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Final exam solutions

1. Compute the mean, Gaussian, and principal curvatures of the surface z = x2 - y2 at (0,0,0).

Proof. Consider the parametrized surface
x(u,v) = (u, v, u> —v?).

‘We obtain the first derivatives

_9x _ 0 2.2

XM(M, V) - 8” au(u7 V’u v )
(0 0 d,, 2
- ( D L L >)
=(1,0,2u)

and
XV(”? V) = % = i(u’ v, M2 - Vz)
vy 0v

(0 0 0, 4 o
= ( () 5 (0) - v ))
=(0,1,-2v).

So the coefficients of the first fundamental form are
E(Lﬁ V) = Xu(u’ V) : Xu(u’ V)
=(1,0,2u) - (1,0, 2u)
= (I)(1) + (0)(0) + (2u)(2u)

=1 +4u?
as well as
F(u,v) =x,(u,v) - x,(u, v)
=(1,0,2u) - (0,1,2v)
= (1)(0) + (0)(1) + (2u)(—2v)
= —4uy
and

G(u,v) =x,(u, v) - X, (1, v)
=(0,1,2v) - (0,1,2v)
= (0)(0) + (1)(1) + (=2v)(-2v)
=1+47%

To find the coefficients of the second fundamental form, first we must compute the normal vector. The cross product of x,, (i, v)
and x,,(u, v) is

i j kK
X, (u,v) X x,(u,v) =1 0 2u
0 1 -2
_0 2u|, |1 2u.+10k
1 =2""o —2v? o 1

= ((0)(=2v) = ()(2u))i = ((1)(=2v) = (0)2u))j + ((1)(1) = (0)(0)k
= (—2w)i+ 2v)j + (Dk
=(-2u,2v,1)

and its associated magnitude

I% (1, ) X X (1, V)] = V(=2u)2 + (2v)2 + (1)
= Vdu? + H2 + 1
= Va2 +12) + 1,



and so the normal vector is

X, (1, v) X X, (14, v)
X (14, v) X X, (14, V)|
(=2u,2v, 1)

N(u,v) =

Meanwhile, we obtain the second derivatives

0x,,
ou

0 0 0
= (a(l)» a(o), a(zu))

= (05 05 2)>

X (U, V) =

]
= —(1,0,2
35 (12 0. 21)

as well as
0X,,
v

0 0 0
= (6—(1), 5(0), 5(211))

1%

Xy (1, v) = = %(1, 0,2u)

=(0,0,0)

and

0x, 0
XVV(”? V) = W = E(O’ 1’ —2V)

0 0 0
=1—(0), —(1), — (=2
(av< L2, 2 v))
=(0,0,-2).
So the coefficients of the second fundamental form are

e(u,v) = N(u, v) - Xy (11, v)

—2u,2v, 1
2D 002

_ (Z2u)(0) + 2v)(0) + (1)(2)

2

VAZ v + 1

as well as

f(us V) = N(I/t, V) . Xuv(us V)

—2u,2v, 1
22D 0.0

_ (Z20)(0) + (=2v)(0) + (1)(0)

=0
and

g(u’ V) = N(u’ V) : qu(u9 V)

_ (—2u,2v, 1) £(0,0.-2)

_ (F2u)(0) + (2v)(0) + (1)(=2)

2




Using the formula on page 155 of do Carmo, the Gaussian curvature is

eg — f?
EG - F?
2 _ 2 —0\2
_ \/4(u2+v2)+l )( \/4(u2+v2)+] ) (0)
T (1 +4u)(1 +42) — (duv)?

4
_ Au2+v2)+1

(1 + 432 +v2) + 16u2v2) — 16u2v?
o 4
(14 + )2

K(u,v) =

Using the formula on page 156 of do Carmo, the mean curvature is

1eG—2fF +gE

H(u,v)

2 EG-F?
2 2y _ o 5
HW)(“‘W) 2(0)(4uv) + ( m)(l+4u)

[\

(1 +4u®)(1 + 4v2) — (4uv)?
2 )
T2 (1 + 4@ +v2) + 16u2v?) — 161212
3 4(v* — u?)
(1+4? +v2)3

We will now compute the principal curvatures ki, ko. To do this, we will solve for ky, ky from the formulas H = k‘;zkz and

K = kiky. From H = ]“2;@, we get k1 = 2H — kp, and so we get

K =kik;
= (2H - kp)k,
=2Hk, — k3,

which is algebraically equivalent to the quadratic equation
k3 —2Hky + K = 0.

Employing the quadratic formula, we get

. —(=2H) = /(-2H)? — 4(1)(K)

2(1)
2H VI -K)
2
= H+ VH? - K.
This also means
ki =2H — ky
=2H - (H + VH2 - K)
=H=T VH? - K.

As we conventionally require k; > ko, we will choose k; = H + VH? - K and k; = H — VH? — K. Substituting our
expressions for H, K, our principal curvatures are

ki(u,v) = Hu,v) + VH(u,v)? — K(u, v)

(1+4(? +12))3 (1 + 432 +v2))3 (1 + 4(u? + v2))?
4(v? - u?) . \/ 16(v2 — u2)? 16

T aw o)l N4 2P 1+ 462 12




and

ko(u,v) = H(u,v) — VH(u,v)> — K(u,v)

(1+4(u? +v2))3 (1 + 432 +v2))3 (1 + 42 +12))2
4(v2 - uz) 16(v2 — u?)? 16
(1 +4@? +v2)> (1 +4(u> +v2))*

T (142 )t

(Note: The general formulas for principal curvatures kj(u, v), ka(u, v) we just derived here are completely optional; they are
here but you do not have to find the general formulas in the first place in order to find k;(0, 0), k2(0, 0).) At the origin (0, 0, 0),
our original parametrization X(u, v) = (u, v, u> — v*) implies # = 0 and v = 0. So, at the origin, the Gaussian curvature is

4
K©0,0)=-———-—u—
©.0 (1 +4(0% + 02))2
=—4
and the mean curvature is
4 2 _ N2
Hoo) = 400
(1 +4(0% + 02))2
=0,
and so
k1(0,0) = H(0,0) + VH(0,0)2 — K(0,0)

=0+ V02— (-4)

=0+2

=2
and

k2(0,0) = H(0,0) — VH(0,0)? - K(0,0)

=0- 02 —(-4)

=0-2

= -2
are our principal curvatures at the origin. O

. State and prove the Meusnier Theorem.

Proof. Statement of Meusnier Theorem: All curves lying on a surface S and having at a given point p € S the same tangent
line have at this point the same normal curvatures (c.f. Proposition 2 of Section 3.2; c.f. do Carmo, page 142).

Proof of Meusnier Theorem: Following page 142 of do Carmo, we will instead prove the more general claim: The value of the
second fundamenatal form II,, for a unit vector v € T),(S) is equal to the normal curvature of a regular curve passing through
p and tangent to v, i.e. II,(@(0)) = k,(p). Once we do this, Meusnier’s Theorem will follow. To prove our claim, let C be a
regular curve in the surface S parametrized by a(s), which satisfies @(0) = p, where s is the arc length of C. Let N(s) be the
restriction of the normal vector N defined on S to the curve a(s). Then we have N(s) - a’(s) = 0, from which we can take the
derivatives in s of both sides to obtain
N'(s)-a’(s) + N(s)-a”(s) =0,
or
N(s)-a”(s) = =N'(s) - a'(s).

Therefore, using this and a Frenet formula, we can conclude

1I,(a’(0)) = =dN,(a’(0)) - @(0)
=-N’(0)-a’(0)
= N(0)- 2" (0)
= N(0)-1'(0)
= N(0) - kn(0)
= (N - kn)(p)
= kn(p),

which proves our claim. O



3. Let S be a connected regular surface in R3 that is umbilical at every point. Prove that the Gaussian curvature of S is constant.

Proof. We recall that a point p € S is said to be umbilical if the principal curvatures ky, k, of S satisfy k; = k; at p. To prove
that the Gaussian curvature of S is constant, it suffices to prove that S is contained in the sphere S of radius 7 > 0 or in a plane
such as R?, for they have constant Gaussian curvatures Kz> = 0 and Kg2 = rlz, respectively. This reduces our goal to proving
Proposition 4 of Section 3-2 in do Carmo (c.f. pages 147-148); we will now follow the proof. Let x(u, v) be a parametrization
such that the coordinate neighborhood V' C S containing p is connected. Since each ¢ € V is an umbilical point, for any vector
w € T,(S), which we can write

w(u, v) = ay(u, v)x,(u, v) + axx, (u, v)

as a local coordinate expression in V, we have
dN(w) = A(q)w,

where A = A(q) is a real differentiable function in V. We first show that A(g) is constant in V. Using local coordinates in V,
our above equation gives us

N, (u,v)a; + Ny(u,v)ay = dN(w)
= A(qw
= Uq)xu(u, v)ay + Xy (u, v)az)
= Uq)xu(u,v)ar + Aq)x,(u, v)a.

Hence, since w is arbitrary, we can equate the terms (or, rather, equate the coefficients) to conclude that our partial derivatives
of N are

Nu(u, v) = Ag)x, (u,v),
Ny(u, v) = A(q)xy (u, ).

If we perform partial differentiations on both sides of the first equation N, (u, v) = A(g)x, (u, v) with respect to v and both sides
of the second equation N,,(u, v) = A(q)x,(u, v) with respect to u, then we get

Nuv(u, v) = Ap(@)Xu(u, v) + Aq)Xur (4, V),
Nvu(u’ v) = Ay (Q)XV(“’ V) + /]-(q)xvu(u, V),
from which we conclude
/lu (Q)Xv(u’ V) - /lv(q)xu (u’ V) = (Nuv(u’ V) - /l(Q)Xuv(ua V)) - (Nvu (uv V) - /I(Q)Xvu(u’ V))

= uv(u7 V) - Nvu(ua V) + A(Q)(Xvu(u, V) = Xy (U, V))
=0.

In fact, since x,,, X,, are linearly independent vectors, we conclude that the coefficients 4,,, 4, must be zero, i.e. 4, = 0 and
A, = 0, for all ¢ € V. The zero partial derivatives of A therefore suggest that A is constant on V, since V is connected.
Now, we must deal with two cases of our constant A separately. For the first case, if 1 = 0, then N, = Ax,, = 0x,, = 0 and
N, = Ax, = 0x, = 0, and so N must be constant on V, say N = Ny for some constant vector on V. This means
0
6_(X(u’ v) - No) = xu(u,v) - No
u
=0-Ny
=0

and

i(X(u, v) - Np) =X, (1, v) - Ny
v

=0-Ny

=0.

Hence, x(i, v) - Ny is constant, and so all the points x(i, v) on V are contained in a plane. For the second case, if 1 # 0, then %
is well-defined, which means we can have

0 1 1
5 x(u,v) — EN(M’ v)| =x,(u,v) — zNu(u, V)

1
=0--0

A
=0



% x(u, v) — %N(u, v)| = x,(u,v) - %Nv(u, V)

1
=0--0
A

=0.

These two statements imply that the point

y(u,v) ;= x(u, v) - %N(u, V)

is constant in (i, v) € V, i.e. fixed on V. Hence,

X, v) — ¥ v)] = ‘%N(u, V)

!
1]

1
1]

1
||’

IN(u,v)]

(1)

and so all points of V are contained in a sphere of center y(u, v) and radius ﬁ O

4. Let a(s) be a unit speed curve in R%. Prove that the torsion 7(s) of the curve is zero if and only if the curve is planar.

5.

Proof. We will prove the forward direction: If the torsion 7(s) of the curve a(s) is zero (i.e. T = 0), then the curve is planar.
Since we assumed T = 0, we must have

b'(s) = t(s)n(s)
= On(s)
=0,

and so b(s) is constant, i.e. b(s) = by for some fixed vector by. Therefore,

L a(s) o) = '(5) by
S

=0- by
=0,

from which we conclude that a(s) - by is constant, and so a(s) is contained in a plane normal to by.

Now, we will prove the backward direction: If our curve a(s) is planar, then 7 = 0. Since a(s) is planar for all s € I (i.e. a([)
is contained in a plane), it follows that the plane containing our curve agrees with the osculating plane. And any curve in an
osculating plane must have zero torsion; in particular, our curve «a(s) satisfies T = 0.

(This proof is taken from Section 1-5 of do Carmo; c.f. page 18.) O

a. State the [soperimetric Inequality.

Proof. Let C be a simple closed plane curve with length /, and let A be the area of the region bounded by C. Then
P -47A >0,

and equality holds if and only if C is a circle. (This is Theorem 1 of Section 1-7 of do Carmo; c.f. page 33). O

. Is there a simple closed curve C in the plane with length equal to 5 feet bounding an area of 2 square feet?

Proof. Since C is a simply closed curve of some length / and bounding some area A, we must have the Isoperimetric
Inequality [?> — 47A > 0 (c.f. do Carmo, page 33). However, if / = 5 and A = 2, then

12— 4nA = (5)* - 4n(2)
=25-8n
< 0.

So the Isoperimetric Inequality is not satisfied, which means there does not exist such a simple closed curve with / = 5,
A=2. O



c. In part b, what is the maximum area that C can bound? What is this curve?

Proof. We can algebraically rearrange the inequality /> — 47A > 0 to find an upper bound of the area:

12
A< —,
4r
from which it is easier to see that the maximum area is
12
Amax = —.
max 471_

Since we were given that our curve C has length / = 5, the maximum area A that C can bound is

12
4
_ (5
T 4n
25
= E

Amax =

Furthermore, the statement of the Isoperimetric Inequality from part a asserts that C must be a circle. O

6. Let S be a compact regular surface in R3. Prove that its mean curvature cannot vanish everywhere. (Since S with vanishing

7.

mean curvature is really another way of saying that S is minimal, this question is the same as Exercise 3-5.12 of do Carmo,
and the solution to that exercise is in Homework 7.)

Proof. Suppose to the contrary that there exists some surface S ¢ R* whose curvature vanishes everywhere, i.e. H = 0. So
we have

0=H
_k1+k2
2

which implies that k1, k» have opposite signs. Consequently, we have

det(dN,) = K
=kiky
<0

for any arbitrary point p € S, which implies that S does not have any elliptic points. But this contradicts Exercise 3-3.16,
which asserts that S has an elliptic point since we also assumed that S is compact. Therefore, no compact minimal surfaces
exist in R3.

It remains to prove Exercise 3-3.16 (whose solution is also found in Homework 7). Let p € R? be an elliptic point, which
means det(dN,) > 0 (c.f. do Carmo, page 146), where we recall that dN,, is the differential of the Gauss map N,. Now, let
S be a compact surface. Then there exists a sphere of a sufficiently large radius R > O such that S lies inside of the sphere,
except at only one point—call it p—that touches the sphere. (Note: it would be helpful to draw a picture of this.) Let Kg
and K denote respectively the Gaussian curvatures of the surface S ¢ R?® and of the sphere S> ¢ R? at the point p. Then
K¢ = % > 0 for some large enough R > 0, where R is the radius of the sphere S2. Also, Ks > K2 at the point p, since S is
contained inside S2. Therefore,

det(dN,,) = K
> Kq»

1

R2

> 0,

which means p is an elliptic point. O

a. State the fundamental theorem for the local theory of curves.

Proof. Given differentiable functions k(s) > 0 and 7(s) for all s € I, where I is an interval in R, there exists a regular
parametrized curve @ : I — R> such that s is the arc length, k(s) is the curvature, and 7(s) is the torsion of a. Moreover,
any other curve & satisfying the same conditions differs from « by a rigid motion; that is, there exists an orthogonal
linear map p of R3, with positive determinant, and a vector ¢ such that @ = p o @ + ¢. (This is in Section 1-5 of do
Carmo; c.f. page 19.) O



b. Prove the uniqueness part (i.e. rigidity theorem) of part a.

Proof. (The following proof is taken from Section 1-5 of do Carmo, c.f. pages 20-21, although for clarity I added a
couple additional steps to the calculations.) Assume that two curves @ = «a(s) and @ = @(s) satisfy the conditions
k(s) = k(s) and 7(s) = 7(s) for all s € I. Let 1, ng, by and %y, 7o, b be the Frenet trihedrons at s € I of o and &,
respectively. Then there is a rigid motion which sends @(so) into a(so) and 7, i, by into 1o, ng, by, respectively. Thus,
after performing this rigid motion on @, we have that a(sg) = a(so) and that the Frenet trihedrons #(s), n(s), b(s) and
7(s), ii(s), b(s) of a and @, respectively, satisfy the Frenet equations

dr dr

— =k — =kn
ds " ds "
dn dn -
a——kt—‘rb g——kt—‘rn
db dE_ _
el 5 =

with £(sg) = #(s0), n(so) = 7i(s0), b(sg) = b(sg). We now observe, by using the Frenet equations, that

1d

Egﬁh—ﬂ2+M—ﬁF+w—EF%=O—D{ﬂ—?)+w—5y(ﬁ—53+M—ﬁyO{—W)

=(t-0)-(kn—ki)+ (b ->b) - (tn—1n")+ (n—1) - (=kt — tb) — (=ki — Tb))
=k(t-7)-n-a)+t(b->0)-n-a)—k(n-n)-(t -1 —t(n—7n) - (b-b)
=k(t—-f)-(n-n)—k(n—-n)-t -1 +7(b->b)-(n—n)—1(n—n)-(b-b)
=0

for all s € 1. Thus, the expression |t — 7|* + |n — 71> + |b — b|? is constant in s, and, since it is zero at s = 59, we conclude
that the expression must be identically zero, i.e.

lt=7*+n—al>+|b-b]*>=0,

from which we get |t — 7| = [n — 71| = |b — b| = 0, and so it follows that (s) = #(s), n(s) = 7(s), b(s) = b(s) for all s € 1.
Since we also have

we obtain

< (a(s) ~ () = #'(5) - a’(s)
A

=1(s) — t(s)
=0.

Thus, @(s) — a(s) is constant, i.e. &(s) — a(s) = a, or
a(s) = a(s) +a,
where a is a constant vector in R>. Since a(sy) = @(so), we must have a = 0. Hence,
a(s) = a(s)
forall s € 1. O

8. Show that the mean curvature H at p € S of a regular surface in R? is given by
1 T
H=— / kn(0) d6,
T Jo

where k,(0) is the normal curvature at p along a direction making an angle 6 with a fixed direction. (This is Exercise 3-2.5 of
do Carmo, and the solution to that exercise is in Homework 6.)

Proof. The normal curvature k,, is given by Euler’s formula (c.f. do Carmo, page 145)
kn(0) = ky cos2 @ + ko sin® 0.

We also recall that the mean curvature is given by (c.f. do Carmo, page 146)

_k1+k2

H
2



So we have

T T

/ kn(6) do =/ ki cos® @ + ko sin® 0 dO
0 0

_ /” Ky 1 + cos(26) N k21 — cos(26) J
0

= 0
2 2

k] b/d kz s
= — 1 + cos(20) do + — 1 — cos(26) d6
2 0 2 0

= ﬁ (9 + %sin(ZG))

V.4 k2 1 ) V4
+ — |6 — = sin(20
> 2 ( > sin( ))

= % ((n + %sin(Zn)) - (O + %Sin(Z(O)))) + % ((ﬂ' - %Sill(zﬂ)) - (0 - %sin(Z(O))))

k k
- 717” 72”
k1+k2

T—

2

0

=nH,
which implies algebraically
1 T
H=-— / kn(6) do
T Jo

as desired.



