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MATH 132 Homework 8

7.1. Consider C" with the dot product. Define T € L(C") by

21 0
22 2
T =
Zn Zn-1
21
22
Find a formula for 7" | | .
Zn
Proof. Let & = {ey,...,e,} C C" be the standard basis, which is by definition orthonormal. Since T sends z; to 0 and z; to
z;—1 foralli =2,...,n, and since we have
0
e =11,
0

where the 1 is located in the i position of the vector, we get
e; ifi=1,...,n-1
Tle) =4, .
0 ifi =n.
Next, since & C C" is a basis, we can write the adjoint of T as
T*(ej) = ajjer + -+ anjey

for some choice of scalars a;; € C fori, j = 1,...,n. Also we recall the Kronecker delta

| ifizi
by o= { iti =)
0 ifi#j.

Since & is orthonormal, we can find the complex conjugate of the scalars as follows:

a;j =a;;0+--+a;l+---+a,0
=aijei, e1) + - +aje, e + -+ an;{ei en)
=(ei,aijer) + -+ + (e, aijer) + -+ - + (ei, anjer)
= (e, aijer + -+ anjen)
= (e;, T*(ej))
= (T(ei). ej)
(eir1,ej) ifi=1,...,n—-1
B {(0, ey  ifi=n

Il
S

_ 5”1,!‘ ifi=1,...,l’l—1

o if i

_ 1 ifi=j—1forallj=2,...,n
10 otherwise.

Our final expression of a;; implies that we have a;; € R C C, depending on our choices of i,j = 1,...,n; this means in
particular a;; = a;;. Therefore, for j = 1, we have

T*(e1) = arier + -+ anien
=0e; +---+0¢,
=0,



7.2.

7.3.

7.4.

7.5.

and, forall j =2,...,n, we have

T*(ej) = ajjer + -+ -+ anjen
=ajjel + - +apje,
=Tjer+ T T
=0e;+---+1lej_1+---+0¢,

=¢j-1.
In summary, for all j = 1,...,n, we have
. 0 ifj=1
T (ej) = o
eji-1 ifj=2,...,n
which implies that 7* sends z; to z;4; foralli = 1,...,n — 1 and z, to 0. In other words,
b4 %)
™| * ||=
Zn—-1 Zn
Zn 0
is the formula for 7. ]

Suppose V is a complex inner product space and 7 € £(V) is a normal operator such that 7° = T3, Prove that T is self-adjoint
and7? =T.

Proof. Since T satisfies T° = T, or T° — T% = 0, it follows that x8(x — 1) is a polynomial multiple of the minimal polynomial
of T. This also implies that at least one of 0 and 1 are the only possible eigenvalues of 7' (up to their multiplicities). In
other words, all the eigenvalues of T are real numbers, which means we conclude by Corollary 7.2.4 of the Notes that T is
self-adjoint.

Furthermore, since T is normal, the Complex Spectral Theorem (Theorem 7.2.1 of the Notes) asserts that 7 has a diagonal
matrix with respect to some orthonormal basis of V. Since the matrix of T is diagonal, it follows that at least one of, if not
both, the Jordan blocks Jy, J; is/are of size 1 X 1, meaning that the minimal polynomial of T either is equal to or divides
x(x — 1). In either case, we have T(T —I) = 0, or 7> = T.. O

Let S,T € L(V) be self-adjoint. Show that ST is self-adjoint if and only if ST =TS.

Proof. We will prove the forward direction: If ST is self-adjoint, then ST = T'S. Since S, T are self-adjoint by the hypotheses,
we have S = §* and T = T*. Since ST is self-adjoint by assumption, we have ST = (ST)*. Finally, by Proposition 7.1.4, part
(5), of the Notes, we have (ST)* = T*S*. Therefore, we have

ST = (ST)"
=75
=TS,

as desired. Now we will prove the backward direction: If ST = TS, then ST is self-adjoint. Since again we have § = S* and
T =T, and now we are assuming ST = T'S, we have

(ST) =T*S"
=TS
= ST,

as desired. O

Suppose V is a complex inner product space with V # {0}. Show that the set of self-adjoint operators on V is not a subspace

of L(V).

Proof. Let V = C2, leti € C be a scalar, and let T be the identity map (that is, Tv = v for all v € C?). Then T is self-adjoint;
that is, 7* = T. But we also have iT* = —iT # iT*, which signifies that the set of self-adjoint operators on V is not closed
under scalar multiplication. So the set of self-adjoint operators on V is not a subspace of L(V). O

Give an example of an operator 7 on a complex vector space such that 7° = 78 but 72 # T.



7.6.

7.7.

Proof. Let C* be the complex vector space, and let T € £(C*) be defined by its matrix representation A with respect to the
standard basis of C*:

01 0 O
0 0 1 0
A= 0 0 0 of
0 0 0 1
Then T° = T® because
0 0 0 O
0 0 0 O
9 8 _
A A" = 00 0 O
0 0 0 1
but
0 01 0
0 0 0 O
2 _
A=1o 0 0 o "4
0 0 0 1
as desired. O

Explanation for why we chose A as above: We notice that A is a matrix in Jordan canonical form. Since we have T € £(C?),
the matrix A must have size 4 X 4, and so the characteristic polynomial of A must have degree 4. Since A also satisfies
A° = A3, the characteristic polynomial of A divides x®(x — 1), and so 0, 1 are the only eigenvalues of A. Since A also satisfies
A% # A, the minimal polynomial of A cannot be x(x — 1); the minimal polynomial of A must have at least degree 3 and
consist of polynomial multiples of the linear factors x, x — 1. Finally, since the minimal polynomial divides the characteristic
polynomial, the minimal polynomial of A must be one of x%(x — 1), x(x — 1), x*(x = 1)?, x3(x — 1), x(x — 1)3, which correspond
respectively to possible Jordan canonical forms (unique up to permutation of Jordan blocks corresponding to eigenvalues 0, 1
with their possible multiplicities)

0100 0000 0100 0100 0000
00 00 0000 0000 0010 0110
A=1o 0 1 0% o o1 1" oo 1 1" oo o0 oMo o 1 1]
00 0 1 0 0 0 1 0 0 0 1 00 0 1 00 0 1

Then Ay, Az, As do not satisfy our requirements because A7', A%', AY' will have entries that depend on m; in particular, Ag *
AS, Ag # A%, Ag # AS. However, Aj, A4 both work as they satisfy A7 # A3, A7 # A] and A = A8, A7 = A3 So we chose
A = A4 (or we can equally choose A = A;) for our matrix in the beginning of this solution.

Let V be a finite-dimensional complex vector space. Suppose that 7 € £(V) is a normal operator on V and that 3 and 4 are
eigenvalues of 7. Prove that there exists a vector v € V such that ||v|]| = V2 and ||Tv]| = 5.

Proof. Since T is a normal operator on V, the Complex Spectral Theorem (Theorem 7.2.1 of the Notes) asserts that there
exists a basis of V consisting of orthonormal eigenvectors as the basis vectors. In particular, there exist basis vectors vy, v, € V
that correspond respectively to the eigenvalues 3 and 4 and both have unit length (that is, ||v;]| = ||v2|| = 1); in other words,
vi, vp € V satisfy Tvy = 3vy and Tvy = 4v,. Let v := vy + v, € V. Then the image of v under 7T is
Tv =T +w)
=Tvi+Twv
= 3V1 + 4V2.

Using the Pythagorean Theorem, we obtain

2 2 2
IvIl™ = [vill™ + [Iv2]

=1+1
=2
and
Tyl = 13v111 + [[4va |1?
=9I I* + 16][v ||
=9+16
=25,
and so we get ||v]| = V2 and ||Tv|| = 5. .

Give an example of an operator T € £(C*) such that T is normal but not self-adjoint.



Proof. Let T be represented by the matrix

OO O~
(=N}

(=]
(=Nl

with respect to the standard basis of C*. Then the adjoint (conjugate transpose) of A is

A*:AH
-i 0 0 0
10 0 0 O
10 0 0 O
0 0 0 O
# A,
which means A is not self-adjoint. But we also have
[i 0 0 O][-i 0 0 O
«,_10 0 0 O[O O O O
ATA = 0 0 0 0[]0 0 O O
0 0 0 0|0 0 0 O
[1 0 0 O]
10 0 0 O
10 0 0 O
0 0 0 O]
[-i 0 0 O][i O 0 O
|10 0 0 Of{f0 O 0 O
10 0 0 Off0 O 0 O
|0 0 0 0][0 0 0 O
= AA,
which means T is normal. O

7.8. LetT € L(V,W). Please prove that:
(1) T is injective if and only if 7" is surjective.

Proof. First we will prove the forward direction: If T is injective, then T™ is surjective. We will do a proof by conradic-
tion; suppose to the contrary that 7* is not surjective. Then we have im7* C V, and so, after using the Gram-Schmidt
procedure if necessary, there exists an orthonormal basis of im 7™ that can be extended to a basis of V. In particular,
there exists at least one basis vector in V but not in im 7*; let v be such a vector. Since the basis vectors in im 7* form an
orthornomal basis of im 7, it follows that v is orthogonal to all the basis vectors of that orthornomal basis of im 7% (so
that no component of v is in im 7*), which also means that v is orthogonal to all vectors in im 7*; that is, for all w € W
we have (v, T*w) = 0. Therefore, for all w € W, we have

(Tv,w) = (v, T*w)
= 0’

which implies 7v = 0. Since T € L(V, W) is injective, we get v = 0, which is a contradiction because we said earlier
that v is also a basis vector; a zero vector is never a basis vector.

Now we will prove the backward direction: If T* is surjective, then T is injective. Let v € V satisfy Tv = 0. Since
T* € L(W,V) is surjective, by definition for any u € V there exists w € W such that 7*w = v. Therefore, for all u € V,

we have
,uy = (v, T*w)
= (Tv,w)
=(0,w)
=0,
which implies v = 0. Hence, T is injective. O

Alternate proof using the Axler textbook: By 7.7 of Axler (page 207), we have imT* = (nulT)*, which implies in
particular nul T = {0} if and only if im7 = {0}* = V. Hence, T is injective if and only if nul7 = 0, if and only if
im7T* =V, if and only if T* is surjective.



(2) T is surjective if and only if 7" is injective.

Proof. Replace T with T* in the statement of part (1); the statement would read: “T™ is injective if and only if 7 is
surjective.” But we also recall that we have 7** = T. So the statement really reads: “T* is injective if and only if T is
surjective,” which is precisely the statement of part (2). O

Alternate proof using the Axler textbook: By 7.7 of Axler (page 207), we have nul7* = (imT)*, which implies in
particular im7 = V if and only if nul7* = V* = {0}. Hence, T is surjective if and only if im7 = V, if and only if
nul 7* = {0}, if and only if 7* is injective.

7.9. Consider C? with the dot product. Let & be the standard basis. Let T € £(C?) be defined by

Please find an orthonormal basis such that the matrix of T is diagonal, or prove that such a basis does not exist.

Proof. The standard basis & is an orthonormal basis, which implies that the adjoint of [T] s 1s the conjugate transpose of
[T] PP that is,

* H
[T] Ee& = [T] &8
[1 0 1]
=11 10
0 1 1)
[1 0 1]
=(1 1 O0f.
0 1 1]
Notice that we have
T = [T] & [T] E—&
[1 1 0][1 0 1
={0 1 1f{f1 1 O
1 0 1j[0 1 1
[2 1 1]
=1 2 1
1 1 2]
(1 0 1)1 1
=1 1 0[]0 1 1
0 1 1f|1 0

= [T] &—& [T] E—&
=TT,
which means 7 is normal. So the Complex Spectral Theorem (Theorem 7.2.1 of the Notes) asserts that 7" has a diagonal matrix
with respect to some orthonormal basis of eigenvectors in C>; in other words, [T] scg is diagonalizable with respect to the
orthonormal basis of eigenvectors. This motivates us to find the eigenvalues. From the equation
0 =det([T],_, —AI)

1-2 1 0
= det 0 1-2 1
1 0 1-2

=(1-2>+1
=2 +322-31+2
=—(1-2)(A2-2+1),

from which we obtain the eigenvalues A = 2, 1_2\5 i, “T\@’ For A = 2, the equation
0=(A-2Dx
-1 1 01 |x



X1 X1 1
givesus x = |xp| = |x1| € span 4 |1{ ¢, and so we can choose
X3 X1 1

V] = =0

- - [ _ 1| 1
SESIES- @ | M
—

so that v is a normal vector (that is, ||v{]| = 1). For A = I_T‘/gi, the equation

X1 X1 1
to obtain x = | x| = _I_Tﬁ‘x] € span _I_Tﬁ’ , and so we can choose

X 1-3i 1-3i
3 2 Xl 2

1
—1-v3i
—2_
1-V3i
vy = | —2 |
1
—1-v3i
2

1-V3i
L 2 |

1
_ | evE
V3| 13
=

1
—1-+3i
=1 2v3 |»
1-V3i
23

so that v; is a normal vector (that is, ||vz|| = 1). For A = HT\@, the equation

1+\/§i)
3 I]x

0=|A-

1-13i
= 1 0

X1

1 0 1-v3i | | x3



X1 X1 1

to obtain x = | x| = _HT@’” € span _”T‘B’
X —1-+3i —1-V3i
3 7 M 2

, and so we can choose

1
—1-v3i
—2_
1-3i
vy = | —2 |
1
—1-v3i
2

1-V3i
L 2 |

1
:L —1+3i
V3 —1—2«@'
2

1

—1+3i
=1 2v3_ |
-1-v3i

23

so that v3 is a normal vector (that is, ||v3|| = 1). So we have a basis of orthonormal eigenvectors B := {vy, vy, v3}; our
change-of-basis matrix is

Pgcg=[vi v v

€L 1 1
V3
| Z1=vBi -1+4Ei
V3 23 243
1 1=V3i  —1=V3Bi
V3 23 243

The matrix of T with respect to B is

2 0 0
[T]BN—B: 0 1_2\@ 0 1
0 O 1+2\/§l

which is a diagonal matrix of eigenvalues that satisfies

P [T] 4z g4 Pglg= [T]gcs-

(The computation itself with these matrices to verify this equation is rather tedious and therefore not required to be done.) O



