
3. Review

3.1. Vector space.

Definition 3.1.1. A vector space V is a set V with two operations addition + and scalar

product · which satisfies eight axioms (which are omitted here).

Definition 3.1.2. The set of all linear combinations of a list of vectors B = {v1, . . . , vm} ⊂ V

is called the span of v1, . . . , vm, denoted Span(B) = Span(v1, . . . , vm). In other words,

Span(B) = Span(v1, . . . , vm) = {a1v1 + . . . amvm | a1, . . . , am ∈ F}.

Definition 3.1.3. A list {v1, . . . , vm} ⊂ V is called linearly independent if the only choice

of a1, . . . , am ∈ F that makes a1v1 + . . .+ amvm = 0 is a1 = . . . = am = 0.

Definition 3.1.4. A basis B of a vector space V is a set of vectors B = {v1, v2, . . . , vn} ⊂ V

such that

(1) Span(B) = V .

(2) B is linearly independent,

3.2. Coordinates. The primary use of bases is to set up coordinates. Choose a vector space V

and choose a basis B = {v1, . . . , vm}. Then each vector can be written as a linear combination

of these basis vectors and this expression is unique. That is, for any vector v ∈ V , we can find

only one set of coefficients a1, . . . , am ∈ F such that v = a1v1 + . . .+ amvm =
∑m

i=1 aivi. In this

case we can write

[
v
]
B
=

[
a1v1 + . . .+ amvm

]
B
=

[∑m
i=1 aivi

]
B
=


a1
...

am

,
and call this column vector the B-coordinates of v.

Question: How do you find the coordinates?

Answer: Solving linear equations v = a1v1 + . . .+ amvm for variables a1, . . . , am.

Remark 3.2.1. If able, you ARE REQUIRED to use matrices to solve linear equations.
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Example 3.2.2. The standard basis of Mat2×2(F) is

E =

E11 =

1 0

0 0

 , E12 =

0 1

0 0

 , E21 =

0 0

1 0

 , E22 =

0 0

0 1

.

Any 2×2 matrix A =

a b

c d

 can be expressed uniquely as aE11+bE12+cE21+dE22. Therefore

we can write matrix A as a column vector with respect to the standard basis:

[
A
]
E
=


a

b

c

d


.

3.3. Linear maps.

Definition 3.3.1. A map L : V → W between vector spaces is said to be linear if it preserves

scalar multiplication and addition in the following way:

L(ax) = aL(x),

L(x+ y) = L(x) + L(y),

where a ∈ F, x, y ∈ V .

3.4. Matrix representations. Let L : V → W be a linear map. Choose a basis E =

{e1, . . . , en} of V , and a basis F = {f1, . . . , fm} of W . Then we can express L as a matrix

in the following way.

For each L(ei), since it is in W , we can write it as a linear combination of F . That is

[
L(ei)

]
F
=

[∑m
j=1 ajifj

]
F
=


a1i
...

ami

 .
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We put all these column vectors together to form a matrix which is denoted by
[
L
]
F←E

:

[
L
]
F←E

=

[[
L(e1)

]
F

[
L(e2)

]
F

. . .
[
L(en)

]
F

]
=


a11 . . . a1n
... . . . ...

am1 . . . amn

 .

We call it the matrix of the linear map L with respect to the basis E of V and the basis F

of W . If there is no confusion, we can simply denote it by
[
L
]
.

Remark 3.4.1. In the Axler’s book the notation is a little different. Let L : V → W be a linear

map, E be a basis of V and F be a basis of W . The relations between different notations are:

Concept Axler’s notation My notation

Linear map L L

Matrix of L M(L)
[
L
]

Matrix of L w.r.t bases E and F M(T, E ,F)
[
L
]
F←E

Example 3.4.2. Compute a matrix representation for L : Mat2×2(F) → Mat1×2(F) defined by

L(X) =
[
1 −1

]
X using the standard bases: E11 =

1 0

0 0

, E12 =

0 1

0 0

, E21 =

0 0

1 0

,

E22 =

0 0

0 1

 and E1 =
[
1 0

]
and E2 =

[
0 1

]
.

Solve. Let V = Mat2×2(F), W = Mat1×2(F). Follow the instructions exactly:

(1) Apply L to the basis vector L(E11):

L(E11) =
[
1 −1

]1 0

0 0

 =
[
1 0

]
.

(2) Since L is a map from V to W , L(E11) should be a vector in W .

(3) Since L(E11) ∈ W , and F = {E1, E2} be a basis of W , we can write L(E11) as a linear combi-

nation of F . (Think that why here I write F = {E1, E2} instead of F = {E1, E2, . . . , Em}.)

[
1 0

]
= a11E1 + a21E2 = a11

[
1 0

]
+ a21

[
0 1

]
.
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Solve this equation. The solution is a11 = 1, a21 = 0. So

[
L(E11)

]
F
=

[[
1 0

]]
F
=

[
1 · E1 + 0 · E2

]
F
=

1
0

 .

(4) Repeat the process to other basis vectors of V . We have

[
L(E12)

]
F
=

0
1

 ,
[
L(E21)

]
F
=

−1

0

 ,
[
L(E22)

]
F
=

 0

−1

 .

(5) Put all these column vectors together, we have:

[
L
]
F←E

=

1 0 −1 0

0 1 0 −1

 .

□

3.5. How do we use the matrix
[
L
]
?

Theorem 3.5.1. [
L(v)

]
F
=

[
L
]
F←E

[
v
]
E
.

Example 3.5.2. Let L : R2 → R3 be a linear map defined by embedding R2 into R3 as the

xy-plane. We want to compute L

1
2

. There are two ways.

Directly embedding: The vector

1
2

, when embedding into R3, is considered as directly

adding a z-coordinate which should be 0. Therefore L

1
2

 =


1

2

0

.

Using matrix: First choose a basis of R2 and R3. We can use the standard bases E =e1 =

1
0

, e2 =
0
1

 ⊂ R2 and F =

f1 =


1

0

0

, f2 =

0

1

0

, f3 =

0

0

1


 ⊂ R3. To find
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the matrix of L, we need

L(e1) =


1

0

0

 = f1, L(e2) =


0

1

0

 = f2.

Then we have

[
L(e1)

]
F
=

[
f1

]
F
=


1

0

0

, [
L(e2)

]
F
=

[
f2

]
F
=


0

1

0

.
Then

[
L
]
F←E

=


1 0

0 1

0 0

.

Since

1
2


E

=
[
e1 + 2e2

]
E
=

1
2

, then we have

L
1

2


F

=
[
L
]
F←E

1
2


E

=


1 0

0 1

0 0


1
2

 =


1

2

0

.
Therefore

L

1
2

 = 1f1 + 2f2 =


1

2

0

.
Note that all the blue column vectors are the coordinates with respect to the bases E or F .

The black column vectors are the “true” vectors in R2 or R3.

Example 3.5.3. Let V = Span {cosx, sinx} with F = R. Let L : V → V be taking the derivative.

We want to compute L(cosx+ 2 sinx). There are two ways.

Directly taking derivative: L(cosx+ 2 sinx) = (cosx+ 2 sinx)′ = − sinx+ 2 cosx.
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Using matrix: First choose a basis of V . We can use B = {b1 = cosx, b2 = sinx}. To find the

matrix of L, we need
L(b1) = L(cosx) = (cosx)′ = − sinx,

L(b2) = L(sinx) = (sinx)′ = cosx.

Then we have [
L(b1)

]
B
=

[
− sinx

]
B
=

[
−b2

]
B
=

 0

−1

,
[
L(b2)

]
B
=

[
cosx

]
B
=

[
b1

]
B
=

1
0

.
Then [

L
]
B←B

=

 0 1

−1 0

.
Since

[
cosx+ 2 sinx

]
B
=

1
2

, then we have

[
L(cosx+ 2 sinx)

]
B
=

[
L
]
B←B

[
cosx+ 2 sinx

]
B
=

 0 1

−1 0

1
2

 =

 2

−1

.
Therefore

L(cosx+ 2 sinx) = 2b1 + (−1)b2 = 2 cosx− sinx.
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3.6. Exercises.

Exercise 3.1. Find the coordinate of the vector x =


1

2

3

 ∈ R3 with respect to the basis

U =

u1 =


1

1

0

, u2 =


0

1

1

, u3 =


1

1

1




Exercise 3.2. Let P3 be the vector space of all polynomials of variable t with degree no higher

than 3. Find the matrix representation for taking derivative D : P3 → P3 with respect to the

basis

F =
{
f1 = t3, f2 = t3 + t2, f3 = t3 + t2 + t, f4 = t3 + t2 + t+ 1

}
.

Exercise 3.3. Let T : R2 → R2 be a linear map defined by

T

a
b

 =

0 −1

1 0

a
b

 for

a
b

 ∈ R2.

Consider the basis

B =

x1 =

 1

−1

 , x2 =

1
1

.

(1) Compute the matrix representation of T with respect to B.

(2) Use the above matrix to compute T

1
2

.

The homework is due on Apr. 5.



4. Introduction to 132

4.1. Changing bases. Let V be the vector space, and B = {v1, . . . , vn} and E = {e1, . . . , en}

be two bases of V . For a vector v ∈ V , we can write it as

v = b1v1 + . . .+ bnvn =
n∑

i=1

bivi

= c1e1 + . . .+ cnen =
n∑

i=1

ciei.

(4.1)

(Think: Can we say that “bi = ci for i = 1, . . . , n by the linearly independence of basis”?)

In other words, we have

[
v
]
B
=


b1
...

bn

 ,
[
v
]
E
=


c1
...

cn

 .

We want to know the relation between
[
v
]
B

and
[
v
]
E
. We start from the relations between

the two bases. Since E form a basis of V , and vectors in B are also vectors in V , we can find

their E-coordinates. That is, write vectors in B as linear combinations of vectors in E . For any

i = 1, . . . , n, we have

vi = p1ie1 + p2ie2 + . . .+ pnien =
n∑

j=1

pjiej. (4.2)

So

[
vi

]
E
=


p1i
...

pni

 .

Then we form a change-of-basis matrix

PE←B =


p11 . . . p1n
... . . . ...

pn1 . . . pnn

 .

How do we use this matrix?

1
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Theorem 4.1.1. [
v
]
E
= PE←B

[
v
]
B
.

Proof. Let us start from equation (4.1) and (4.2). Since

v =
n∑

i=1

bivi and vi =
n∑

j=1

pjiej for any i,

we have

v =
n∑

i=1

bivi =
n∑

i=1

bi(
n∑

j=1

pjiej) =
n∑

j=1

(
n∑

i=1

pjibi)ej.

This suggest that

[
v
]
E
=


∑n

i=1 p1ibi
...∑n

i=1 pnibi

 =


p11 . . . p1n
... . . . ...

pn1 . . . pnn



b1
...

bn

 = PE←B

[
v
]
B
.

□

It is also easy to see that PE←B is invertible and

P−1E←B = PB←E .

Example 4.1.2. Let V = R2. Consider two bases: E =

e1 =

1
0

, e2 =
0
1

 and B =

v1 =

1
2

, v2 =
2
1

. Let w =

1
1

. Since w = e1 + e2, we have
[
w
]
E
=

1
1

. Now

there are at least two different ways to find
[
w
]
B
.

Directly: To find
[
w
]
B
, we need to write w as a linear combination of vectors in B. That is

w = b1v1 + b2v2. Then we have a linear system:1
1

 = b1

1
2

+ b2

2
1

 =

1 2

2 1

b1
b2

.
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Then we have b1
b2

 =

1 2

2 1

−11
1

 =

1/3
1/3

.
Therefore b1 = b2 = 1/3. So w = 1

3
v1 +

1
3
v2. Then

[
w
]
B
=

1/3
1/3

.
Use change-of-basis matrix: Since v1 = e1 + 2e2, v2 = 2e1 + e2, we have

[
v1

]
E
=

1
2

, [
v2

]
E
=

2
1

.

Then the change-of-basis matrix is PE←B =

1 2

2 1

. Therefore

[
w
]
B
= PB←E

[
w
]
E
= P−1E←B

[
w
]
E
=

1 2

2 1

−11
1

 =

1/3
1/3

.
4.2. Changing basis to change the matrix representation of a linear map.

Let L : V → W be a linear map. Let E and F be two bases of V , B and C be two bases of

W . Then we can have at least two matrix representations of L under different bases:
[
L
]
B←E

and
[
L
]
C←F

. Let PE←F be the change-of-matrix (from F to E) on V and QB←C be the change-

of-basis matrix (form C to B) on W . I use Q here because I want to emphasize that these two

change-of-basis matrices are on different vector spaces. What is the relation between them?

Theorem 4.2.1. [
L
]
B←E

= QB←C

[
L
]
C←F

PF←E .

Proof. Recall that for any vector v ∈ V , we have

[
L(v)

]
B
=

[
L
]
B←E

[
v
]
E
, and

[
L(v)

]
C
=

[
L
]
C←F

[
v
]
F
.
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Since
[
v
]
F
= PF←E

[
v
]
E

and
[
L(v)

]
C
= QC←B

[
L(v)

]
B
, we have

QC←B

[
L
]
B←E

[
v
]
E
= QC←B

[
L(v)

]
B
=

[
L(v)

]
C
=

[
L
]
C←F

[
v
]
F
=

[
L
]
C←F

PF←E

[
v
]
E

for any v ∈ V . Therefore it is easy to see that

QC←B

[
L
]
B←E

=
[
L
]
C←F

PF←E .

In other words, [
L
]
B←E

= QB←C

[
L
]
C←F

PF←E .

□

Example 4.2.2. Let V = R2. Let A =

 0 1

−1 0

. Let L : V → V be defined by

L(v) = Av for any v ∈ V.

Let S =

e1 =

1
0

 , e2 =

0
1

 be a basis. Since

L(e1) = Ae1 =

 0

−1

 = 0e1 + (−1)e2, L(e2) = Ae2 =

1
0

 = 1e1 + 0e2,

we have [
L(e1)

]
S
=

 0

−1

, [
L(e2)

]
S
=

1
0

.
Therefore [

L
]
S←S

=

 0 1

−1 0

.
Now choose another basis B =

b1 =

1
1

 , b2 =

 1

−1

. Then since

b1 = 1e1 + 1e2, b2 = 1e1 + (−1)e2,
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we have [
b1

]
S
=

1
1

, [
b2

]
S
=

 1

−1

.
Therefore PS←B =

1 1

1 −1

.

Now we have two methods to compute
[
L
]
B←B

. Either directly use the definition of matrix

representations under the basis B, or use Theorem 4.2.1.

Using the definition of matrix representations under the basis B:

(1) L(b1) =

 1

−1

 = x11b1 + x21b2. Solving the vector equation, x11 = 0, x21 = 1. Therefore

[
L(b1)

]
B
=

0
1

.

(2) L(b2) =

−1

−1

 = x12b1 + x22b2. Solving the vector equation, x12 = −1, x22 = 0. Therefore

[
L(b2)

]
B
=

−1

0

.

Therefore the matrix representation is
[
L
]
B←B

=

0 −1

1 0

.

Using Theorem 4.2.1: Since PS←B =

1 1

1 −1

, then PB←S = P−1S←B =

1/2 1/2

1/2 −1/2

. So

[
L
]
B←B

= PB←S

[
L
]
S←S

PS←B =

1/2 1/2

1/2 −1/2

 0 1

−1 0

1 1

1 −1

 =

0 −1

1 0

 .

Example 4.2.3. Let V = C with the field being R. Let L : V → V be defined by

L(z) = −iz for any z ∈ V.

Let S = {e1 = 1, e2 = i} be a basis. Since

L(e1) = −i · 1 = −i = 0e1 + (−1)e2, L(e2) = −i · i = 1 = 1e1 + 0e2,
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we have [
L(e1)

]
S
=

 0

−1

, [
L(e2)

]
S
=

1
0

.
Therefore [

L
]
S←S

=

 0 1

−1 0

 .

Now choose another basis B = {b1 = 1 + i, b2 = 1− i}. Then since

b1 = 1e1 + 1e2, b2 = 1e1 + (−1)e2,

we have
[
b1

]
S
=

1
1

, [
b2

]
S
=

 1

−1

. Therefore PS←B =

1 1

1 −1

.

Now we have two methods to compute
[
L
]
B←B

. Either directly use the definition of matrix

representations under the basis B, or use Theorem 4.2.1.

Using the definition of matrix representations under the basis B:

(1) L(b1) = −i(1 + i) = 1 − i = x11b1 + x21b2. Solving the vector equation, x11 = 0, x21 = 1.

Therefore
[
L(b1)

]
B
=

0
1

.

(2) L(b2) = −i(1−i) = −1−i = x12b1+x22b2. Solving the vector equation, x12 = −1, x22 = 0.

Therefore
[
L(b2)

]
B
=

−1

0

.

Therefore the matrix representation is
[
L
]
B←B

=

0 −1

1 0

.

Using Theorem 4.2.1: Since PS←B =

1 1

1 −1

, then PB←S = P−1S←B =

1/2 1/2

1/2 −1/2

. So

[
L
]
B←B

= PB←S

[
L
]
S←S

PS←B =

1/2 1/2

1/2 −1/2

 0 1

−1 0

1 1

1 −1

 =

0 −1

1 0

 .
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Example 4.2.4. Let V = Span {cos(x), sin(x)} with the field being R. Let L : V → V be defined

by

L(f) = f ′ for any f ∈ V.

Let S = {e1 = cos(x), e2 = sin(x)} be a basis. Since

[
L(e1)

]
S
=

[
cos(x)′

]
S
=

[
− sin(x)

]
S
=

[
0e1 + (−1)e2

]
S
=

 0

−1

 ,

[
L(e2)

]
S
=

[
sin(x)′

]
S
=

[
cos(x)

]
S
=

[
1e1 + 0e2

]
S
=

1
0

 ,

we have
[
L
]
S←S

=

 0 1

−1 0

.

Now choose another basis B = {b1 = cos(x) + sin(x), b2 = cos(x)− sin(x)}. Then since

[
b1

]
S
=

[
1e1 + 1e2

]
S
=

1
1

 ,
[
b2

]
S
=

[
1e1 + (−1)e2

]
S
=

 1

−1

 ,

we have PS←B =

1 1

1 −1

.

Now we have two methods to compute
[
L
]
B←B

. Either directly use the definition of matrix

representations under the basis B, or use Theorem 4.2.1.

Using the definition of matrix representations under the basis B:

(1) L(b1) = (cos(x) + sin(x))′ = cos(x)− sin(x) = x11b1 + x21b2. Solving the vector equation,

x11 = 0, x21 = 1. Therefore
[
L(b1)

]
B
=

0
1

.

(2) L(b2) = (cos(x)− sin(x))′ = − cos(x)− sin(x) = x12b1+x22b2. Solving the vector equation,

x12 = −1, x22 = 0. Therefore
[
L(b2)

]
B
=

−1

0

.

Therefore the matrix representation is
[
L
]
B←B

=

0 −1

1 0

.
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Using Theorem 4.2.1: Since PS←B =

1 1

1 −1

, then PB←S = P−1S←B =

1/2 1/2

1/2 −1/2

. So

[
L
]
B←B

= PB←S

[
L
]
S←S

PS←B =

1/2 1/2

1/2 −1/2

 0 1

−1 0

1 1

1 −1

 =

0 −1

1 0

 .

4.3. Example: Choose a specific basis.

4.3.1. An example. Let’s consider the following example. Let V = R4, W = R3. Let SV =

{e1, e2, e3, e4} be the standard basis of V , SW = {f1, f2, f3} be the standard basis of W . Let

T : V → W be a linear transformation defined by

[
T
]
SW←SV

=


1 2 3 4

0 1 1 2

1 3 2 4

 =: T.

Then we have the following information:

[
T (e1)

]
SW

=


1

0

1

 ,
[
T (e2)

]
SW

=


2

1

3

 ,
[
T (e3)

]
SW

=


3

1

2

 ,
[
T (e4)

]
SW

=


4

2

4

 .

Then we have

T (e1) = f1 + f3, T (e2) = 2f1 + f2 +3f3, T (e3) = 3f1 + f2 +2f3, T (e4) = 4f1 +2f2 +4f3.

4.3.2. Change basis of W . Now we want to change basis. Let’s start from W . Basic idea is

that we want to use


1

0

1

,


2

1

3

,


3

1

2

 and


4

2

4

, or some of them to be basis vectors. To do it,

we need to find a basis from these four vectors. Thus the first three column vectors in T form
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a basis of Col(T ). Then in W = R3, I choose a new basis CW = {w1, w2, w3} where

w1 =


1

0

1

 , w2 =


2

1

3

 , w3 =


3

1

2

 .

In addition, we know that the fourth column vector satisfies


4

2

4

 = −w1 + w2 + w3. Therefor

under the basis SV of V and CW of W , we have:

[
T (e1)

]
CW

=
[
w1

]
CW

=


1

0

0

 ,
[
T (e2)

]
CW

=
[
w2

]
CW

=


0

1

0

 ,

[
T (e3)

]
CW

=
[
w3

]
CW

=


0

0

1

 ,
[
T (e4)

]
CW

=
[
−w1 + w2 + w3

]
CW

=


−1

1

1

 .

Then the matrix of T under basis SV and CW becomes to

[
T
]
CW←SV

=


1 0 0 −1

0 1 0 1

0 0 1 1

 .

4.3.3. Some understanding about the above computation.

(1) The above w1, w2, w3 comes from w1 = T (e1), w2 = T (e2), w3 = T (e3) directly. That is

to say, we want to make choose a basis of W based on {T (ei)}. If {T (ei)} cannot make a

basis, just choose the linear independent part and extend it to be a basis of W .

(2) Since we change the basis of W , we have the following formula

[
T
]
SW←SV

= PSW←CW

[
T
]
CW←SV

.
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Here PSW←CW is a 3 × 3 invertible matrix. Recall from MATH 031 that to multiply a

invertible matrix on the left of a matrix T is equivalent to do row transformation to the

matrix T . Then this means that the matrix
[
T
]
SW←SV

is row equivalent to the matrix[
T
]
CW←SV

. Note that
[
T
]
CW←SV

is in reduced row echelon form. Then this process is

actually the row reduction algorithm.

4.3.4. Change basis of V . Now we want to change basis of V to make this matrix even simpler.

The idea is to change e4 since the first three already looks good. Since

T (e4) = −w1 + w2 + w3 = −T (e1) + T (e2) + T (e3),

we have T (e4 + e1 − e2 − e3) = 0. We will change the basis based on this observation. Let

CV = {v1, v2, v3, v4} where

v1 = e1, v2 = e2, v3 = e3, v4 = e1 − e2 − e3 + e4.

Now using basis CV of V and basis CW of W , we have

T (v1) = w1, T (v2) = w2, T (v3) = w3, T (v4) = 0.

Therefore

[
T (v1)

]
CW

=


1

0

0

 ,
[
T (v2)

]
CW

=


0

1

0

 ,
[
T (v3)

]
CW

=


0

0

1

 ,
[
T (v4)

]
CW

=


0

0

0

 .

Then T under basis CV and CW can be written as

[
T
]
CW←CV

=


1 0 0 0

0 1 0 0

0 0 1 0

 .
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4.3.5. Relations to change-of-basis matrices. First let’s write down the change-of-basis matrices.

PSV←CV =


1 0 0 1

0 1 0 −1

0 0 1 −1

0 0 0 1


, PSW←CW =


1 2 3

0 1 1

1 3 2

 .

Here we have the formula
1 0 0 0

0 1 0 0

0 0 1 0

 = P−1SW←CW


1 2 3 4

0 1 1 2

1 3 2 4

PSV←CV .

Remark 4.3.1. The above example is not an isolated example. If you have a linear transformation

between two different linear spaces, you can always choose a special basis to make the matrix

as an identity matrix with extra zero rows/columns. This form is called the canonical form

of the matrix under elementary transformations.

4.4. Similar transformation. Let L : V → V be a linear operator. Let B and C be two

bases of V . Let P = PC←B be the change-of-basis matrix on V . Therefore the previous formula

is [
L
]
B←B

= PB←C

[
L
]
C←C

PC←B = P−1
[
L
]
C←C

P.

Definition 4.4.1. Two matrices A1, A2 ∈ Matn×n(F) are said to be similar if there is an

invertible matrix B ∈ Matn×n(F) such that

A1 = B−1A2B.

The results in the previous subsection tells us that two matrix representations of the same

linear operator under different bases are similar.

Example 4.4.2. Since 1 1

1 −1

−1  0 1

−1 0

1 1

1 −1

 =

0 −1

1 0

 ,
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−1 0

 and

0 −1

1 0

 are similar to each other.

Example 4.4.3. Let T be a linear operator R2 → R2 defined by

1 1

0 2

. This matrix can be treated

as the matrix of the linear map with respect to the standard basis S =

e1 =

1
0

, e2
0
1

 of

R2. That is,
[
T
]
S←S

=

1 1

0 2

. Now we choose another basis B =

v1 =

1
0

, v2 =
1
1

.

Then since

T (v1) =

1 1

0 2

1
0

 =

1
0

 = v1, T (v2) =

1 1

0 2

1
1

 =

2
2

 = 2v2,

we have [
T
]
B←B

=

1 0

0 2

.
We have the change-of-basis matrix PS←B =

1 1

0 1

. Then by Theorem 4.2.1 we have

[
T
]
S←S

= PS←B

[
T
]
B←B

P−1S←B.

Then
[
T
]
S←S

and
[
T
]
B←B

are similar to each other. In addition, since
[
T
]
B←B

is a diagonal

matrix, we say that
[
T
]
S←S

is diagonalizable.

Remark 4.4.4. In the example, we treat a matrix as a linear map on a space. Then similar

transformation is the same as changing bases. If we find a good enough basis, we can make the

matrix a diagonal matrix.

Consider how we write down the matrix of a linear map. In general when we choose a basis

{w1, w2}, we have T (w1) = ϵ1w1 + µ2w2, T (w2) = µ1w1 + ϵ2w2, and the matrix is

ϵ1 µ1

µ2 ϵ2

.
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Then the key that a matrix is diagonalizable is the existence of a basis {v1, v2} such that

T (v1) = λ1v1 + 0v2 and T (v2) = 0v1 + λ2v2, and in this case the matrix is

λ1 0

0 λ2

.

Example 4.4.5. Consider a matrix
[
2
]
. This is a 1 × 1 matrix and it defines a linear map T on

R1. Let B =
{
v =

[
a
]}

be a basis of R1. The matrix with respect to the basis is

[
T
]
B←B

=
[
2
]
.

You can see that the matrix is independent of choice the basis: no matter what a is, the matrix

won’t be changed. Therefore you can see that in some cases, the matrix cannot be simplified

by changing bases.

Example 4.4.6. Let T be a linear operator R2 → R2 defined by

1 1

0 1

. This matrix can be treated

as the matrix of the linear map with respect to the standard basis S =

e1 =

1
0

, e2
0
1


of R2. That is,

[
T
]
S←S

=

1 1

0 1

. Now we want to diagonalize this matrix. Then we assume

that we can find a basis C = {w1, w2} that T (w1) = λ1w1 and T (w2) = λ2w2. Let w1 =

x1

x2


and w2 =

x3

x4

. We have

1 1

0 1

x1

x2

 = λ1

x1

x2

,
1 1

0 1

x3

x4

 = λ2

x3

x4

.
Then we have a system of equations:

x1 + x2 = λ1x1, x2 = λ1x2,

x3 + x4 = λ2x3, x4 = λ2x4.
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If we treat λ1 and λ2 as (unknown) constants, we can make two linear systems:
(1− λ1)x1 + x2 = 0,

(1− λ1)x2 = 0.

,


(1− λ2)x3 + x4 = 0,

(1− λ2)x4 = 0.

If λ1 ̸= 1, the first system has exactly one solution x1 = x2 = 0. If λ1 = 1, the first system

has infinite many solutions and the solution space is Span

1
0

. The second system has the

same solutions.

Then this means it is impossible to find two linearly independent vectors w1 and w2 such

that T (w1) = λ1w1 and T (w2) = λ2w2. In other words, the basis C = {w1, w2} such that

T (w1) = λ1w1 and T (w2) = λ2w2 doesn’t exist. Then the matrix CANNOT be diagonlized.

Remark 4.4.7. From this example you can see the importance of the so-called eigenvectors,

eigenvalues and eigenspaces.
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4.5. Exercises.

Exercise 4.1. Let T : V → W be a linear transformation from V = R3 to W = R4 defined

by the matrix A =


−1 2 3

0 1 0

1 −1 −2

0 0 1


. Please find a good basis for both V and W to make the

matrix of T as simple as possible. Please also write down the change-of-basis matrices and the

matrix of T under the new basis.

Exercise 4.2. Let T : V → W be a linear transformation from V = R3 to W = R2, defined

by the matrix A =

 1 3 2

−1 −3 −1

. Please find a good basis for both V and W to make the

matrix of T as simple as possible. Please also write down the change-of-basis matrices and the

matrix of T under the new basis.

Exercise 4.3. Let T : V → W be a linear transformation from V = R2 to itself, defined by

the matrix A =

 1 −1

−1 1

. Please find a good basis for V to make the matrix of T as simple

as possible. Please also write down the change-of-basis matrices and the matrix of T under the

new basis.

The homework is due on Apr. 12.



5. Eigenvalues, Eigenvectors, and Invariant Subspaces

5.1. Invariant subspaces. Let V be a vector space. Let L(V ) be the set of operators on V .

In other words, L(V ) is the set of linear maps from V to itself.

Definition 5.1.1. Suppose T ∈ L(V ). A subspace U ⊂ V is called invariant under T if

∀u ∈ U , T (u) ∈ U .

Remark 5.1.2. In other words, U is invariant under T if T |U makes sense. Then T |U is an

operator on U .

Proposition 5.1.3. Suppose T ∈ L(V ). The following subspaces of V is invariant under T :

(1) {0}.

Proof. 0 is the only one vector in {0}. Since T (0) = 0 ∈ {0}, {0} is invariant under T . □

(2) V .

Proof. Since V is the codomain, the image has to be in V . Then V is invariant under T . □

(3) Nul(T ).

Proof. Recall that Nul(T ) = {v ∈ V | T (v) = 0}. Then for any u ∈ Nul(T ), T (u) = 0 ∈

Nul(T ). So Nul(T ) is invariant under T . □

(4) im(T ).

Proof. Recall that im(T ) = {v ∈ V | ∃u ∈ V such that T (u) = v}. Then for any w ∈ im(T ),

T (w) ∈ im(T ). Then im(T ) is invariant under T . □

Example 5.1.4. Let Pn be the space of polynomials whose order is no more than n. Then we

automatically have P1 ⊂ P2 ⊂ P3 ⊂ P4 ⊂ . . .. Consider P4. The derivative operator D is an

linear operator on P4. It is easy to check that P1, P2, P3 are all invariant under D.

Example 5.1.5. Consider the rotation R(θ) about z-axis in R3 by an angle θ. R(θ) is a linear

operator on R3. z-axis and xy-plane are two invariant subspaces under R(θ).

Example 5.1.6. Consdier the rotation R(θ) about the origin in R2 by an angle θ. R(θ) is a linear

operator on R2. It is easy to check that the only invariant subspace is {0}.
1
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5.2. Eigenvalues and Eigenvectors.

Definition 5.2.1. Suppose T ∈ L(V ). A number λ ∈ F is called an eigenvalue of T if there

exists v ∈ V such that v ̸= 0 and T (v) = λv. Then in this case v is called an eigenvector of

T corresponding to the eigenvalue λ.

It is straightforward that to find the eigenvalues and the eigenvectors we hope that the

equation T (v) = λv has non-zero solutions. The equation can be rewritten as (T − λI)(v) = 0.

Then if the equation has non-zero solutions, the square matrix T − λI cannot be invertible.

These observations are summarized below.

Proposition 5.2.2. Suppose V is finite-dimensional, T ∈ L(V ) and λ ∈ F. Then the following

are equivalent:

(1) λ is an eigenvalue of T ;

(2) T − λI is not injective;

(3) T − λI is not surjective;

(4) T − λI is not ivnertible.

Theorem 5.2.3. Let T ∈ L(V ). Suppose λ1, . . . , λm are distinct eigenvalues of T and v1, . . . , vm

are corresponding eigenvectors. Then {v1, . . . , vm} is linearly independent.

Proof. Use contradiction. Assume that {v1, . . . , vm} is NOT linearly independent. Then there

is a smallest number k such that vk ∈ Span {v1, . . . , vk−1}. The smallestness means that

{v1, . . . , vk−1} is linear independent. Then there exists a1, . . . , ak ∈ F such that

vk = a1v1 + a2v2 + . . .+ ak−1vk−1. (5.1)

Then we have

λkvk = λk(a1v1 + a2v2 + . . .+ ak−1vk−1) = a1λkv1 + a2λkv2 + . . .+ ak−1λkvk−1. (5.2)

Now apply T on both sides of Equation 5.1. Since T (vi) = λivi for any i = 1, . . . , n, we have

λkvk = a1λ1v1 + a2λ2v2 + . . .+ ak−1λk−1vk−1. (5.3)
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Therefore using Equation 5.3 substract Equation 5.2, we have

a1(λ1 − λk)v1 + a2(λ2 − λk)v2 + . . .+ ak−1(λk−1 − λk)vk−1 = 0.

Since {v1, . . . , vk−1} is linearly independent,

a1(λ1 − λk) = a2(λ2 − λk) = . . . = ak−1(λk−1 − λk) = 0.

Since all λi’s are distinct, λi−λk ̸= 0 for all i = 1, . . . , k−1. Therefore a1 = a2 = . . . = ak−1 = 0.

Then vk = 0. This is a contradiction. Then the assumption is wrong. Therefore {v1, . . . , vm}

is linearly independent. □

Corollary 5.2.4. Suppose V is finite-dimensional. Then each operator on V has at most dimV

distinct eigenvalues.

Proof. Exercise. □

5.3. Eigenspaces.

Definition 5.3.1. Suppose T ∈ L(V ) and λ ∈ F. The eigenspace of T corresponding to λ,

denoted Vλ, is defined by Vλ = Nul(T − λI). In other words, Vλ is the set of all eigenvectors of

T corresponding to λ, along with the 0 vector.

An eigenspace can be treated as the span of eigenvectors corresponding to the same eigen-

vectors.

Theorem 5.3.2 (Sum of eigenspaces is a direct sum). Suppose V is finite-dimensional and

T ∈ L(V ). Suppose also that λ1, . . . , λm are distinct eigenvalues of T . Then Vλ1 + . . . Vλm is a

direct sum. Furthermore

dimVλ1 + . . .+ dimVλm ≤ dimV.

Proof. By Theorem 5.2.3, Vλi
∩ Vλj

= {0} for i ̸= j. Then the sum is a direct sum and the sum

of the dimension is smaller or equal to the dimension of V . □
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Review: Polynomials.

Definition 5.3.3 (Polynomial). A function p : F → F is called a polynomial with coefficients

in F if there exist a0, . . . , am ∈ F such that for all t ∈ F

p(t) = a0 + a1t+ a2t
2 + . . .+ amt

m.

Definition 5.3.4. A polynomial p is said to have degree m if there exists scalars a0, . . . , am ∈ F

with am ̸= 0 such that p(t) = a0 + a1t + a2t
2 + . . . + amt

m for all t ∈ F. We write deg p = m.

The degree of 0 is set to be −∞.

Proposition 5.3.5. (1) The set of all polynomials with addition of functions and scalar product

of functions is a vector space. It is denoted by P (F).

(2) The subset of all polynomials with degree at most m is a subspace of P (F). It is denoted by

Pm(F). If there are no confusions, we may just write Pm.

Definition 5.3.6 (Product of polynomials). If p, q ∈ P (F), then pq ∈ P (F) is defined by

(pq)(t) = p(t)q(t) for any t ∈ F.

Remark 5.3.7. The product of polynomials are different from the scalar product of polynomials.

Proposition 5.3.8. Suppose a polynomial p(t) = a0+ a1t+ . . .+ amt
m = 0 for all t ∈ F. Then

a0 = a1 = . . . = am = 0.

Theorem 5.3.9. {1, t, t2, . . . , tm} forms a basis of Pm(F). Then dimPm = m+ 1.

Definition 5.3.10. A number a ∈ F such that p(a) = 0 is called a zero (or root) of the

polynomial p.

Definition 5.3.11. A polynomial s ∈ P (F) is called a factor (or divisor) of p ∈ P (F) if there

exists a polynomial q ∈ P (F) such that p = sq.

Proposition 5.3.12 (Each zero of a polynomial corresponds to a degree-1 factor). Suppose

p ∈ P (F) and λ ∈ F. Then p(λ) = 0 if and only if there is a polynomial q ∈ P (F) such that

p(t) = (t− λ)q(t) for every t ∈ F.
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Corollary 5.3.13 (A polynomial has at most as many zeros as its degree). Suppose p ∈ P (F)

is a polynomial with degree m ≥ 0. Then p has at most m distinct zeros in F.

Theorem 5.3.14 (Fundamental Theorem of Algebra). Every non-constant polynomial with

complex coefficients has a zero.

Then every non-constant polynomial with complex coefficients has a degree-1 factor. Then

every non-constant polynomial with complex coefficients can be written as a product of degree-1

polynomials. To summarize:

Corollary 5.3.15. If p ∈ P (C) is a non-constant polynomial, then p has a unique factorization

(up to reordering the factors) of the form p(t) = c(t− λ1) . . . (t− λm) where c, λ1, . . . , λm ∈ C.

Definition 5.3.16. Suppose T ∈ L(V ) and m ∈ N. Then Tm is defined by Tm = T · · ·T ,

and T 0 is defined by T 0 = I. If T is invertible, with the inverse T−1, then T−m is defined by

T−m = (T−1)m.

Proposition 5.3.17. Tm+n = TmT n, (Tm)n = Tmn.

Definition 5.3.18. Suppose T ∈ L(V ) and p ∈ P (F) is a polynomial given by p(t) = a0 +

a1t+ . . .+ amt
m for t ∈ F. Then p(T ) is the operator defined by

p(T ) = a0I + a1T + . . .+ amT
m ∈ L(V ).

Proposition 5.3.19. Suppose p, q ∈ P (F) and T ∈ L(V ). Then

(1) (pq)(T ) = p(T )q(T );

(2) p(T )q(T ) = q(T )p(T ).

Remark 5.3.20. Note that complex number plays a very important role in the theory. We

will review complex numbers later. At current stage you need to know that complex numbers

are essential for solving equations but I won’t ask you to do computations involving complex

numbers before the review of complex numbers.
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5.4. Upper-triangular matrices.

Theorem 5.4.1 (Over C, every operator has an upper-triangular matrix). Suppose V is a finite-

dimensional non-zero complex vector space and T ∈ L(V ). Then T has an upper-triangular

matrix with respect to some basis of V .

To prove this Theorem, we need the help from the following Theorem.

Theorem 5.4.2 (Operators on complex vector spaces have an eigenvalue). Every operator on

a finite-dimensional, nonzero, complex vector space has an eigenvalue.

Remark 5.4.3. Let us look at what it means by “an operator has an upper-triangular matrix”.

Let V be a 3-dimensional vector space. Assume that the matrix of a linear operator with

respect to a basis B = {v1, v2, v3} is an upper-triangular matrix of size 3× 3:

[
T
]
B←B

=


a11 a12 a13

0 a22 a23

0 0 a33

.
Then we have that

T (v1) = a11v1,

T (v2) = a12v1 + a22v2,

T (v3) = a13v1 + a23v2 + a33v3.

Therefore
T (v1) ∈ Span {v1},

T (v1), T (v2) ∈ Span {v1, v2},

T (v1), T (v2), T (v3) ∈ Span {v1, v2, v3}.

In other words, we have a sequence of invariant subspaces:

{0} ⊂ Span {v1} ⊂ Span {v1, v2} ⊂ Span {v1, v2, v3} = V.

To prove that a linear operator can be written as a upper-triangular matrix, we just need to

prove that such a basis (or a chain of invariant subspaces) exists.
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Review of quotient spaces.

Definition 5.4.4. Let V be a vector space and W a subspace. W defines an equivalence

relation on V by v ∼ u for v, u ∈ V if v− u ∈ W . Let v+W be the equivalence class of v ∈ V .

Define (v + W ) + (u + W ) = (v + u) + W and c(v + W ) = cv + W for v, u ∈ V and c ∈ F.

The theorem says that these two operations are well-defined and the set of equivalence classes

with these two operations is a vector space. It is called the quotient space of V by W and is

denoted by V /W . In a class v +W , the v ∈ v +W is called a representative, and it can be

any vector in the class.

Remark 5.4.5. Another notation for the class v + W is [v] for v ∈ V . Therefore the above

formulas can also be

(1) [v] = [u] if and only if v − u ∈ W . In particular, [v] = [0] if and only if v ∈ W .

(2) [v] + [u] = [v + u], c[v] = [cv].

(3) u ∈ V is called a representative of [v] if u ∈ [v] = v +W .

Remark 5.4.6. (1) Sometimes we just use 0 to denote [0]. You need to read from contexts to

determine whether 0 is a real 0 or a class [0].

(2) Note that you need to read from contexts to determine whether [v] is an equivalence class

or a coordinate.

Example 5.4.7. Let V = R2 and W = Span

1
1

. Then the equivalence relation is that v ∼ u

if and only if v − u =

1
1

. For example,

1
2

 ∼

2
3

,

100
99

 ∼

 0

−1

,

1
1

 ̸∼

2
1

. Then

1
2

+W,

2
3

+W,

100
99

+W,

 0

−1

+W,

1
1

+W,

2
1

+W ∈ V /W,

and 1
2

+W =

2
3

+W,

100
99

+W =

 0

−1

+W,

1
1

+W ̸=

2
1

+W.
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We can also perform addition and scalar product. For example,1
2

+W

+

2
3

+W

 =

3
5

+W,

100
99

+W

+

 0

−1

+W

 =

100
98

+W,

3

2
1

+W

 =

6
3

+W.

Proposition 5.4.8. Let T ∈ L(V ) and W is an invariant subspace under T . Then the operation

T : V /W → V /W defined by

T ([v]) = [T (v)]

is well-defined and gives a linear operator on V /W . This operator is called the quotient

operator.

Proof. We will mainly focus on the well-definedness part. The linear operator part is straight-

forward. Pick two representatives v and u from a class [v]. Then by definition v−u ∈ W . Then

T ([v]) = [T (v)] and T ([u]) = [T (u)]. Since W is invariant, and v− u ∈ W , then T (v− u) ∈ W .

So T (v) − T (u) ∈ W . Then [T (v)] = [T (u)]. This means that T is independent of choice of

representatives. Therefore it is well-defined. □

Example 5.4.9. Let T be the rotation about the z-axis by 90◦ counterclockwise in V = R3.

z-axis is an invariant space. Denote it by W . The quotient space V /W consists of classes

[(x, y)] = {(x, y, z) | z ∈ R}. The quotient operator behaves as T ([(x, y)]) = [(−y, x)].

Remark 5.4.10. The key observation of the quotient operator T is that T ([v]) = [T (v)] = [u]

means that T (v)− u ∈ W . In other words, T (v) is a linear combination of vectors of W and u.

If we choose a basis of W , C = {w1, . . . , wm}, then T (v) = auu + a1w1 + . . . + amwm for some

constants au, a1, . . . , am ∈ F. Then T (v) ∈ Span {u,w1, . . . , wm}. Note that when u /∈ W , u

and C are linearly independent. Therefore in this case T (v) ∈ Span(u)⊕W .
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5.4.1. Proof of Theorem 5.4.1. Use induction on dimV .

When dimV = 1, the matrix is a 1× 1 matrix which is an upper-triangular matrix.

Assume that for any k-dimensional vector space the linear operator on it admits a basis such

that the matrix is an upper-triangular matrix. Let V be an arbitrary k + 1-dimensional vector

space and T ∈ L(V ). By Theorem 5.4.2, T has an eigenvalue. Then there exists λ ∈ C, v ∈ V

such that v ̸= 0 and T (v) = λv. Then Span(v) is a 1-dimensional invariant subspace of V under

T . Then by Proposition 5.4.8, we have an operator T on V / Span(v). Since dimV = k + 1,

dimV / Span(v) = k. Then by the induction assumption, there exists a basis of V / Span(v)

such that the matrix of T is upper-triangular.

By Remark 5.4.3, there exists a basis {[v1], . . . , [vk]} of V / Span(v) such that

T ([v1]) = a11[v1] = [a11v1],

T ([v2]) = a12[v1] + a22[v2] = [a12v1 + a22v2],

. . . . . .

T ([vk]) = a1k[v1] + a2k[v2] + . . .+ akk[vk] = [a1kv1 + . . .+ akkvk].

By Remark 5.4.10, we have

T (v1) ∈ Span(v, v1),

T (v2) ∈ Span(v, v1, v2),

. . . . . .

T (vk) ∈ Span(v, v1, v2, . . . , vk).

What’s more, since v is an eigenvector of T , T (v) ∈ Span(v). If we can prove that B =

{v, v1, . . . , vk} can form a basis of V , this is the chain of invariant subspaces we need from

Remark 5.4.3. Then under the basis B, the matrix of T is upper-triangular.

Then by induction, for any finite-dimensional vector space there exists a basis such that the

matrix of T is upper-triangular. □
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Proof of B being a basis. Consider the quotient space V / Span(v). If w ∈ [u] ∈ V / Span(v) for

some w ∈ V , then by definition of quotient spaces, w − u ∈ Span(v). In other words, ∃r ∈ F

such that w = rv + u.

Then for any w ∈ V , w ∈ [w] ∈ V / Span(v). Since {[v1], . . . , [vk]} is a basis of V / Span(v),

there exists c1, . . . , ck ∈ F such that

[w] = c1[v1] + . . .+ ck[vk] = [c1v1 + . . .+ ckvk].

Then there exists r ∈ F such that

w = rv + c1v1 + . . .+ ckvk.

So w ∈ Span(v, v1, . . . , vk). Then Span(v, v1, . . . , vk) = V . Since we already know that dimV =

k + 1, then {v, v1, . . . , vk} has to be linearly independent. Therefore it is a basis of V . □

Remark 5.4.11. It is possible to prove the linearly independence directly by definition without

computing the dimensions. It is an exercise.

5.4.2. Proof of Theorem 5.4.2. Let V be a finite-dimensional nonzero complex vector space and

T ∈ L(V ). Let v ∈ V be a vector. Consider the set {v, T (v), T 2(v), . . .}. Since V is finite-

dimensional, there exists a maximal k ≥ 1 such that
{
v, T (v), T 2(v), . . . , T k−1(v)

}
is linearly

independent. By definition of k, T (T k−1(v)) ∈ Span
(
v, T (v) . . . , T k−1(v)

)
. Then there exists

some a0, a1, . . . , ak−1 ∈ C such that

T k(v) = T (T k−1(v)) = a0v + a1T (v) + . . .+ ak−1T
k−1(v)

=
(
a0I + a1T + a2T

2 + . . .+ ak−1T
k−1)(v).

Then we have (
T k − a0I − a1T − a2T

2 − . . .− ak−1T
k−1)(v) = 0.

Let p(x) = xk−a0−a1x−a2x
2−. . .−ak−1x

k−1 be a polynomial in C. Then we have p(T )(v) = 0.

Let p(x) = (x− c1)(x− c2) . . . (x− ck) be the factorization in C for some c1, . . . , ck ∈ C. Then
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by Proposition 5.3.19, we have

(T − c1I)(T − c2I) . . . (T − ckI)(v) = 0.

Now consider the sequence of vectors vk+1, vk, vk−1, . . . , v2, v1 for

vk+1 = v,

vk = (T − ckI)(v) = (T − ckI)(vk+1),

vk−1 = (T − ck−1I)(T − ckI)(v) = (T − ck−1I)(vk),

vk−2 = (T − ck−2I)(T − ck−1I)(T − ckI)(v) = (T − ck−2I)(vk−1),

. . . . . .

v2 = (T − c2I) . . . (T − ck)(v) = (T − c2I)(v3),

v1 = (T − c1I)(T − c2I) . . . (T − ckI)(v) = (T − c1I)(v2) = 0.

Since vk+1 ̸= 0 and v1 = 0, there has to be a 1 ≤ r ≤ k such that vr = 0 and vr+1 ̸= 0. Then

(T − crI)(vr+1) = 0 and vr+1 ̸= 0. Therefore vr+1 is an eigenvector of T corresponding to the

eigenvalue cr. □

Example 5.4.12. The proof of the above two theorems actually gives us a strategy to find a basis

to change a matrix into upper-triangular matrix. Let A =


2 0 0

0 2 1

1 0 2

. We might treat it as the

matrix of linear operator T on C3 with respect to the standard basis. Following the steps of

the proofs:

(1) Starting from an arbitrary vector. Let v =


1

0

0

. Then since T (v) =


2

0

1

 /∈ Span(v),

T 2(v) =


4

1

4

 /∈ Span (v, T (v)), {v, T (v), T 2(v)} forms a basis of C3. Then T 3(v) =


8

6

12

 =

8v − 12T (v) + 6T 2(v). Thus (T 3 − 6T 2 + 12T − 8I)(v) = 0.
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Since x3 − 6x2 + 12x− 8 = (x− 2)3, we have

(T − 2I)3(v) = 0.

Consider the sequence of vectors:

v =


1

0

0

, (T − 2I)(v) =


0

0

1

, (T − 2I)2(v) =


0

1

0

, (T − 2I)3(v) = 0.

Then


0

1

0

 is an eigenvector, with eigenvalue 2. Let v1 =


0

1

0

.

(2) Consider C3/ Span(v1). There is an obvious map C3/ Span(v1) → C2 by
c1

c2

c3

+ Span(v1) 7→

c1
c3

.
It is easy to check that this is an isomorphism. We can use it to simplify our computation.

In this case the quotient map T is gotten by

T

c1
c2

 ≃ T



c1

0

c2

+ Span(v1)

 =

T


c1

0

c2


+ Span(v1)



=


2c1

0

c1 + 2c2

+ Span(v1) ≃

 2c1

c1 + 2c2

.

Therefore the matrix of T with the basis


1
0

,
0
1

 in C2 ≃ C3/ Span(v1) is

2 0

1 2

.
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(3) Apply the first step to this new matrix

2 0

1 2

. We find an eigenvector

0
1

 with eigen-

value 2. The vector is corresponding to


0

0

1

 + Span(v1) ⊂ C3. We can pick an arbitrary

representative from the class. For example, we may pick v2 =


0

1

1

. Now we have the

second invariant subspace Span(v1, v2).

(4) Apply the second step to this new invariant subspace. Consider C3/ Span(v1, v2). There is

an obvious isomorphism C3/ Span(v1, v2) ≃ C by
c1

c2

c3

+ Span(v1, v2) 7→
[
c1

]
.

The matrix of T is easy to be computed, and it is
[
2
]
. Since C3/ Span(v1, v2) is 1-

dimensional, any non-zero vector is an eigenvector. Therefore
[
1
]

is an eigenvector with

eigenvalue 2. The vector is corresponding to


1

0

0

 + Span(v1, v2) ⊂ C3. We can pick an

arbitrary representative from the class to be our basis vector. For example, we may use

v3 =


1

1

1

.

(5) Since Span(v1, v2, v3) = C3, the search is finished. {v1, v2, v3} is a basis we need. It is easy

to check that the matrix of T with respect to this basis is
2 3 3

0 2 3

0 0 2

.
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Remark 5.4.13. This example just reproduce the process to prove Theorem 5.4.1 and Theorem

5.4.2. What we get is an upper-triangular matrix. An upper-triangular matrix is not the easiest

form. In the following lectures we will talk about more theorems to refine the results to make

the matrix easier.

5.4.3. Some applications. One of the reason that we want an upper-triangular matrix is that

it is good for computation. Recall that the matrix of the same linear operator under different

bases are similar to each other. Let A and U be two similar matrices. Then there exists

invertible P such that

A = PUP−1.

Since det(AB) = det(A) det(B), we have det(A) = det(P ) det(U) det(P )−1 = det(U). Then

we can use the determinant of the upper-triangular matrix to compute the determinant of the

original matrix. The determinant of the upper-triangular matrix is just the product of diagonal,

so the computation is very easy.

Corollary 5.4.14. Suppose T ∈ L(V ) has an upper-triangular matrix with respect to some

basis of V . Then T is invertible if and only if all the diagonal entries of the upper-triangular

matrix are non-zero.

Corollary 5.4.15. Suppose T ∈ L(V ) has an upper-triangular matrix with respect to some basis

of V . Then the eigenvalues of T are precisely the entries on the diagonal of that upper-triangular

matrix.

Proof. Recall from Proposition 5.2.2 that the eigenvalues are those numbers λ which make

T −λI is NOT invertible. Then to find eigenvalues we only need to find any basis of V to write

T as a matrix A and solve the equation det(A− λI) = 0 for λ. Note that we can choose a basis

to make A an upper-triangular matrix


λ1 ∗

λ2

. . .

0 λn


. The equation det(A− λI) = 0 is

precisely (λ1 − λ)(λ2 − λ) . . . (λn − λ) = 0. The solutions λ1, . . . , λn are eigenvalues, which are

also entries on the diagonal of that upper-triangular matrix. □
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5.5. Diagonalizable operators. Any matrix is similar to an upper-triangular matrix. A

special type of upper-triangular matrix is diagonal matrix.

Definition 5.5.1 (diagonalizable). An operator T ∈ L(V ) is called diagonalizable if the

operator has a diagonal matrix with respect to some basis of V .

Theorem 5.5.2 (Conditions equivalent to diagonalizability). Suppose V is finite-dimensional

and T ∈ L(V ). Let λ1, . . . , λm denote the distinct eigenvalues of T . Then the following are

equivalent:

(1) T is diagonalizable;

(2) V has a basis consisting of eigenvectors of T ;

(3) there exist 1-dimensional subspaces U1, . . . , Un of V , each invariant under T , such that

V = U1 ⊕ U2 ⊕ . . .⊕ Un;

(4) V = Vλ1 ⊕ Vλ2 ⊕ . . .⊕ Vλm;

(5) dimV = dimVλ1 + . . .+ dimVλm.

Proof. To prove TFAE, we will prove the following chain:

(1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (5) ⇒ (2) ⇒ (1).

(1) ⇒ (2): T is diagonalizable, then by definition there is a basis B = {v1, . . . , vn} such that[
T
]
B←B

is a diagonal matrix. Let the diagonal be λ1, . . . , λn. Then we have T (vi) = λivi for

any i = 1, . . . , n. Then the basis B consisting of eigenvectors of T .

(2) ⇒ (3): Let B = {v1, . . . , vn} be the basis consisting of eigenvectors of T . Then Ui = Span(vi)

are all 1-dimensional invariant subspace under T for any i = 1, . . . , n. Then by the definition

of basis, V = U1 ⊕ . . .⊕ Un.

(3) ⇒ (4): Since Ui’s are all 1-dimensional invariant subspaces, they are all eigenspaces. Then

each vectors can be written as a linear combination of eigenvectors. So V = Vλ1+Vλ2+. . .+Vλm .

By Theorem 5.3.2, the sum is a direct sum. Then V = Vλ1 ⊕ Vλ2 ⊕ . . .⊕ Vλm .

(4) ⇒ (5): This is obvious.

(5) ⇒ (2): Choose a basis for each Vλi
for each i = 1, . . . ,m, and put all these vector together

to form a set B. This is a set of eigenvectors. Since Vλi
∩ Vλj

= {0} for i ̸= j, B is a linearly
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independent set. We can extend the set to be a basis of V . Since dimV = dimVλ1 + . . . +

dimVλm , we don’t need add any vectors to get a basis. This means that B is a basis. Then we

get a basis of B consisting of eigenvectors of T .

(2) ⇒ (1): Let B = {v1, . . . , vn} be the basis consisting egenvectors of T . Let the corresponding

eigenvalues be λ1, . . . , λn. Then since T (vi) = λivi for any i = 1, . . . , n, the matrix
[
T
]
B←B

is

a diagonal matrix.

□

Corollary 5.5.3. If a matrix is diagonalizable, the diagonal of the digonalized matrix consists

of eigenvalues of the orginal matrix.

Proof. This is obvious from the computation in the above proof (1) ⇒ (2). □

Example 5.5.4. A =

1 1

0 1

 is not diagonalizable. Since

Reason 1: You can try to find a basis as in Section 4 to make a diagonal matrix, but you will

see that the equation has no solutions.

Reason 2: A only has one 1-dimensional eigenspace, then eigenvectros cannot make a basis.

This violates (2)-(5) in the Theorem above.

Example 5.5.5. A =


2 0 0

1 3 1

0 0 3

. Compute eigenvalues:

det (A− λI) = det



2− λ 0 0

1 3− λ 1

0 0 3− λ


 = (2− λ)(3− λ)2.

Set up the equation det(A− λI) = 0. The solution is λ1 = 2 and λ2 = 3.

λ1 = 2: Solve the equation (A− 2I)x = 0:
0 0 0 0

1 1 1 0

0 0 1 0

.
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The solution is that Span




1

−1

0


.

λ2 = 3: Solve the equation (A− 3I)x = 0:
−1 0 0 0

1 0 1 0

0 0 0 0

.

The solution is that Span



0

1

0


.

Since we have only two eigenspaces each of which is 1-dimensional, the matrix A is not diago-

nalizable.

From Theorem 5.5.2, we know that to have a diagonalizable operator, we need to have a

basis consisting of eigenvectors. Here we have a speical case which is easy.

Theorem 5.5.6 (Enough eigenvalues implies diagonalizability). If T ∈ L(V ) has dimV distinct

eigenvalues, then T is diagonalizable.

Proof. It follows Theorem 5.2.3 and Theorem 5.5.2. □

Example 5.5.7. A =

1 2

3 4

. Solve det(A− λI) = 0. The solutions are 5
2
±
√
33
2

. Since there are

two distinct eigenvalues, A is diagonalizable, and A ∼

5
2
+
√
33
2

0

0 5
2
−
√
33
2

.
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5.6. Summary and introduction to Section 8. Let T ∈ L(V ) and U ⊂ V be an invariant

subspace under T . Then T restricted on U is also an operator, which is called a restricted

operator. When considering a restricted operator you can totally ignore its action outside U

and treat it as an operator on U only. It obeys all rules that an operator on U obeys.

Example 5.6.1. Let V = C4 and S be the standard basis. Let T ∈ L(V ) is defined by

[
T
]
S←S

=


1 1 0 0

0 1 1 0

0 0 1 1

0 0 0 1


.

This means that

T (e1) = e1, T (e2) = e2 + e1, T (e3) = e3 + e2, T (e4) = e4 + e3.

Then Span(e1), Span(e1, e2), Span(e1, e2, e3) and Span(e1, e2, e3, e4) = V are all invariant sub-

spaces. However all other combinations, like Span(e2), Span(e3, e4), Span(e2, e3, e4), etc. are

not invariant. Actually you can prove that, it is impossible to find two invariant subspaces

U,W ⊂ V such that U,W ̸= {0} and V = U ⊕W .

Proof. Assume that such a decomposition exists. Since U,W ⊂ V are both invariant subspaces,

then T |U ∈ L(U) and T |W ∈ L(W ). Then T has an eigenvector in U and an eigenvector in

W . By definition of eigenvectors, both eigenvectors are also eigenvectors of T in V . Since

V ∩W = {0}, these two eigenvectors are different. However it is easy to compute that T has

only one eigenvector in V . Therefore such an decomposition doesn’t exist. □

Example 5.6.2. Let V = C4 and S be the standard basis. Let T ∈ L(V ) is defined by

[
T
]
S←S

=


1 1 0 0

0 1 0 0

0 0 1 1

0 0 0 1


.
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This means that

T (e1) = e1, T (e2) = e2 + e1, T (e3) = e3, T (e4) = e4 + e3.

Then Span(e1, e2) and Span(e3, e4) are both invariant subspaces (as well as many others which

we ignore here). In addition, Span(e1, e2)⊕ Span(e3, e4) = V .

Definition 5.6.3. Let T ∈ L(V ). If there are NOT two invariant subspaces U,W ⊂ V under

T such that U,W ̸= {0} and U ⊕W = V , then V is called indecomposable. Otherwise it is

called decomposable. If V is decomposable and V = U ⊕W , W is called a complement of

U .

Example 5.6.4. In Example 5.6.1, V is indecomposable under T while in Example 5.6.2, V is

decomposable under T .

If an linear operator is decomposable, then we use the bases of each direct summands as the

basis, then the matrix of the linear operator is a block-diagonal matrix. On the other side, if

a linear operator has a basis to make it a block-diagonal matrix, then there exists a invariant

subspace decomposition.

Therefore here is a summary: Let V be a finite-dimensional complex vector space and T ∈

L(V ).

(1) There is always a basis B = {v1, . . . , vn} such that

0 ⊂ Span(v1) ⊂ Span(v1, v2) ⊂ . . . ⊂ Span(v1, . . . , vn−1) ⊂ Span(v1, . . . , vn) = V

is a chain of invariant subspaces.

(2) For each invariant subspace, complements don’t have to exists.

(3) If T is diagonalizable with basis B, then all these invariant subspaces above are decompos-

able.

(4) If a space is decomposable, and we know how the linear operator acts on each piece, the

operator actions on the whole space is very simple: it is a block-diagonal matrix.

(5) Now we know that diagonalizable operators are just a special case of linear operators. We

want to study more general operators on indecomposable spaces.
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Exercises.

Exercise 5.1. Suppose V is finite-dimensional. Then each operator on V has at most dimV

distinct eigenvalues.

Exercise 5.2.

(1) Suppose S, T ∈ L(V ) are such that ST = TS. Prove that Nul(S) is invariant under T .

(2) Suppose S, T ∈ L(V ) are such that ST = TS. Prove that im(S) is invariant under T .

Exercise 5.3. See the proof of Theorem 5.4.1. Let v ∈ V . Let {[v1], . . . , [vk]} be a basis

V / Span(v). Please show that {v, v1, . . . , vk} is linearly independent using the definition of

linearly independence.

Exercise 5.4. Suppose V is a finite-dimensional complex vector space and T ∈ L(V ). Prove

that T has an invariant subspace of dimension k for each k = 1, . . . , dimV .

Exercise 5.5. Suppose W is a complex vector space and T ∈ L(W ) has no eigenvalues. Prove

that every subspace of W invariant under T is either {0} or infinite-dimensional.

Exercise 5.6. Let T ∈ L(C3) which is defined by the matrix

A =


2 −2 0

0 3 0

1 6 2

.
Find a basis C3 to write T as an upper-triangular matrix.

The homework is due on Apr. 19.
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Exercise 5.7. Check whether the following matrices are diagonalizable. Note that you do

NOT need compute the diagonalized matrix or the change-of-basis matrix.

(1) A =


2 1 0

0 5 3

0 0 8

.

(2) B =

1 2

3 4



(3) C =


2 −1 0

0 3 0

1 1 2


Exercise 5.8.

(1) Suppose T ∈ L(V ) is diagonalizable. Prove that V = Nul(T )⊕ im(T ).

(2) State the converse of the statement above. Prove it or give a counterexample.

Exercise 5.9. Give an example that R, T ∈ L(C4) such that R and T each have 2, 6, 7 as

eigenvalues and no other eigenvalues, and there does not exist an invertible operator S ∈ L(C4)

such that R = S−1TS.

Exercise 5.10. Let V be finite-dimensional, and T, S ∈ L(V ). Suppose T has dimV distinct

eigenvalues, and S has the same eigenvectors as T (not necessarily with the same eigenvalues).

Prove that ST = TS.

Exercise 5.11. The Fibonacci sequence F1, F2, . . . is defined by

F1 = 1, F2 = 1, and Fn = Fn−2 + Fn−1 for n ≥ 3.

Define T ∈ L(R2) by

T

x
y

 =

 y

x+ y

.
(1) Show that T n

0
1

 =

 Fn

Fn+1

 for each positive integer n.

(2) Find the eigenvalues of T .
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(3) Find a basis of R2 consisting of eigenvectors of T .

(4) Use the basis from part (c) to compute T n

0
1

. Conclude that

Fn =
1√
5

[(
1 +

√
5

2

)n

−

(
1−

√
5

2

)n]

for each positive integer n.

The homework is due on Apr. 26.



6. Inner Product Spaces

6.1. Inner Products and Norms.

Remark 6.1.1. When talking about inner product spaces, we focus on F = R or C. Then we

can talk about conjugation, that is λ = λ for λ ∈ R and a+ bi = a− bi for a, b ∈ R.

6.1.1. Inner products.

Definition 6.1.2. Let V be a vector space. An inner product on V is a function V ×V → F

which is denoted by ⟨u, v⟩ for u, v ∈ V , such that

positivity: ⟨v, v⟩ ≥ 0 for all v ∈ V ,

definiteness: ⟨v, v⟩ = 0 if and only if v = 0,

additivity in first slot: ⟨u+ v, w⟩ = ⟨u,w⟩+ ⟨v, w⟩ for all u, v, w ∈ V ,

homogeneity in first slot: ⟨λu, v⟩ = λ ⟨u, v⟩ for all u, v ∈ V and λ ∈ F,

conjugate symmetry: ⟨u, v⟩ = ⟨v, u⟩ for all u, v ∈ V .

Definition 6.1.3. An inner product space is a vector space V along with an inner product

on V .

Proposition 6.1.4. Let V be an inner product space over F.

(1) ⟨0, u⟩ = 0 for every u ∈ V .

(2) ⟨u, 0⟩ = 0 for every u ∈ V .

(3) ⟨u, v + w⟩ = ⟨u, v⟩+ ⟨u,w⟩ for all u, v, w ∈ V .

(4) ⟨u, λv⟩ = λ ⟨u, v⟩ for all λ ∈ F, u, v ∈ V.

Proof. (1) ⟨0, u⟩ = ⟨u− u, u⟩ = ⟨u, u⟩ − ⟨u, u⟩ = 0.

(2) ⟨u, 0⟩ = ⟨0, u⟩ = 0 = 0.

(3) ⟨u, v + w⟩ = ⟨v + w, u⟩ = ⟨v, u⟩+ ⟨w, u⟩ = ⟨v, u⟩+ ⟨w, u⟩ = ⟨u, v⟩+ ⟨u,w⟩.

(4) ⟨u, λv⟩ = ⟨λv, u⟩ = λ ⟨v, u⟩ = λ⟨v, u⟩ = λ ⟨u, v⟩.

□

Remark 6.1.5. In R, λ = λ. Therefore sometimes in R we call the inner product bilinear. In

C we call it linear in the first slot, and conjugate linear in the second slot.
1
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Example 6.1.6. The dot product on Rn is an inner product. It is defined by

⟨
a1
...

an

,

b1
...

bn


⟩

= a1b1 + a2b2 + . . .+ anbn.

Example 6.1.7. There is a dot-product-like inner product on Cn. It is defined by

⟨
a1
...

an

,

b1
...

bn


⟩

= a1b1 + a2b2 + . . .+ anbn.

We call it the dot product on Cn. Actually the dot product on Rn can also be defined by

this formula since b = b in R.

6.1.2. Norm.

Definition 6.1.8. Let V be an inner product space. For v ∈ V , the norm of v, denoted by

∥v∥, is defined by ∥v∥ =
√

⟨v, v⟩.

Proposition 6.1.9. Let V be an inner product space and v ∈ V .

(1) ∥v∥ = 0 if and only if v = 0.

(2) ∥λv∥ = |λ|∥v∥ for all λ ∈ F.

Proof. (1) ∥v∥ = 0 ⇔ ⟨v, v⟩ = 0 ⇔ v = 0.

(2) ∥λv∥ =
√
⟨λv, λv⟩ =

√
λλ ⟨v, v⟩ =

√
|λ|2 ⟨v, v⟩ = |λ|

√
⟨v, v⟩ = |λ|∥v∥.

□

6.1.3. Orthogonal.

Definition 6.1.10. Two vectors u, v ∈ V are called orthogonal if ⟨u, v⟩ = 0.

Remark 6.1.11. We can define the angle between two vectors by ⟨u, v⟩ = ∥u∥∥v∥ cos θ. However

we won’t take this approach in the rest of this course.

Proposition 6.1.12. Let V be an inner product space.
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(1) 0 is orthogonal to every vector in V .

(2) 0 is the only vector in V that is orthogonal to itself.

Proof. Exercise. □

The above Proposition is easy but very important that we use it in the following way.

Corollary 6.1.13. If ⟨v, w⟩ = ⟨v, u⟩ for any v ∈ V , then w = u.

Proof. If ⟨v, w⟩ = ⟨v, u⟩ for any v ∈ V , then ⟨v, w − u⟩ = 0 for any v ∈ V . Then ⟨w − u,w − u⟩ =

0. So w − u = 0. So w = u. □

Theorem 6.1.14 (Pythagorean Theorem). Suppose u and v are orthogonal vectors in V . Then

∥u+ v∥2 = ∥u∥2 + ∥v∥2.

Proof. Since u and v are orthogonal, ⟨u, v⟩ = ⟨v, u⟩ = 0. Then

∥u+ v∥2 =
(√

⟨u+ v, u+ v⟩
)2

= ⟨u+ v, u+ v⟩ = ⟨u, u⟩+ ⟨u, v⟩+ ⟨v, u⟩+ ⟨v, v⟩

= ⟨u, u⟩+ ⟨v, v⟩ = ∥u∥2 + ∥v∥2.

□

6.2. Orthonormal Bases.

Definition 6.2.1. A list of vectors is called orthonormal is each vector in the list has norm

1 and is orthogonal to all the other vectors in the list.

In other words, a list e1, . . . , em of vectors in V is orthonormal if

⟨ej, ek⟩ =


1 if j = k,

0 if j ̸= k.

Proposition 6.2.2. If e1, . . . , em is an orthonormal list of vectors in V , then

∥a1e1 + . . .+ amem∥2 = |a1|2 + . . .+ |am|2

for all a1, . . . , am ∈ F.
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Theorem 6.2.3. An orthonormal list is linearly independent.

Proof. Let {e1, . . . , ek} is an orthonormal list of vectors in V . Consider the equation a1e1 +

. . . + akek = 0. Then for any i = 1, . . . , k, ai = ⟨ei, a1e1 + . . .+ akek⟩ = ⟨ei, 0⟩ = 0. Then

{e1, . . . , ek} is linearly independent. □

Definition 6.2.4. An orthonormal basis of V is an orthonormal list of vectors in V that is

also a basis of V .

Example 6.2.5. In Rn (or Cn) with the dot product, the standard basis is an orthonormal basis.

Theorem 6.2.6. Every orthonormal list of vectors in V with length dimV is an orthonormal

basis of V .

Remark 6.2.7. After finding an orthonormal basis, the inner product is fully understood, by

the following formulas.

Proposition 6.2.8. Suppose N = {e1, . . . , en} is an orthonormal basis of V and v ∈ V . Then

v = ⟨v, e1⟩ e1 + . . .+ ⟨v, en⟩ en

and

∥v∥2 = |⟨v, e1⟩|2 + . . .+ |⟨v, en⟩|2.

Proof. Let v = a1e1+. . .+anen. Then for any i = 1, . . . , n, ai = ⟨ei, a1e1 + . . .+ anen⟩ = ⟨ei, v⟩.

Then v = ⟨v, e1⟩ e1 + . . .+ ⟨v, en⟩ en. Then

∥v∥2 = ⟨a1e1 + . . .+ anen, a1e1 + . . .+ anen⟩

= ⟨a1e1, a1e1⟩+ . . .+ ⟨a1e1, anen⟩+ . . .+ ⟨anen, a1e1⟩+ . . .+ ⟨anen, anen⟩

= |a1|2 + . . .+ |an|2 = |⟨v, e1⟩|2 + . . .+ |⟨v, en⟩|2.

□
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Theorem 6.2.9 (Gram-Schmidt Procedure). Suppose v1, . . . , vm is a linearly independent list

of vectors in V . Let e1 = v1/∥v1∥. For j = 2, . . . ,m, define ej inductively by

ej =
vj − ⟨vj, e1⟩ e1 − . . .− ⟨vj, ej−1⟩ ej−1

∥the above numerator∥ .

Then {e1, . . . , em} is an orthonormal list of vectors in V such that for any j = 1, . . . ,m,

Span(v1, . . . , vj) = Span(e1, . . . , ej)

Remark 6.2.10. The G-S procedure is to change a list of linearly independent vectors into an

orthonormal list, while keeping the “towel” structure of these vectors in the following sense:

Span(v1)
⊂

//

=

��

Span(v1, v2)
⊂
//

=

��

Span(v1, v2, v3)
⊂

//

=

��

. . .
⊂

/ / Span(v1, . . . , vm)

=

��

Span(e1)
⊂

// Span(e1, e2)
⊂

// Span(e1, e2, e3)
⊂

// . . .
⊂

// Span(e1, . . . , em)

.

This is important because of the following Theorems.

Theorem 6.2.11. Every finite-dimensional inner product space has an orthonormal basis.

Proof. Let the vector space be V . Pick an arbitrary basis of V . Apply the Gram-Schmidt

procedure. We will get an orthonormal list of vectors in V with length dimV . Then it is an

orthonormal basis. □

Corollary 6.2.12. Suppose V is finite-dimensional. Then every orthonormal list of vectors in

V can be extended to an orthonormal basis of V .

Proof. Suppose {e1, . . . , em} is an orthonormal list of vectors in V . Then we can extend it to

be a basis {e1, . . . , em, vm + 1, . . . , vn} in V . Now apply the Gram-Schmidt procedure to it and

we can get an orthonormal basis {f1, . . . , fn}. Note that from the formula in Gram-Schmidt

procedure, if the vector and all previous vectors form an orthonormal list, then that vector

won’t be changed. Therefore f1 = e1, . . . , fm = em. Therefore an orthonormal list of vectors

can be extended to an orthonormal basis. □
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Theorem 6.2.13 (Upper-triangular matrix with respect to orthonormal basis). Suppose T ∈

L(V ). If T has an upper-triangular matrix with respect to some basis of V , then T has an

upper-triangular matrix with respect to some orthonormal basis of V .

Proof. Let B = {v1, . . . , vn} be the basis such that
[
T
]
B←B

is upper-triangular. Then all

Span(v1, . . . , vj) is T -invariant for any j = 1, . . . , n.

Then apply the Gram-Schmidt procedure to it, we can get an orthonormal basis E =

{e1, . . . , en} such that Span(e1, . . . , ej) = Span(v1, . . . , vj) for any j = 1, . . . , n. Then all

Span(e1, . . . , ej) is T -invariant for any j = 1, . . . , n. Then
[
T
]
E←E

is upper-triangular. □

Theorem 6.2.14 (Schur’s Theorem). Suppose V is a finite-dimensional complex inner product

vector space and T ∈ L(V ). Then T has an upper-triangular matrix with respect to some

orthonormal basis of V .

Proof. Since V is a finite-dimensional complex inner product vector space and T ∈ L(V ), then

T has an upper-triangular matrix with respect to some basis of V . Then by Theorem 6.2.13,

T has an upper-triangular matrix with respect to some orthonormal basis of V . □
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6.3. Exercises.

Exercise 6.1. Let V be an inner product space.

(1) 0 is orthogonal to every vector in V .

(2) 0 is the only vector in V that is orthogonal to itself.

Exercise 6.2. Suppose V is a real inner product space.

(1) Show that ⟨u+ v, u− v⟩ = ∥u∥2 − ∥v∥2 for any u, v ∈ V .

(2) Show that if ∥u∥ = ∥v∥, then u+ v is orthogonal to u− v.

Exercise 6.3. Prove or disprove: there is an inner product on R2 such that the associated

norm is given by

∥∥∥∥∥∥
x
y

∥∥∥∥∥∥ = max {x, y} for all

x
y

 ∈ R2.

Exercise 6.4. Let V be an inner product space with the inner product ⟨·, ·⟩. Suppose S ∈ L(V )

is an injective operator on V . Define a new pairing ⟨·, ·⟩S by ⟨u, v⟩S = ⟨Su, Sv⟩ for u, v ∈ V .

(1) Please show that ⟨·, ·⟩S is an inner product on V .

(2) Please give a counter example that ⟨·, ·⟩S is not an inner product when S is not injective.

Exercise 6.5. Let R3 be the inner product space with the usual dot product. Let T ∈ L(R3)

has an upper-triangular matrix with respect to the basis

w1 =


1

0

0

, w2 =


1

1

1

, w3 =


1

1

2


.

Find an orthonormal basis of R3 with respect to which T has an upper-triangular matrix.

The homework is due on May 31.
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7. Operators on Inner Product Spaces

7.1. Self-Adjoint and Normal Operators.

7.1.1. Adjoint operators. Recall that L(V,W ) is the space of all linear maps from V to W .

Definition 7.1.1 (adjoint). Suppose T ∈ L(V,W ). The adjoint of T is the function T ∗ :

W → V such that

⟨Tv, w⟩ = ⟨v, T ∗w⟩

for every v ∈ V and every w ∈ W .

Remark 7.1.2. To compute adjoint operators, one of the most important tool is Corollary 6.1.13:

If ⟨v, w⟩ = ⟨v, u⟩ for any v ∈ V , then w = u. To compute T ∗w, we usually evaluate its pairing

with any vector v ∈ V . It also holds for the first slot.

Proposition 7.1.3. The adjoint is a linear map. That is, if T ∈ L(V,W ), then T ∗ ∈ L(W,V ).

Proof. We need to check that T ∗ preserve addition and scalar product.

Addition: For any v ∈ V , w, u ∈ W ,

⟨v, T ∗(w + u)⟩ = ⟨Tv, w + u⟩ = ⟨Tv, w⟩+ ⟨Tv, u⟩ = ⟨v, T ∗w⟩+ ⟨v, T ∗u⟩ = ⟨v, T ∗w + T ∗u⟩ .

Then T (w + u) = T ∗w + T ∗u.

Scalar product: For any v ∈ V , w ∈ W , λ ∈ F,

⟨v, T ∗(λw)⟩ = ⟨Tv, λw⟩ = λ ⟨Tv, w⟩ = λ ⟨v, T ∗w⟩ = ⟨v, λT ∗w⟩ .

Then T ∗(λw) = λT ∗w.

To sum up, T ∗ : W → V is linear. Then T ∗ ∈ L(W,V ). □

Proposition 7.1.4. Let U, V,W be three inner product spaces over F = R or C.

(1) (S + T )∗ = S∗ + T ∗ for all S, T ∈ L(V,W ).

(2) (λT )∗ = λT ∗ for all λ ∈ F and T ∈ L(V,W ).

(3) (T ∗)∗ = T for all T ∈ L(V,W ).
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(4) I∗ = I where I is the identity operator on V .

(5) (ST )∗ = T ∗S∗ for all T ∈ L(V,W ) and S ∈ L(W,U).

Proof. (1) For any w ∈ W , v ∈ V ,

⟨v, (S + T )∗w⟩ = ⟨(S + T )v, w⟩ = ⟨Sv + Tv, w⟩ = ⟨Sv, w⟩+ ⟨Tv, w⟩

= ⟨v, S∗w⟩+ ⟨v, S∗w⟩ = ⟨v, (S∗ + T ∗)w⟩ .

Then (S + T )∗w = (S∗ + T ∗)w for any w ∈ W . So (S + T )∗ = S∗ + T ∗.

(2) For any v ∈ V , w ∈ W , λ ∈ F,

⟨v, (λT )∗w⟩ = ⟨λTv, w⟩ = λ ⟨Tv, w⟩ = λ ⟨v, T ∗w⟩ =
⟨
v, λT ∗w

⟩
.

Then (λT )∗w = λT ∗w for any w ∈ W . Then (λT )∗ = λT ∗.

(3) For any v ∈ V , w ∈ W ,

⟨Tv, w⟩ = ⟨v, T ∗w⟩ = ⟨T ∗w, v⟩ = ⟨w, (T ∗)∗v⟩ = ⟨(T ∗)∗v, w⟩ .

Then Tv = (T ∗)∗v for any v ∈ V . Then T = (T ∗)∗.

(4) For any v, w ∈ V ,

⟨v, I∗w⟩ = ⟨Iv, w⟩ = ⟨v, w⟩ .

Then I∗w = w for any w ∈ V . Then I∗ = I.

(5) For any v ∈ V , w ∈ W and u ∈ U ,

⟨v, (ST )∗u⟩ = ⟨STv, u⟩ = ⟨S(Tv), u⟩ = ⟨Tv, S∗u⟩ = ⟨v, T ∗S∗u⟩ .

Then (ST )∗u = T ∗S∗u for any u ∈ U . Then (ST )∗ = T ∗S∗.

□

Definition 7.1.5. The conjugate transpose of an m×n matrix is the n×m matrix obtained

by interchanging the rows and columns and then taking the complex conjugate of each entry.

The conjugate transpose of A is denoted by AH . It is also denoted by some other notations:

A
T , A†, A∗, etc.. We will use AH in this course.
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Let A =
(
aji

)
1≤j≤m,1≤i≤n

be a m× n matrix and B =
(
bpq

)
1≤p≤n,1≤q≤m

be a n×m matrix.

Then if B = AH if and only if aji = bji for any j = 1, . . . ,m and i = 1, . . . , n.

Theorem 7.1.6 (The matrix of T ∗). Let E (resp. F) be an orthonormal basis of V (resp. W ).

Then
[
T ∗

]
E←F

=
[
T
]H
F←E

.

Proof. Let E = {e1, . . . , en} and F = {f1, . . . , fm}. Let the matrix of T with respect to these

two bases be [
T
]
F←E

=
(
aji

)
1≤j≤m,1≤i≤n

,

and the matrix of T ∗ with respect to these two bases be

[
T ∗

]
E←F

=
(
bpq

)
1≤p≤n,1≤q≤m

.

Then we have

T (ei) = a1if1 + . . .+ amifm =
m∑
j=1

ajifj, for any i = 1, . . . , n,

T ∗(fq) = b1qe1 + . . .+ bnqen =
n∑

p=1

bpqep, for any q = 1, . . . ,m.

Then for any i = 1, . . . , n and q = 1, . . . ,m, we have

⟨ei, T ∗fq⟩ =

⟨
ei,

n∑
p=1

bpqep

⟩
=

n∑
p=1

bpq ⟨ei, ep⟩ =
n∑

p=1

bpqδi,p = biq,

and

⟨ei, T ∗fq⟩ = ⟨Tei, fq⟩ =

⟨
m∑
j=1

ajifj, fq

⟩
=

m∑
j=1

aji ⟨fj, fq⟩ =
m∑
j=1

ajiδj,q = aqi.

Therefore for any i = 1, . . . , n and q = 1, . . . ,m, biq = aqi. This shows that

[
T ∗

]
E←F

=
[
T
]H
F←E

.

□
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7.1.2. Sefl-adjoint operators.

Definition 7.1.7 (self-adjoint). An operator T ∈ L(V ) is called self-adjoint if T = T ∗. It is

also called Hermitian operator.

In other words, T is self-adjoint if and only if ⟨Tv, w⟩ = ⟨v, Tw⟩ for all v, w ∈ V . Also if we

choose an orthonormal basis, the matrix satisfies
[
T
]
=

[
T
]H

.

Proposition 7.1.8. The sum of two self-adjoint operators is self-adjoint and the product of a

real scalar and a self-adjoint operator is self-adjoint.

Proof. It is straightforward by (A + B)∗ = A∗ + B∗ = A + B and (λA)∗ = λA∗ = λA for any

A,B self-adjoint operators and λ ∈ R. □

Theorem 7.1.9. Eigenvalues of self-adjoint operators are real.

Proof. Suppose T is a self-adjoint operator on V . Let λ be an eigenvalue of T , and let v be an

eigenvector. Then

λ∥v∥2 = ⟨λv, v⟩ = ⟨Tv, v⟩ = ⟨v, Tv⟩ = ⟨v, λv⟩ = λ∥v∥2.

Therefore λ = λ. Then λ is real. □

Theorem 7.1.10. Suppose V is a complex inner product space and T ∈ L(V ). Suppose

⟨Tv, v⟩ = 0 for all v ∈ V . Then T = 0.

Proof. Choose a Jordan basis {e1, . . . , en} for T . Then the basis vector has two types: eigenvec-

tor and generalized eigenvector. If ek is an eigenvector, then Tek = λek. If ek is an generalized

eigenvector, then Tek = λek + ek−1.

If ek is an eigenvector with eigenvalue λ, then ⟨Tek, ek⟩ = 0. So ⟨λek, ek⟩ = 0. Since ek ̸= 0,

λ has to be 0. Therefore all eigenvalues of T are 0’s.

If ek is a generalized eigenvector, since its eigenvalue is 0, we have Tek = ek−1. Consider a

Jordan block of size r, and rename the Jordan basis vectors associated to this block {e1, . . . , er}.

Assume that r ≥ 2. Then Te1 = 0 and Tei = ei−1 for i = 2, . . . , r. Then 0 = ⟨Te2, e2⟩ = ⟨e1, e2⟩.

Therefore by e2 ̸= 0, we have ⟨T (e1 + e2), e1 + e2⟩ = ⟨e2, e1 + e2⟩ = ⟨e2, e2⟩ ̸= 0. This is a
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contradiction. Then r = 1. So all Jordan blocks are of size 1. Then the matrix is a diagonal

matrix. Then the linear operator T has to be 0. □

Remark 7.1.11. The above proof only works for complex numbers since we use Jordan canonical

form. In the real case there are counter examples. For example, consider R2 and the standard

inner product on it. Let R be rotating about the origin in R2 by 90◦. Then ⟨Rv, v⟩ = 0 for any

v, but R ̸= 0.

Theorem 7.1.12. Suppose V is a complex inner product space and T ∈ L(V ). Then T is

self-adjoint if and only if ⟨Tv, v⟩ ∈ R for every v ∈ V .

Proof. (⇒): Since ⟨Tv, v⟩ ∈ R for any v ∈ V , ⟨Tv, v⟩ = ⟨v, Tv⟩ = ⟨v, Tv⟩ = ⟨v, (T ∗)∗v⟩ =

⟨T ∗v, v⟩. Then ⟨(T − T ∗)v, v⟩ = 0 for any v ∈ V . Then T = T ∗. So T is self-adjoint.

(⇐): If T is self-adjoint, T = T ∗. Then ⟨(T − T ∗)v, v⟩ = 0 for any v ∈ V . Then ⟨Tv, v⟩ =

⟨T ∗v, v⟩ = ⟨v, T ∗v⟩ = ⟨Tv, v⟩. Therefore we have ⟨Tv, v⟩ = ⟨Tv, v⟩ for any v ∈ V . Then

⟨Tv, v⟩ ∈ R for any v ∈ V .

□

The above two theorems apply to complex vector spaces only. The next one can be extended

to real vector spaces.

Theorem 7.1.13. Let V be a real vector space. Suppose T is a self-adjoint operator on V such

that ⟨Tv, v⟩ = 0 for all v ∈ V . Then T = 0.

Proof. Since T is self-adjoint, ⟨Tv, w⟩ = ⟨v, Tw⟩ = ⟨Tw, v⟩ for any v, w ∈ V . Then for any

v, w ∈ V ,

⟨T (v + w), v + w⟩ − ⟨T (v − w), v − w⟩

= ⟨Tv, v⟩+ ⟨Tv, w⟩+ ⟨Tw, v⟩+ ⟨Tw,w⟩ − (⟨Tv, v⟩ − ⟨Tv, w⟩ − ⟨Tw, v⟩+ ⟨Tw,w⟩)

= 2 ⟨Tv, w⟩+ 2 ⟨Tw, v⟩ = 4 ⟨Tv, w⟩ .

Since ⟨T (v + w), v + w⟩ = ⟨T (v − w), v − w⟩ = 0 for any v, w ∈ V , ⟨Tv, w⟩ = 0 for any

v, w ∈ V . Then T = 0. □
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7.1.3. Normal operators.

Definition 7.1.14. An operator on an inner product space is called normal if it commutes

with its adjoint.

In other words, T ∈ L(V ) is normal if TT ∗ = T ∗T .

Theorem 7.1.15. An operator T ∈ L(V ) is normal if and only if ∥Tv∥ = ∥T ∗v∥ for all v ∈ V .

Proof. (⇒): Since T is normal, TT ∗ = T ∗T . By (T ∗)∗ = T , we have

∥Tv∥2 = ⟨Tv, Tv⟩ = ⟨v, T ∗Tv⟩ = ⟨v, TT ∗v⟩ = ⟨v, (T ∗)∗T ∗v⟩ = ⟨T ∗v, T ∗v⟩ = ∥T ∗v∥2.

Then ∥Tv∥ = ∥T ∗v∥.

(⇐): By the above computation, we have ∥Tv∥2 = ⟨v, T ∗Tv⟩ and ∥T ∗v∥2 = ⟨v, TT ∗v⟩. If

∥Tv∥ = ∥T ∗v∥ for any v ∈ V , ⟨v, T ∗Tv⟩ = ⟨v, TT ∗v⟩ for any v. So for any v ∈ V ,

⟨v, (T ∗T − TT ∗)v⟩ = 0. By Theorem 7.1.10

□

Theorem 7.1.16. Suppose T ∈ L(V ) is normal and v ∈ V is an eigenvector of T with

eigenvalue λ. Then v is also an eigenvector of T ∗ with eigenvalue λ.

Proof. Since Tv = λv, then (T − λI)v = 0. So ∥(T − λI)v∥ = 0. Then since T is normal,

T − λI should also be normal. Then 0 = ∥(T − λI)v∥ = ∥(T − λI)∗v∥. So (T − λI)∗v = 0.

Then T ∗v = λI. So v is an eigenvector of T ∗ with eigenvalue λ. □

Theorem 7.1.17. Suppose T ∈ L(V ) is normal. Then eigenvectors of T corresponding to

distinct eigenvalues are orthogonal.

Proof. Suppose Tv = λv and Tw = µw while λ ̸= µ. Then

⟨T ∗Tv, w⟩ = ⟨v, T ∗Tw⟩ ,

⟨T ∗Tv, w⟩ =
⟨
|λ|2v, w

⟩
= |λ|2 ⟨v, w⟩ ,

⟨v, T ∗Tw⟩ =
⟨
v, |µ|2w

⟩
= |µ|2 ⟨v, w⟩ .

So |λ|2 ⟨v, w⟩ = |µ|2 ⟨v, w⟩. Since λ ̸= µ, ⟨v, w⟩ = 0. □
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7.2. The Spectral Theorem.

Theorem 7.2.1 (Complex Spectral Theorem). Suppose F = C and T ∈ L(V ). Then T is

normal if and only if T has a diagonal matrix with respect to some orthonormal basis of V .

Proof of the Spectral Theorem.

(⇐): Let B be the orthonormal basis such that
[
T
]
B←B

is diagonal, then
[
T ∗

]
B←B

=
[
T
]H
B←B

is also diagonal. Since diagonal matrices commute,
[
T
]
B←B

[
T ∗

]
B←B

=
[
T ∗

]
B←B

[
T
]
B←B

. So

TT ∗ = T ∗T . Then T is normal.

(⇒): By Theorem 6.2.14, there exists an orthonormal basis B = {e1, . . . , en} such that
[
T
]
B←B

is upper-triangular. That is to say,

Te1 = a11e1,

T e2 = a12e1 + a22e2,

. . . . . .

T en = a1ne1 + a2ne2 + . . .+ annen.

Since
[
T ∗

]
B←B

=
[
T
]H
B←B

, we have

T ∗e1 = a11e1 + a12e2 + . . .+ a1nen,

T ∗e2 = a22e2 + a23e3 + . . .+ a2nen,

. . . . . .

T ∗en = annen.

Then since {e1, . . . , en} is an orthonormal basis, for any k = 1, . . . , n,

∥Tek∥2 = ∥a1ke1 + a2ke2 + . . .+ akkek∥2 = ∥a1k∥2 + . . .+ ∥akk∥2,

and

∥T ∗ek∥2 = ∥akkek + ak,k+1ek+1 + . . .+ aknen∥2 = ∥akk∥2 + . . .+ ∥akn∥2.
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Since T is normal, T ∗T = TT ∗. Then

∥Tek∥2 = ⟨Tek, T ek⟩ = ⟨ek, T ∗Tek⟩ = ⟨ek, TT ∗ek⟩ = ⟨T ∗ek, T ∗ek⟩ = ∥T ∗ek∥2.

Then for any k = 1, . . . , n,

∥a1k∥2 + . . .+ ∥akk∥2 = ∥akk∥2 + . . .+ ∥akn∥2.

(k = 1): ∥a11∥2 = ∥a11∥2 + ∥a12∥2 + . . . + ∥a1n∥2. Then ∥a12∥2 + . . . + ∥a1n∥2 = 0. Since all

terms are non-negative real numbers, all of them has to be 0. Then a12 = a13 = . . . = a1n = 0.

(k = 2): ∥a12∥2+∥a22∥2 = ∥a22∥2+ . . .+∥a2n∥2. Then since a12 = 0, ∥a23∥2+ . . .+∥a2n∥2 = 0.

Since all terms are non-negative real numbers, all of them has to be 0. Then a23 = a24 =

. . . = a2n = 0.

Keep repeating this, we can get that all aij = 0 for i < j. Then this means that the matrix[
T
]
B←B

is a diagonal matrix. To sum up, T is diagonalizable by an orthonormal basis.

□

Proposition 7.2.2. Let V be an inner product space. Let T ∈ L(V ) be a normal operator.

Then there exists R,M ∈ L(V ) be two self-adjoint operators such that T = R + iM and

RM = MR. Conversely, any two self-adjoint operators R and M which commute can make a

normal operator by R + iM .

Proof. (⇒): T is normal. Then there is an orthonormal basis B such that

[
T
]
B←B

=


α1 + iβ1

. . .

αn + iβn

.

Then let R,M ∈ L(V ) be defined by

[
R
]
B←B

=


α1

. . .

αn

,
[
M

]
B←B

=


β1

. . .

βn

.
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Then [
T
]
B←B

=
[
R
]
B←B

+ i
[
M

]
B←B

,[
R
]
B←B

=
[
R
]H
B←B

,[
M

]
B←B

=
[
M

]H
B←B

,[
R
]
B←B

[
M

]
B←B

=
[
M

]
B←B

[
R
]
B←B

.

Then T = R + iM , R = R∗, M = M∗ and RM = MR.

(⇐): Since R = R∗, M = M∗, and RM = MR, then T ∗ = (R + iM)∗ = R∗ + (iM)∗ =

R∗ − iM∗ = R− iM . Then

TT ∗ = (R + iM)(R− iM) = R2 − iRM + iMR +M2 = R2 +m2,

T ∗T = (R− iM)(R + iM) = R2 + iRM − iMR +M2 = R2 +m2.

Then TT ∗ = T ∗T . So T is normal.

□

Remark 7.2.3. From the Proposition, normal operators and self-adjoint operators can be treated

as generalizations of complex numbers and real numbers. From this point of view, conjugate

transpose / adjoint can be viewed as the generalization of conjugate in complex numbers.

Corollary 7.2.4. Let T ∈ L(V ) be a normal operator on a complex inner product space V . If

all eigenvalues of T are real, then T is self-adjoint.

Proof. Since T is normal, there is an orthonormal basis B such that the matrix
[
T
]
B←B

is

diagonal. Then since the diagonal are all real,
[
T
]H
B←B

=
[
T
]
B←B

. So T = T ∗. Then T is

self-adjoint. □
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7.3. Exercises.

Exercise 7.1. Consider Cn with the dot product. Define T ∈ Cn by

T




z1

z2
...

zn


=


0

z1
...

zn−1




.

Find a formula for T ∗



z1
...

zn


. You cannot directly use Theorem 7.1.6.

Exercise 7.2. Suppose V is a complex inner product space and T ∈ L(V ) is a normal operator

such that T 9 = T 8. Prove that T is self-adjoint and T 2 = T .

Exercise 7.3. Let S, T ∈ L(V ) be self-adjoint. Show that ST is self-adjoint if and only if

ST = TS.

Exercise 7.4. Suppose V is a complex inner product space with V ̸= {0}. Show that the set

of self-adjoint operators on V is not a subspace of L(V ).

Exercise 7.5. Give an example of an operator T on a complex vector space such that T 9 = T 8

but T 2 ̸= T .

Exercise 7.6. Let V be a finite-dimensional complex vector space. Suppose that T is a normal

operator on V and that 3 and 4 are eigenvalues of T . Prove that there exists a vector v ∈ V

such that ∥v∥ =
√
2 and ∥Tv∥ = 5.

Exercise 7.7. Give an example of an operator T ∈ L(C4) such that T is normal but not

self-adjoint.

Exercise 7.8. Let T ∈ L(V,W ). Please prove that

(1) T is injective if and only if T ∗ is surjective.

(2) T is surjective if and only if T ∗ is injective.
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Exercise 7.9. Consider C3 with the dot product. Let E be the standard basis. Let T ∈ L(C3)

be defined by

[
T
]
E←E

=


1 1 0

0 1 1

1 0 1

.
Please find an orthonormal basis such that the matrix of T is diagonal, or prove that such a

basis doesn’t exist.

The homework is due on Jun. 7.



8. Operators on Complex vector spaces

8.1. Theory of null spaces.

Lemma 8.1.1 (Sequence of increasing null spaces). Suppose T ∈ L(V ). Then

{0} = Nul(T 0) ⊂ Nul(T 1) ⊂ . . . ⊂ Nul(T k) ⊂ Nul(T k+1) ⊂ . . . .

Proof. Suppose k is a non-negative integer and v ∈ Nul(T k). Then T kv = 0, and hence T k+1v =

T (T kv) = T (0) = 0. Thus v ∈ Nul(T k+1). Hence Nul(T k) ⊂ Nul(T k+1), as desired. □

Lemma 8.1.2 (Equality in the sequence of null spaces). Suppose T ∈ L(V ). Suppose m is a

non-negative integer such that Nul(Tm) = Nul(Tm+1). Then

Nul(Tm) = Nul(Tm+1) = Nul(Tm+2) = Nul(Tm+3) = . . . .

Proof. Let k be a positive integer. We want to prove that Nul(Tm+k) = Nul(Tm+k+1). We

already know that Nul(Tm+k) ⊂ Nul(Tm+k+1). Then we just need to show that Nul(Tm+k+1) ⊂

Nul(Tm+k). For any v ∈ Nul(Tm+k+1), Tm+k+1(v) = 0. Then Tm+1(T k(v)) = 0. So T k(v) ∈

Nul(Tm+1) = (Tm). Then Tm(T k(v)) = 0. So Tm+k(v) = 0. Then v ∈ Nul(Tm+k). □

Lemma 8.1.3 (Null spaces stop growing). Suppose T ∈ L(V ). Let n = dimV . Then

Nul(T n) = Nul(T n+1) = Nul(T n+2) = . . . .

Proof. Assume this is not true. Then by Lemma 8.1.1 and Lemma 8.1.2, it has to be

{0} = Nul(T 0) ⊊ Nul(T 1) ⊊ Nul(T 2) ⊊ . . . ⊊ Nul(T n) ⊊ Nul(T n+1).

Then this means that

0 = dim Nul(T 0) < dim Nul(T 1) < dim Nul(T 2) < . . . < dim Nul(T n) < dim Nul(T n+1).

Then dim Nul(T n+1) ≥ n + 1, which is greater than dimV . This is a contradiction. Then

Nul(T n) = Nul(T n+1). □

1
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Theorem 8.1.4 (Direct sum decomposition of V ). Suppose T ∈ L(V ). Let n = dimV . Then

V = Nul(T n)⊕ im(T n).

Proof. Let v ∈ Nul(T n)∩im(T n). Then T n(v) = 0 and there exists w ∈ V such that v = T n(w).

Then T n(T n(w)) = 0. So w ∈ Nul(T 2n) = Nul(T n) by Lemma 8.1.3. So v = T n(w) = 0.

Then Nul(T n) ∩ im(T n) = {0}. Then Nul(T n) + im(T n) = Nul(T n) ⊕ im(T n) ⊂ V . Then by

dimV = dim Nul(T n) + dim im(T n) = dim (Nul(T n)⊕ im(T n)), V = Nul(T n)⊕ im(T n). □

Remark 8.1.5. It is easy to see that Nul(T n) and im(T n) are both T -invariant (Exercises). Then

this theorem gives a direct sum decomposition into invariant subspaces.

Example 8.1.6. Let T ∈ C3 be defined by


0 1 0

0 0 1

0 0 0

. Then T 2 =


0 0 1

0 0 0

0 0 0

 and T 3 =


0 0 0

0 0 0

0 0 0

.

Let e1 =


1

0

0

, e2 =


0

1

0

 and e3 =


0

0

1

.

(1) Nul(T 1) = Span(e1), im(T 1) = Span(e1, e2).

(2) Nul(T 2) = Span(e1, e2), im(T 2) = Span(e1).

(3) Nul(T 3) = Span(e1, e2, e3), im(T 3) = {0}.

Then C3 ̸= Nul(T 1)⊕ im(T 1), C3 ̸= Nul(T 2)⊕ im(T 2) and C3 = Nul(T 3)⊕ im(T 3).

8.2. Generalized Eigenvectors.

Definition 8.2.1 (Generalized eigenvector). Suppose T ∈ L(V ) and λ is an eigenvalue of T .

A vector v ∈ V is called a generalized eigenvector of T corresponding to λ if v ̸= 0 and

(T − λI)jv = 0

for some positive integer j.
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Example 8.2.2. Let T =


2 1 0

0 2 0

0 0 4

, e1 =


1

0

0

, e2 =


0

1

0

 and e3 =


0

0

1

. Then we have

(T − 2I)1(e1) = 0, (T − 2I)2(e2) = 0, (T − 4I)1(e3) = 0.

Therefore e1 is an eigenvector (also generalized) of T corresponding to 2, e2 is a generalized

eigenvector of T corresponding to 2, and e3 is an eigenvector of T corresponding to 4.

Definition 8.2.3 (Generalized eigenspace). Suppose T ∈ L(V ) and λ ∈ F. The generalized

eigenspace of T corresponding to λ, denoted V G
λ,T , is defined to be the set of all generalized

eigenvectors of T corresponding to λ, along with the 0 vector.

Remark 8.2.4. Eigenvectors corresponding to λ are also generalized eigenvectors corresponding

to λ. Therefore Vλ ⊂ V G
λ .

Theorem 8.2.5. Suppose T ∈ L(V ) and λ ∈ F. Let dimV = n. Then V G
λ = Nul ((T − λI)n).

Proof. From the definition of generalized eigenvectors, Nul ((T − λI)n) ⊂ V G
λ . Also by Lemma

8.1.1 and Lemma 8.1.3, V G
λ ⊂ Nul ((T − λI)n). Then V G

λ = Nul ((T − λI)n). □

Remark 8.2.6. Then Theorem 8.1.4 can be rewritten as V = V G
λ ⊕ im ((T − λI)n).

Theorem 8.2.7 (Linearly independent generalized eigenvectors). Let T ∈ L(V ). Suppose

λ1, . . . , λm are distinct eigenvalues of T and v1, . . . , vm are corresponding generalized eigenvec-

tors. Then v1, . . . , vm is linearly independent.

Proof. Suppose a1, . . . , am ∈ F such that a1v1+. . .+amvm = 0. Let k be the largest non-negative

integer such that (T − λ1I)
kv1 ̸= 0. Let w = (T − λ1I)

kv1. Then

(T − λ1I)(w) = (T − λ1I)
k+1(v) = 0.

So T (w) = λ1w. Then (T − λI)w = T (w) − λw = (λ1 − λ)w for any λ ∈ F. Therefore

(T − λI)nw = (λ1 − λ)nw for any λ ∈ F.
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Now consider an operator L1 = (T − λ1I)
k(T − λ2I)

n . . . (T − λmI)
n ∈ L(V ). The order of

each factor of the operator L1 can be changed by Proposition 5.3.19. Since (T − λiI)
n(vi) = 0

for i = 2, . . . ,m and (T − λ1I)
k(v1) = w, we have for i = 2, . . . ,m

L1(vi) = (T − λ1I)
k(T − λ2I)

n . . . (T − λi−1I)
n(T − λi+1I)

n . . . (T − λmI)
n(T − λiI)

n(vi) = 0,

and

L1(v1) = (T − λ2I)
n . . . (T − λmI)

n(T − λ1I)
k(v1) = (T − λ2I)

n . . . (T − λmI)
nw

= (λ1 − λ2)
n . . . (λ1 − λm)

nw.

Then since 0 = a1v1 + . . .+ amvm, we have

0 = L1(0) = L1(a1v1 + . . .+ amvm) = a1(λ1 − λ2)
n . . . (λ1 − λm)

nw.

Then a1(λ1 − λ2)
n . . . (λ1 − λm)

n = 0. Since all λi’s are distinct, (λ1 − λ2)
n . . . (λ1 − λm)

n ̸= 0.

So a1 = 0.

Use the similar method to construct operators Li for i = 2, . . . ,m. Then we have ai = 0 for

i = 2, . . . ,m. Then {v1, . . . , vm} is linearly independent. □

8.3. Decomposition of a Space with an Operator.

Lemma 8.3.1. Suppose T ∈ L(V ) and p ∈ P (F). Then Nul(p(T )) and im(p(T )) are invariant

under T . In particular, Nul ((T − λI)n) and im ((T − λI)n) are T -invariant.

Proof. For v ∈ Nul(p(T )), p(T )(v) = 0. Then

p(T )(T (v)) = (p(T )T )(v) = (Tp(T ))(v) = T (p(T )(v))0.

So T (v) ∈ Nul (p(T )). Then Nul (p(T )) is invariant under T .

For w ∈ im (p(T )), there exists u ∈ V such that p(T )(z) = w. Then

T (w) = T (p(T )(z)) = (Tp(T ))(z) = (p(T )T )(z) = p(T )(T (z)).

So T (w) ∈ im (p(T )). Then im (p(T )) is invariant under T . □
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Theorem 8.3.2. Suppose V is a complex vector space and T ∈ L(V ). Let λ1, . . . , λm be the

distinct eigenvalues of T . Then V = V G
λ1

⊕ . . .⊕ V G
λm

.

Proof. Apply complete induction on the dimV . dimV = 1 case is obvious. Assume the

decomposition is true for any vector spaces of dimension ≤ n. Then for a vector space V

of dimension n + 1, since it has an eigenvalue λ, there is a generalized eigenspace V G
λ . So

V = V G
λ ⊕im ((T − λI)n+1). Let im ((T − λI)n+1) = W . By induction, since dimW < dimV =

n + 1, W = WG
λ1

⊕ . . .WG
λm

for λ1, . . . , λm being distinct eigenvalues of T |W and WG
λi

being

corresponding generalized eigenspace in W . Therefore the rest is to prove that λi’s are also

eigenvalues of T ∈ L(V ) and WG
λi

= V G
λi

.

• λi is an eigenvalue means that ∃w ∈ W such that T |W (w) = λiw. Since w ∈ W ⊂ V ,

T |W (w) = T (w). So T (w) = λiw. Then λi is an eigenvalue of T and w ∈ V is a corresponding

eigenvector of T in V .

• For any w ∈ WG
λi

, there exists k such that (T |W − λiIW )k(w) = 0. Since w ∈ W ⊂ V ,

T |W (w) = T (w). Then (T − λiI)
k(w) = 0. So w ∈ V G

λi
. Then WG

λi
⊂ V G

λi
.

On the other side, for any v ∈ V G
λi

, by V = V G
λ ⊕ W = V G

λ ⊕ WG
λ1

⊕ . . . ⊕ WG
λm

, there

exists u ∈ V G
λ , wi ∈ WG

λi
such that v = u + w1 + . . . + wm. Then since v ∈ V G

λi
, u ∈ V G

λ ,

wi ∈ WG
λi

⊂ V G
λi

for any i = 1, . . . ,m, and by that generalized eigenvectors corresponding to

distinct eigenvalues are linearly independent, v has to be wi. Then v ∈ WG
λi

. Then V G
λi

⊂ WG
λi

.

To sum up, V G
λi

= WG
λi

.

Therefore V = V G
λ ⊕ V G

λ1
⊕ . . .⊕ V G

λm
. By complete induction, the Theorem holds. □

Corollary 8.3.3. Suppose V is a complex vector space and T ∈ L(V ). Then there is a basis

of V consisting of generalized eigenvectors of T .

Remark 8.3.4. Generalized eigenspace decomposition is a refined result of the upper-triangular

matrix chain of basis. At least this time we get a direct sum decomposition of invariant

subspaces. Can we decompose generalized eigenspace further? That is the next topic.
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Corollary 8.3.5. Suppose V is a complex vector space, T ∈ L(V ), and V G
λ is a generalized

eigenspace corresponding to the eigenvalue λ. Then there exists a basis of V G
λ such that the

matrix T |V G
λ

is upper-triangular, and the diagonal entries are all λ.

Proof. The upper-triangular assertion is obvious. Now we use the construction of basis which

make T |V G
λ

upper-triangular matrix to prove that the matrix has a constant diagonal. Let the

basis be {v1, . . . , vn}. Then we have

T (v1) = a11v1,

T (v2) = a12v1 + a22v2,

. . . . . .

T (vn) = a1nv1 + a2nv2 + . . .+ annvn.

What we want to show is that all aii = λ for i = 1, . . . , n. We use contradiction. Assume

that for some k, akk ̸= λ. Let W = Span(v1, . . . , vk−1), U = Span(v1, . . . , vk). Then both W

and U are T -invariant. Then there is a quotient operator T ∈ L(U/W ). The basis of U/W

is
[
vk

]
such that T (

[
vn

]
) = akk

[
ak

]
. Then (T − λI)n(

[
ak

]
) = (akk − λ)n

[
vk

]
. Since akk ̸= λ,

(akk − λ)n
[
vk

]
̸=

[
0
]
. Then (T − λI)n(

[
vk

]
) ̸=

[
0
]
.

However since vk ∈ V G
λ , (T − λI)n(vk) = 0. Then put them into the quotient space, we have

(T − λI)n(
[
vk

]
) = (T − λI)n(

[
vk

]
) =

[
(T − λI)n(vk)

]
=

[
0
]
.

This is a contradiction. Then all akk = λ for any k = 1, . . . , n. □

Remark 8.3.6. Due to the previous Corollary, we sometimes call λ in V G
λ the generalized eigen-

value.
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8.4. Jordan Form.

8.4.1. Characteristic and Minimal Polynomials.

Proposition 8.4.1. Suppose V is a complex vector space and T ∈ L(V ). Let E and F be two

bases of V . The matrix A =
[
T
]
E←E

and B =
[
T
]
F←F

. Then det(A− λI) = det(B − λI) as

polynomials of λ.

Proof. There is an invertible matrix P such that A = P−1BP . Then

det(A− λI) = det
(
P−1BP − λP−1P

)
= det

(
p−1(B − λI)P

)
= det

(
P−1

)
det(B − λI) det(P ) = det(B − λI).

□

Definition 8.4.2 (Characteristic polynomial). Suppose V is a complex vector space and T ∈

L(V ). Let B be a basis of V . The matrix A =
[
T
]
B←B

. Then the characteristic polynomial

of T is defined to be det(A− λI). It is proved by the previous proposition that it is independent

of choice of bases.

Definition 8.4.3. Suppose T ∈ L(V ). The multiplicity of an eigenvalue λ of T is defined

to be the dimension of the corresponding generalized eigenspace V G
λ . In other words, the

multiplicity of λ is dim Nul(T − λI)dimV .

Theorem 8.4.4. Suppose V is a complex vector space and T ∈ L(V ). Let λ1, . . . , λm denote

the distinct eigenvalues of T , with multiplicities d1, . . . , dm. Then the characteristic polynomial

of T is (x− λ1)
d1 . . . (x− λm)

dm.

Proof. By Theorem 8.3.2 and Corollary 8.3.5, after writing a matrix into an upper-triangular

matrix, the diagonal are all eigenvalues, and the number of each distinct eigenvalue λ is the

dimension of V G
λ . Then the characteristic polynomial can be computed directly. □

Remark 8.4.5. The Theorem can be used in the other way. We can now first compute the

characteristic polynomial of a matrix, and then use the multiplicity of the roots to get the

multiplicity of the eigenvalues.



8

Theorem 8.4.6. Suppose V is a complex vector space and T ∈ L(V ). Then

(1) the characteristic polynomial of T has degree dimV .

(2) the zeros of the characteristic polynomial of T are the eigenvalues of T .

Theorem 8.4.7 (Cayley-Hamilton Theorem). Suppose V is a complex vector space and T ∈

L(V ). Let q denote the characteristic polynomial of T . Then q(T ) = 0.

Proof. From Theorem 8.4.4, let λ1, . . . , λm denote the distinct eigenvalues of T , with multiplic-

ities d1, . . . , dm. Then the characteristic polynomial of T is (x − λ1)
d1 . . . (x − λm)

dm . Then

since for any vk ∈ V G
λk

, (T −λkI)
dk(vk) = 0, and we can rearrange the order of the characteristic

polynomial q(x) = (x− λ1)
d1 . . . (x− λm)

dm(x− λk)
dk , then we have

q(T )(vk) = (T − λ1I)
d1 . . . (T − λmI)

dm(T − λkI)
dk(vk) = 0.

Since this holds for any k = 1, . . . ,m, and V = V G
λ1
⊕ . . .⊕V G

λm
, then q(T )(v) = 0 for any v ∈ V .

Then q(T ) = 0. □

8.4.2. Minimal polynomials.

Definition 8.4.8. Let V be a vector space and T ∈ L(V ). A polynomial p(x) with the highest

degree coefficient = 1 (monic) of smallest degree such that p(T ) = 0 is called the minimal

polynomial of T .

Theorem 8.4.9. Suppose T ∈ L(V ). The minimal polynomial of T exists and it is unique.

Proof. The uniqueness part is easy. Let p1(x) = xk + ak−1x
k−1 + . . . + a1x + a0 and p2(x) =

xk + bk−1x
k−1 + . . . + b1x + b0 be two minimal polynomials. Then p3(x) = p1(x) − p2(x) be a

polynomial of degree < k and p3(T ) = p1(T )− p2(T ) = 0. So if p3 ̸= 0, it contradicts the facts

that both p1 and p2 are minimal polynomials. So p3 = 0. Then p1 = p2.

We collect all monic polynomials p(x) such that p(T ) = 0 together and consider the set S

of their degrees. S is a set of natural numbers, and it is not empty due to the characteristic

polynomial. Then by Well-Ordering principle, there is a minimum degree, and the polynomial

of that degree is the minimal polynomial we want. □
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Theorem 8.4.10. Suppose T ∈ L(V ) and q ∈ P (F). Then q(T ) = 0 if and only if q is a

polynomial multiple of the minimal polynomial p of T .

Proof. (⇒): Suppose q(T ) = 0. By the division theorem for polynomials, there exist polynomial

s, r such that q = ps+ r and deg r < deg p. Then 0 = q(T ) = p(T )s(T ) + r(T ) = r(T ). Then

r has to be 0 otherwise it will violate that p is the minimal polynomial.

(⇐): If q is a polynomial multiple of p, then q(x) = p(x)s(x). Then q(T ) = p(T )s(T ) = 0.

□

Corollary 8.4.11. Characteristic polynomial is a multiple of minimal polynomial.

Corollary 8.4.12. Eigenvalues are the zeros of the minimal polynomial.

8.4.3. Nilpotent operator.

Definition 8.4.13. An operator is celld nilpotent if some power of it equals 0.

Example 8.4.14. Let A =

0 1

0 0

 and B =

1 0

0 1

. Since A2 = 0, and Bk = B for any k ≥ 0, A

is a nilpotent operator and B is not.

Proposition 8.4.15. Suppose N ∈ L(V ) is nilpotent and let n = dimV . Then Nn = 0.

Proof. Since N is nilpotent, there is a power k that Nk = 0. Then for any v ∈ V , (N−0I)kv = 0.

So v ∈ V G
0 . Then V = V G

0 = Nul ((N − 0I)n) = Nul (Nn). So Nn = 0. □

Lemma 8.4.16 (Matrix of a nilpotent operator). Suppose N ∈ L(V ) is nilpotent. There is a

basis of V such that the matrix of N corresponding to the basis is a strictly upper-triangular

matrix.

Proof. By Proposition 8.4.15, Nn = 0. Then by Theorem 8.4.10 and Corollary 8.4.12, 0 is

the only eigenvalue of N . Then by Corollary 8.3.5 the diagonal entries of the upper-triangular

matrix of N are all 0. □
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8.4.4. Basis corresponding to a nilpotent operator.

Theorem 8.4.17. Let V be a complex vector space of dimension n. Suppose N ∈ L(V ) is

nilpotent. Then there exist vectors v1, . . . , vn ∈ V and non-negative integers m1, . . . ,mn such

that

(1) {Nm1v1, . . . , Nv1, v1, N
m2v2, . . . , Nv2, v2, . . . , N

mnvn, . . . , Nvn, vn} is a basis of V .

(2) Nm1+1v1 = Nm2+1v2 = . . . = Nmn+1vn = 0.

Proof. Use complete induction on dimV = n. n = 1 case is obvious. Assume that the statement

holds for any complex vector space of dimension ≤ k. Let V be a complex vector space of

dimension k + 1. Let N be a nilpotent operator on V . There are two possibilities:

(1) if V can be decomposed into a direct sum of generalized eigenspaces, then by induction the

result holds.

(2) if V cannot be decomposed, then choose a basis {v1, . . . , vn+1} such that under the basis N

is an upper-triangular matrix. Now construct a new basis in the following way:

• Start from wn+1 = vn+1.

• If N(wk) ̸= 0, then wk−1 = N(wk).

• If k > 1 and N(wk) = 0, then wk−1 = vk−1.

• Stop after we get w1.

It is easy to see that {w1, . . . , wn+1} is a basis. What’s more, if N(wk) = 0, then Span(wn, . . . , wk)

and Span(wk−1, . . . , w1) are both N -invariant. Then V = Span(wn, . . . , wk)⊕Span(wk−1, . . . , w1).

Since V is indecomposable, this cannot happen. So there are no wk such that k > 1 and

N(wk) = 0. Then the basis satisfies that Nwk = wk−1 for k = 2, . . . , n + 1. Also since

Nn+1 = 0, we have Nn+1(wn) = 0. This proves the statement.

By induction, we can always find a basis in the given form. □
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Theorem 8.4.18. Under the basis described in the previous Theorem, the matrix of the nilpotent

operator is a block diagonal matrix where the block always look like
0 1 0

. . . . . .
. . . 1

0


8.4.5. Jordan basis.

Definition 8.4.19. A matrix of the form

Jλ =


λ 1 0

. . . . . .
. . . 1

λ


is called a Jordan block corresponding to λ. A matrix is in Jordan canonical form if the

matrix is a block diagonal matrix

A =


Jλ1 0

. . .

0 Jλm


where the diagonal are all Jordan blocks.

Definition 8.4.20. Let T ∈ L(V ). A basis of V is called a Jordan basis for T if under this

basis the matrix of T is in Jordan canonical form.

Remark 8.4.21. The basis in Theorem 8.4.17 is a Jordan basis for the nilpotent operator N .

Theorem 8.4.22 (Jordan form). Suppose V is a complex vector space. If T ∈ L(V ), then

there is a basis of V that is a Jordan basis for T .

Proof. First consider the generalized eigenspaces decomposition. V = V G
λ1

⊕ . . . V G
λm

. On each

V G
λi

, (T −λiI)|V G
λi

is nilpotent. Then there is a basis on V G
λi

such that the matrix of (T −λiI)|V G
λi
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is in Jordan canonical form: 
J1
0 0

. . .

0 Jr
0


where the upper index suggests that there might be multiple Jordan blocks. Then under the

same basis, the matrix of T |V G
λi

is 
J1
λi

0

. . .

0 Jr
λi


which is in Jordan canonical form.

We collect these Jordan bases from each generalized eigenspace and put them together to

form a basis of V . This is the Jordan basis for T on V . □

Remark 8.4.23. To find the Jordan basis, the key point lies in the idea that the basis look like

v,Nv,N2v, . . .. Therefore here is the steps:

(1) Each eigenvector is corresponding to a Jordan block.

(2) Find a eigenvector v1 by solving the equation (A− λI)X = 0.

(3) The next basis vector v2 is the solution to the equation (A− λI)X = v1.

(4) The next basis vector v3 is the solution to the equation (A− λI)X = v2.

(5) Repeat until you find all basis related to this Jordan block.

(6) Repeat until you run through all Jordan blocks.

Definition 8.4.24. The change-of-basis matrix of Jordan basis is also called the transformation

matrix. Using the transformation matrix, the original matrix is similar to its Jordan canonical

form.

Example 8.4.25. Find the Jordan basis of the matrix


2 2 1

0 2 1

0 0 3


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Solve. First find the characteristic polynomial:

det (A− xI) = det



2− x 2 1

0 2− x 1

0 0 3− x


 = (2− x)2(3− x).

Then the matrix has eigenvalue 2 with multiplicity 2 and eigenvalue 3 with multiplicity 1.

Then try (2I − A)(3I − A):

(2I − A)(3I − A) =


0 −2 −1

0 0 −1

0 0 −1



1 −2 −1

0 1 −1

0 0 0

 =


0 −2 2

0 0 0

0 0 0

 ̸= 0.

Therefore the minimal polynomial is not (2− x)(3− x). So the minimal polynomial has to be

the characteristic polynomial. Then the Jordan canonical form of the matrix A is
2 1 0

0 2 0

0 0 3

.
To find the transformation matrix P , we need to find a basis consisting of eigenvectors of

eigenvalue 2 and 3 and a generalized eigenvector of eigenvalue 2.

Eigenvalue 2: Solve (A− 2I)X = 0: 
0 2 1

0 0 1

0 0 1

X = 0.

The solution is X ∈ Span



1

0

0


. So the first basis vector can be v1 =


1

0

0

.
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Generalized eigenvector of eigenvalue 2: Solve (A− 2I)X = v1:
0 2 1

0 0 1

0 0 1

X =


1

0

0

.

The solution is X ∈ Span



0

1
2

0


. We can choose the second basis vector to be v2 =


0

1
2

0

.

Eigenvalue 3: Solve (A− 3I)X = 0:
−1 2 1

0 −1 1

0 0 0

X = 0.

The solution is X ∈ Span



3

1

1


. We can choose the third basis vector to be v3 =


3

1

1

.

Therefore B = {v1, v2, v3} is a Jordan basis. The transformation matrix is

P =


1 0 3

0 1
2

1

0 0 1

.
We may jusitify our answer by computing

P−1AP =


2 1 0

0 2 0

0 0 3

.
□
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8.4.6. The relation between minimal polynomials, characteristic polynomials and Jordan forms.

• The characteristic polynomial can be factorized into (x−λ1)
d1 . . . (x−λm)

dm . This is directly

related to the decomposition V = V G
λ1

⊕ . . .⊕ V G
λm

where dimV G
λi

= di for i = 1, . . . ,m. Here

we know that d1 + d2 + . . .+ dm = dimV .

• The minimal polynomial can be factorized into (x− λ1)
r1 . . . (x− λm)

rm . Here ri ≤ di. Each

(x− λi)
ri is related to a Jordan block Jλi

of the size ri.

• The Jordan block we read from the minimal polynomial is the biggest Jordan block of the

given eigenvalue. We might have many other Jordan blocks of the given eigenvalue with

smaller sizes.

• We we only know the characteristic polynomial and the minimal polynomial, the Jordan

canonical form of the linear operator is partially determined. Roughly speaking, how many

Jordan canonical form we can get depends on how many more possibilities we can find after

fixing the biggest Jordan block of a given eigenvalue and the total dimension of the generalized

eigenspace of the given eigenvalue.

Example 8.4.26. A is a 3× 3 matrix, with the characteristic polynomial (x− 2)3 and the minimal

polynomial (x− 2). Since the biggest Jordan block has size 1, the matrix has to be similar to
2 0 0

0 2 0

0 0 2


Example 8.4.27. A is a 3 × 3 matrix, with the characteristic polynomial (x − 2)3 and the min-

imal polynomial (x − 2)2. Since the biggest Jordan block has size 2, then the only possible

combination is a block of size 1 and a block of size 2. Then the matrix has to be similar to
2 1 0

0 2 0

0 0 2

.



16

Example 8.4.28. A is a 3× 3 matrix, with the characteristic polynomial (x− 2)3 and the minimal

polynomial (x− 2)3. Since the biggest Jordan block has size 3, the matrix has to be similar to
2 1 0

0 2 1

0 0 2

.

Example 8.4.29. A is a 4× 4 matrix, with the characteristic polynomial (x− 2)4 and the minimal

polynomial (x− 2)3. The biggest Jordan block has size 3. Then the only possible combination

is a block of size 3 and a block of size 1. Then the matrix has to be similar to


2 1 0 0

0 2 1 0

0 0 2 0

0 0 0 2


.

Example 8.4.30. A is a 4× 4 matrix, with the characteristic polynomial (x− 2)4 and the minimal

polynomial (x− 2)2. The biggest Jordan block has size 2. Then the possible combinations are

twos blocks of size 2, or a block of size 2 with two blocks of size 1. Then the matrix has to be

similar to


2 1 0 0

0 2 0 0

0 0 2 1

0 0 0 2


or


2 1 0 0

0 2 0 0

0 0 2 0

0 0 0 2


.



17

8.5. Exercises.

Exercise 8.1. Let V be a finite-dimensional complex vector space of dimension n, and T ∈

L(V ). Please show that Nul(T n) and im(T n) are all invariant under T .

Exercise 8.2. Suppose T ∈ L(V ) and m is a non-negative integer. Show that Nul(Tm) =

Nul(Tm+1) if and only if im(Tm) = im(Tm+1).

Exercise 8.3. Let T ∈ L(C2) be defined in the following ways. Find all the generalized

eigenspaces.

(1) T

a
b

 =

−b

a

.

(2) T

a
b

 =

b
0

.

Exercise 8.4. Prove or give a counterexample: If V is a complex vector space and dimV = n

and T ∈ L(V ), then T n is diagonalizable.

Exercise 8.5. Suppose V is a complex vector space and T ∈ L(V ). Prove that V has a basis

consisting of eigenvectors of T if and only if every generalized eigenvector of T is an eigenvector

of T .

The homework is due on May 10.
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Exercise 8.6. Suppose S, T ∈ L(V ) and ST is nilpotent. Prove that TS is nilpotent.

Exercise 8.7. Prove or give a counterexample: The set of nilpotent operators on V is a

subspace of L(V ).

Exercise 8.8. Give an example of an operator T on a finite-dimensional real vector space such

that 0 is the only eigenvalue of T but T is not nilpotent.

Exercise 8.9. Suppose T ∈ L(C4) is such that the eigenvalues of T are 3, 5, 8. Prove that

(T − 3I)2(T − 5I)2(T − 8I)2 = 0.

Exercise 8.10.

(1) Give an example of an operator on C4 whose characteristic polynomial equals (x−1)(x−3)3

and whose minimal polynomial equals (x− 1)(x− 3)2.

(2) Give an example of an operator on C4 whose characteristic and minimal polynomials both

equal x(x− 1)2(x− 3).

Exercise 8.11. Suppose V is a complex vector space and T ∈ L(V ). Prove that V has a basis

consisting of eigenvectors of T if and only if the minimal polynomial of T has no repeated zeros.

Exercise 8.12. Let N =


0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0


. Please find the characteristic polynomial and minimal

polynomial of N .

Exercise 8.13. Let A =


1 2 3

0 1 2

0 0 2

. Please find its Jordan canonical form C and find the

transformation matrix P such that C = P−1AP .

The homework is due on May 17.


