Solutions to Exercises 7

Exercise 7.1. Consider \mathbb{C}^n with the dot product. Define $T \in \mathbb{C}^n$ by

$$T\left(\begin{bmatrix}z_1\\z_2\\\vdots\\z_n\end{bmatrix}=\begin{bmatrix}0\\z_1\\\vdots\\z_{n-1}\end{bmatrix}\right).$$

Find a formula for $T^* \begin{pmatrix} \begin{bmatrix} z_1 \\ \vdots \\ z_n \end{bmatrix} \end{pmatrix}$. You cannot directly use Theorem 7.1.6.

Solution 7.1. Choose the standard basis $\mathcal{E} = \{e_1, \ldots, e_n\}$. Then \mathcal{E} is an orthonormal basis. From the definition of T, we have that $T(e_i) = e_{i+1}$ for $i = 1, \ldots, n-1$ and $T(e_n) = 0$.

Let $T^*(e_j) = a_{1j}e_1 + \ldots + a_{nj}e_n$. To find a_{ij} , we need to compute $\langle e_i, a_{1j}e_1 + \ldots + a_{nj}e_n \rangle = \overline{a_{ij}}$. Then

$$\overline{a_{ij}} = \langle e_i, a_{1j}e_1 + \ldots + a_{nj}e_n \rangle = \langle e_i, T^*(e_j) \rangle = \langle T(e_i), e_j \rangle$$
$$= \begin{cases} \langle e_{i+1}, e_j \rangle & i = 1, \ldots, n-1, \\ \langle 0, e_j \rangle & i = n, \end{cases}$$
$$= \begin{cases} \delta_{i+1,j} & i = 1, \ldots, n-1, \\ 0 & i = n, \end{cases}$$

Then this means that $a_{j-1,j} = 1$ for j = 2, ..., n and $a_{ij} = 0$ otherwise. So $T^*(e_1) = 0$ and $T^*(e_j) = e_{j-1}$ for j = 2, ..., n. Then

$$T^* \begin{pmatrix} \begin{bmatrix} z_1 \\ z_2 \\ \vdots \\ z_n \end{bmatrix} = \begin{bmatrix} z_2 \\ \vdots \\ z_n \\ 0 \end{bmatrix}.$$

Exercise 7.2. Suppose V is a complex inner product space and $T \in \mathcal{L}(V)$ is a normal operator such that $T^9 = T^8$. Prove that T is self-adjoint and $T^2 = T$.

Solution 7.2. Since $T^9 = T^8$, $x^9 - x^8$ is a multiple of the minimal polynomial of T. Then the eigenvalues of T should be 0 or 1 or both. Then all eigenvalues of T are real. Since T is normal, by Corollary 7.2.4 T is self-adjoint.

Since T is diagonal, the biggest Jordan block is of size 1. Then the minimal polynomial of T should contain at most one factor x and one factor (x - 1). So the minimal polynomial divides x(x - 1). Then T(T - I) = 0. Therefore $T^2 = T$.

Exercise 7.3. Let $S, T \in \mathcal{L}(V)$ be self-adjoint. Show that ST is self-adjoint if and only if ST = TS.

Solution 7.3.

(⇒): Since S, T, ST are self-adjoint, then $S^* = S$, $T^* = T$ and $(ST)^* = ST$. Then $ST = (ST)^* = T^*S^* = TS$.

(\Leftarrow): Since $S^* = S$, $T^* = T$ and ST = TS, we have $(ST)^* = T^*S^* = TS = ST$. So ST is self-adjoint.

Exercise 7.4. Suppose V is a complex inner product space with $V \neq \{0\}$. Show that the set of self-adjoint operators on V is not a subspace of $\mathcal{L}(V)$.

Solution 7.4. $\overline{\lambda} \neq \lambda$ for most $\lambda \in \mathbb{C}$. Therefore if T is self-adjoint, then $(\lambda T)^* = \overline{\lambda}T^* = \overline{\lambda}T \neq \lambda T$ in general. So self-adjoint operators don't form a subspace of $\mathcal{L}(V)$.

Exercise 7.5. Give an example of an operator T on a complex vector space such that $T^9 = T^8$ but $T^2 \neq T$.

Solution 7.5. From the previous exercise, the biggest difference here is that T doesn't have to be diagonalizable. So to find a counter example we should look at those non-diagonalizable

operators. For example, let $T \in \mathbb{C}^4$ be defined by

Exercise 7.6. Let V be a finite-dimensional complex vector space. Suppose that T is a normal operator on V and that 3 and 4 are eigenvalues of T. Prove that there exists a vector $v \in V$ such that $||v|| = \sqrt{2}$ and ||Tv|| = 5.

Solution 7.6. Since T is normal, there exists an orthonormal basis such that all basis vectors are eigenvectors. Let v_1 be the one with eigenvalue 3 and v_2 be the one with eigenvalue 4. Let $v = v_1 + v_2$. Then

$$||v|| = \sqrt{||v||^2} = \sqrt{||v_1||^2 + ||v_2||^2} = \sqrt{2},$$

and

$$||Tv|| = ||T(v_1 + v_2)|| = ||3v_1 + 4v_2|| = \sqrt{||3v_1||^2 + ||4v_2||^2} = 5$$

Exercise 7.7. Give an example of an operator $T \in \mathcal{L}(\mathbb{C}^4)$ such that T is normal but not self-adjoint.

Solution 7.7. There are plenty based on Proposition 7.2.2. Here is one: Let \mathcal{E} be an or-

|.

thonormal basis. T is defined by
$$\begin{bmatrix} T \end{bmatrix}_{\mathcal{E}\leftarrow\mathcal{E}} = A = \begin{bmatrix} i & & \\ & 0 & \\ & & 0 \\ & & 0 \end{bmatrix}$$
. It is not self-adjoint since $\begin{bmatrix} -i & & \\ & 0 & \\ & & 0 \end{bmatrix}$

$$A^{H} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \neq A. \text{ However } AA^{H} = A^{H}A.$$

Exercise 7.8. Let $T \in \mathcal{L}(V, W)$. Please prove that

- (1) T is injective if and only if T^* is surjective.
- (2) T is surjective if and only if T^* is injective.

Solution 7.8.

- (1) (⇒): Assume T is injective. Assume that T* is not surjective. Then im(T*) ⊊ V. Choose a basis of im(T*), extend it to be a basis of V, and apply the Gram-Schmidt procedure to get an orthonormal basis. Pick v to be any one basis vector outside im(T*). Since the first dim im(T*) basis vectors form an orthonormal basis of im(T*), v should be orthogonal to all vectors in im(T*). Then for any w ∈ W, ⟨Tv, w⟩ = ⟨v, T*w⟩ = 0. So Tv = 0. Then by T being injective, v = 0. This is a contradiction. So im(T*) = V. Then T* is surjective.
 (⇐): Assume T* is surjective. Assume Tv = 0 for some v ∈ V. Then for any w ∈ W,
 - $\langle v, T^*w \rangle = \langle Tv, w \rangle = 0$. Since T^* is surjective, this means that $\langle v, u \rangle = 0$ for any $u \in V$. Then v = 0. So T is injective.
- (2) It follows from the first part by $T = (T^*)^*$.

Exercise 7.9. Consider \mathbb{C}^3 with the dot product. Let \mathcal{E} be the standard basis. Let $T \in \mathcal{L}(\mathbb{C}^3)$ be defined by

$$\begin{bmatrix} T \end{bmatrix}_{\mathcal{E} \leftarrow \mathcal{E}} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}.$$

Please find an orthonormal basis such that the matrix of T is diagonal, or prove that such a basis doesn't exist.

Solution 7.9. Since \mathcal{E} is an orthonormal basis,

$$\begin{bmatrix} T^* \end{bmatrix}_{\mathcal{E} \leftarrow \mathcal{E}} = \begin{bmatrix} T \end{bmatrix}_{\mathcal{E} \leftarrow \mathcal{E}}^H = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}.$$

Since

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix},$$

T is normal. Then T can be diagonalized by an orthonormal basis, which are also eigenvectors. Solve

$$\det\left(\left[T\right]_{\mathcal{E}\leftarrow\mathcal{E}}-\lambda I\right)=0.$$

Then $\lambda = 2$, $\frac{1+\sqrt{3}i}{2}$ and $\frac{1-\sqrt{3}i}{2}$. These are three eigenvalues.

$$\lambda = 2: \text{ Solve } \begin{bmatrix} 1-2 & 1 & 0 \\ 0 & 1-2 & 1 \\ 1 & 0 & 1-2 \end{bmatrix} X = 0. \text{ The solution is } X \in \text{Span} \left(\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right). \text{ Then we choose}$$
$$v_1 = \begin{bmatrix} 1/\sqrt{3} \\ 1/\sqrt{3} \\ 1/\sqrt{3} \end{bmatrix} \text{ since we need } \|v_1\| = 1.$$

$$\begin{split} \lambda &= \frac{1+\sqrt{3}i}{2} \text{: Solve} \begin{bmatrix} 1 - \frac{1+\sqrt{3}i}{2} & 1 & 0\\ 0 & 1 - \frac{1+\sqrt{3}i}{2} & 1\\ 1 & 0 & 1 - \frac{1+\sqrt{3}i}{2} \end{bmatrix} X = 0. \text{ The solution is } X \in \text{Span} \left(\begin{bmatrix} \frac{-1+\sqrt{3}i}{2} \\ \frac{-1-\sqrt{3}i}{2} \\ 1 \end{bmatrix} \right). \end{split}$$
Then we choose $v_2 &= \begin{bmatrix} \frac{-1+\sqrt{3}i}{2\sqrt{3}} \\ \frac{-1-\sqrt{3}i}{2\sqrt{3}} \\ \frac{1}{\sqrt{3}} \end{bmatrix}$ since we need $||v_2|| = 1.$

$$\lambda = \frac{1-\sqrt{3}i}{2} \text{: Solve} \begin{bmatrix} 1 - \frac{1-\sqrt{3}i}{2} & 1 & 0 \\ 0 & 1 - \frac{1-\sqrt{3}i}{2} & 1 \\ 1 & 0 & 1 - \frac{1-\sqrt{3}i}{2} \end{bmatrix} X = 0. \text{ The solution is } X \in \text{Span} \left(\begin{bmatrix} \frac{-1-\sqrt{3}i}{2} \\ \frac{-1+\sqrt{3}i}{2} \\ \frac{-1+\sqrt{3}i}{2} \\ 1 \end{bmatrix} \right). \end{aligned}$$
Then we choose $v_2 = \begin{bmatrix} \frac{-1-\sqrt{3}i}{2\sqrt{3}} \\ \frac{-1+\sqrt{3}i}{2\sqrt{3}} \\ \frac{-1+\sqrt{3}i}{2\sqrt{3}} \\ \frac{-1+\sqrt{3}i}{2\sqrt{3}} \\ \frac{-1+\sqrt{3}i}{2\sqrt{3}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$ since we need $||v_3|| = 1.$

 $\begin{bmatrix} \bar{x} \\ \sqrt{3} \end{bmatrix}$ Then $\mathcal{B} = \{v_1, v_2, v_3\}$ is the orthonormal basis which make T diagonal:

$$\begin{bmatrix} T \end{bmatrix}_{\mathcal{B}\leftarrow\mathcal{B}} = \begin{bmatrix} 2 & & \\ & \frac{1+\sqrt{3}i}{2} & \\ & & \frac{1-\sqrt{3}i}{2} \end{bmatrix}.$$