}{2}$. For $\lambda = 2$, the equation

$$0 = (A - 2I)x$$

=
$$\begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

gives us $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_1 \\ x_1 \end{bmatrix} \in \operatorname{span} \left\{ \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right\}$, and so we can choose

$$v_{1} = \frac{\begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}}{\left\| \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} \right\|}$$
$$= \frac{1}{\sqrt{3}} \begin{bmatrix} 1\\1\\1 \end{bmatrix}$$
$$= \begin{bmatrix} \frac{1}{\sqrt{3}}\\\frac{1}{\sqrt{3}}\\\frac{1}{\sqrt{3}} \end{bmatrix},$$

so that v_1 is a normal vector (that is, $||v_1|| = 1$). For $\lambda = \frac{1-\sqrt{3}i}{2}$, the equation

$$0 = \left(A - \frac{1 - \sqrt{3}i}{2}I\right)x$$
$$= \begin{bmatrix} \frac{1 + \sqrt{3}i}{2} & 1 & 0\\ 0 & \frac{1 + \sqrt{3}i}{2} & 1\\ 1 & 0 & \frac{1 + \sqrt{3}i}{2} \end{bmatrix} \begin{bmatrix} x_1\\ x_2\\ x_3 \end{bmatrix}$$

to obtain $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ \frac{-1-\sqrt{3}i}{2} x_1 \\ \frac{1-\sqrt{3}i}{2} x_1 \end{bmatrix} \in \operatorname{span} \left\{ \begin{bmatrix} 1 \\ \frac{-1-\sqrt{3}i}{2} \\ \frac{1-\sqrt{3}i}{2} \end{bmatrix} \right\}$, and so we can choose

$$v_{2} = \frac{\begin{bmatrix} 1\\ \frac{-1-\sqrt{3}i}{2}\\ \frac{1-\sqrt{3}i}{2} \end{bmatrix}}{\left\| \begin{bmatrix} 1\\ \frac{-1-\sqrt{3}i}{2}\\ \frac{1-\sqrt{3}i}{2} \end{bmatrix}} \right\|$$
$$= \frac{1}{\sqrt{3}} \begin{bmatrix} 1\\ \frac{-1-\sqrt{3}i}{2}\\ \frac{1-\sqrt{3}i}{2}\\ \frac{1-\sqrt{3}i}{2} \end{bmatrix},$$
$$= \begin{bmatrix} 1\\ \frac{-1-\sqrt{3}i}{2\sqrt{3}}\\ \frac{1-\sqrt{3}i}{2\sqrt{3}} \end{bmatrix},$$

so that v_2 is a normal vector (that is, $||v_2|| = 1$). For $\lambda = \frac{1+\sqrt{3}i}{2}$, the equation

$$0 = \left(A - \frac{1 + \sqrt{3}i}{2}I\right)x$$
$$= \begin{bmatrix} \frac{1 - \sqrt{3}i}{2} & 1 & 0\\ 0 & \frac{1 - \sqrt{3}i}{2} & 1\\ 1 & 0 & \frac{1 - \sqrt{3}i}{2} \end{bmatrix} \begin{bmatrix} x_1\\ x_2\\ x_3 \end{bmatrix}$$

to obtain
$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ \frac{-1+\sqrt{3}i}{2}x_1 \\ \frac{-1-\sqrt{3}i}{2}x_1 \end{bmatrix} \in \text{span} \left\{ \begin{bmatrix} 1 \\ \frac{-1+\sqrt{3}i}{2} \\ \frac{-1-\sqrt{3}i}{2} \end{bmatrix} \right\}$$
, and so we can choose
$$v_3 = \frac{\begin{bmatrix} 1 \\ \frac{-1-\sqrt{3}i}{2} \\ \frac{1-\sqrt{3}i}{2} \\ \frac{1-\sqrt{3}i}{2} \end{bmatrix}}{\left\| \begin{bmatrix} 1 \\ \frac{-1-\sqrt{3}i}{2} \\ \frac{1-\sqrt{3}i}{2} \\ \frac{1-\sqrt{3}i}{2} \end{bmatrix}} \right\|$$
$$= \frac{1}{\sqrt{3}} \begin{bmatrix} 1 \\ \frac{-1+\sqrt{3}i}{2} \\ \frac{-1-\sqrt{3}i}{2} \\ \frac{-1-\sqrt{3}i}{2\sqrt{3}} \end{bmatrix},$$

so that v_3 is a normal vector (that is, $||v_3|| = 1$). So we have a basis of orthonormal eigenvectors $\mathcal{B} := \{v_1, v_2, v_3\}$; our change-of-basis matrix is

$$P_{\mathcal{B}\leftarrow\mathcal{E}} = \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix}$$
$$= \begin{bmatrix} \frac{1}{\sqrt{3}} & 1 & 1\\ \frac{1}{\sqrt{3}} & \frac{-1-\sqrt{3}i}{2\sqrt{3}} & \frac{-1+\sqrt{3}i}{2\sqrt{3}}\\ \frac{1}{\sqrt{3}} & \frac{1-\sqrt{3}i}{2\sqrt{3}} & \frac{-1-\sqrt{3}i}{2\sqrt{3}} \end{bmatrix}$$

The matrix of T with respect to \mathcal{B} is

$$[T]_{\mathcal{B}\leftarrow\mathcal{B}} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & \frac{1-\sqrt{3}i}{2} & 0 \\ 0 & 0 & \frac{1+\sqrt{3}i}{2} \end{bmatrix},$$

which is a diagonal matrix of eigenvalues that satisfies

$$P_{\mathcal{E}\leftarrow\mathcal{B}}\left[T\right]_{\mathcal{B}\leftarrow\mathcal{B}}P_{\mathcal{E}\leftarrow\mathcal{B}}^{-1}=\left[T\right]_{\mathcal{E}\leftarrow\mathcal{E}}.$$

(The computation itself with these matrices to verify this equation is rather tedious and therefore not required to be done.)