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Solutions to Exercises 7

Exercise 7.1. Consider Cn with the dot product. Define T ∈ Cn by

T




z1

z2
...

zn


=


0

z1
...

zn−1




.

Find a formula for T ∗



z1
...

zn


. You cannot directly use Theorem 7.1.6.

Solution 7.1. Choose the standard basis E = {e1, . . . , en}. Then E is an orthonormal basis.

From the definition of T , we have that T (ei) = ei+1 for i = 1, . . . , n− 1 and T (en) = 0.

Let T ∗(ej) = a1je1+. . .+anjen. To find aij, we need to compute ⟨ei, a1je1 + . . .+ anjen⟩ = aij.

Then

aij = ⟨ei, a1je1 + . . .+ anjen⟩ = ⟨ei, T ∗(ej)⟩ = ⟨T (ei), ej⟩

=


⟨ei+1, ej⟩ i = 1, . . . , n− 1,

⟨0, ej⟩ i = n,

=


δi+1,j i = 1, . . . , n− 1,

0 i = n,

Then this means that aj−1,j = 1 for j = 2, . . . , n and aij = 0 otherwise. So T ∗(e1) = 0 and

T ∗(ej) = ej−1 for j = 2, . . . , n. Then

T ∗




z1

z2
...

zn




=


z2
...

zn

0


.
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Exercise 7.2. Suppose V is a complex inner product space and T ∈ L(V ) is a normal operator

such that T 9 = T 8. Prove that T is self-adjoint and T 2 = T .

Solution 7.2. Since T 9 = T 8, x9 − x8 is a multiple of the minimal polynomial of T . Then the

eigenvalues of T should be 0 or 1 or both. Then all eigenvalues of T are real. Since T is normal,

by Corollary 7.2.4 T is self-adjoint.

Since T is diagonal, the biggest Jordan block is of size 1. Then the minimal polynomial of T

should contain at most one factor x and one factor (x− 1). So the minimal polynomial divides

x(x− 1). Then T (T − I) = 0. Therefore T 2 = T .

Exercise 7.3. Let S, T ∈ L(V ) be self-adjoint. Show that ST is self-adjoint if and only if

ST = TS.

Solution 7.3.

(⇒): Since S, T , ST are self-adjoint, then S∗ = S, T ∗ = T and (ST )∗ = ST . Then ST =

(ST )∗ = T ∗S∗ = TS.

(⇐): Since S∗ = S, T ∗ = T and ST = TS, we have (ST )∗ = T ∗S∗ = TS = ST . So ST is

self-adjoint.

Exercise 7.4. Suppose V is a complex inner product space with V ̸= {0}. Show that the set

of self-adjoint operators on V is not a subspace of L(V ).

Solution 7.4. λ ̸= λ for most λ ∈ C. Therefore if T is self-adjoint, then (λT )∗ = λT ∗ = λT ̸=

λT in general. So self-adjoint operators don’t form a subspace of L(V ).

Exercise 7.5. Give an example of an operator T on a complex vector space such that T 9 = T 8

but T 2 ̸= T .

Solution 7.5. From the previous exercise, the biggest difference here is that T doesn’t have

to be diagonalizable. So to find a counter example we should look at those non-diagonalizable



24

operators. For example, let T ∈ C4 be defined by

A =


0 1 0 0

0 0 1 0

0 0 0 0

0 0 0 1


.

A9 = A8 =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1


, and A2 =


0 0 1 0

0 0 0 0

0 0 0 0

0 0 0 1


̸= A.

Exercise 7.6. Let V be a finite-dimensional complex vector space. Suppose that T is a normal

operator on V and that 3 and 4 are eigenvalues of T . Prove that there exists a vector v ∈ V

such that ∥v∥ =
√
2 and ∥Tv∥ = 5.

Solution 7.6. Since T is normal, there exists an orthonormal basis such that all basis vectors

are eigenvectors. Let v1 be the one with eigenvalue 3 and v2 be the one with eigenvalue 4. Let

v = v1 + v2. Then

∥v∥ =

√
∥v∥2 =

√
∥v1∥2 + ∥v2∥2 =

√
2,

and

∥Tv∥ = ∥T (v1 + v2)∥ = ∥3v1 + 4v2∥ =

√
∥3v1∥2 + ∥4v2∥2 = 5.

Exercise 7.7. Give an example of an operator T ∈ L(C4) such that T is normal but not

self-adjoint.
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Solution 7.7. There are plenty based on Proposition 7.2.2. Here is one: Let E be an or-

thonormal basis. T is defined by
[
T
]
E←E

= A =



i

0

0

0


. It is not self-adjoint since

AH =



−i

0

0

0


̸= A. However AAH = AHA.

Exercise 7.8. Let T ∈ L(V,W ). Please prove that

(1) T is injective if and only if T ∗ is surjective.

(2) T is surjective if and only if T ∗ is injective.

Solution 7.8.

(1) (⇒): Assume T is injective. Assume that T ∗ is not surjective. Then im(T ∗) ⊊ V . Choose

a basis of im(T ∗), extend it to be a basis of V , and apply the Gram-Schmidt procedure to

get an orthonormal basis. Pick v to be any one basis vector outside im(T ∗). Since the first

dim im(T ∗) basis vectors form an orthonormal basis of im(T ∗), v should be orthogonal to

all vectors in im(T ∗). Then for any w ∈ W , ⟨Tv, w⟩ = ⟨v, T ∗w⟩ = 0. So Tv = 0. Then by

T being injective, v = 0. This is a contradiction. So im(T ∗) = V . Then T ∗ is surjective.

(⇐): Assume T ∗ is surjective. Assume Tv = 0 for some v ∈ V . Then for any w ∈ W ,

⟨v, T ∗w⟩ = ⟨Tv, w⟩ = 0. Since T ∗ is surjective, this means that ⟨v, u⟩ = 0 for any u ∈ V .

Then v = 0. So T is injective.

(2) It follows from the first part by T = (T ∗)∗.
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Exercise 7.9. Consider C3 with the dot product. Let E be the standard basis. Let T ∈ L(C3)

be defined by

[
T
]
E←E

=


1 1 0

0 1 1

1 0 1

.
Please find an orthonormal basis such that the matrix of T is diagonal, or prove that such a

basis doesn’t exist.

Solution 7.9. Since E is an orthonormal basis,

[
T ∗

]
E←E

=
[
T
]H
E←E

=


1 0 1

1 1 0

0 1 1

.
Since 

1 1 0

0 1 1

1 0 1



1 0 1

1 1 0

0 1 1

 =


2 1 1

1 2 1

1 1 2

 =


1 0 1

1 1 0

0 1 1



1 1 0

0 1 1

1 0 1

,
T is normal. Then T can be diagonalized by an orthonormal basis, which are also eigenvectors.

Solve

det
([

T
]
E←E

− λI

)
= 0.

Then λ = 2, 1+
√
3i

2
and 1−

√
3i

2
. These are three eigenvalues.

λ = 2: Solve


1− 2 1 0

0 1− 2 1

1 0 1− 2

X = 0. The solution is X ∈ Span



1

1

1


. Then we choose

v1 =


1/
√
3

1/
√
3

1/
√
3

 since we need ∥v1∥ = 1.
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λ = 1+
√
3i

2
: Solve


1− 1+

√
3i

2
1 0

0 1− 1+
√
3i

2
1

1 0 1− 1+
√
3i

2

X = 0. The solution is X ∈ Span



−1+

√
3i

2

−1−
√
3i

2

1


.

Then we choose v2 =


−1+

√
3i

2
√
3

−1−
√
3i

2
√
3

1√
3

 since we need ∥v2∥ = 1.

λ = 1−
√
3i

2
: Solve


1− 1−

√
3i

2
1 0

0 1− 1−
√
3i

2
1

1 0 1− 1−
√
3i

2

X = 0. The solution is X ∈ Span



−1−

√
3i

2

−1+
√
3i

2

1


.

Then we choose v2 =


−1−

√
3i

2
√
3

−1+
√
3i

2
√
3

1√
3

 since we need ∥v3∥ = 1.

Then B = {v1, v2, v3} is the orthonormal basis which make T diagonal:

[
T
]
B←B

=


2

1+
√
3i

2

1−
√
3i

2

.
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