Final exam solutions

1. Compute the mean, Gaussian, and principal curvatures of the surface $z=x^{2}-y^{2}$ at $(0,0,0)$.

Proof. Consider the parametrized surface

$$
\mathbf{x}(u, v)=\left(u, v, u^{2}-v^{2}\right)
$$

We obtain the first derivatives

$$
\begin{aligned}
\mathbf{x}_{u}(u, v) & =\frac{\partial \mathbf{x}}{\partial u}=\frac{\partial}{\partial u}\left(u, v, u^{2}-v^{2}\right) \\
& =\left(\frac{\partial}{\partial u}(u), \frac{\partial}{\partial u}(v), \frac{\partial}{\partial u}\left(u^{2}-v^{2}\right)\right) \\
& =(1,0,2 u)
\end{aligned}
$$

and

$$
\begin{aligned}
\mathbf{x}_{v}(u, v) & =\frac{\partial \mathbf{x}}{\partial v}=\frac{\partial}{\partial v}\left(u, v, u^{2}-v^{2}\right) \\
& =\left(\frac{\partial}{\partial v}(u), \frac{\partial}{\partial v}(v), \frac{\partial}{\partial v}\left(u^{2}-v^{2}\right)\right) \\
& =(0,1,-2 v) .
\end{aligned}
$$

So the coefficients of the first fundamental form are

$$
\begin{aligned}
E(u, v) & =\mathbf{x}_{u}(u, v) \cdot \mathbf{x}_{u}(u, v) \\
& =(1,0,2 u) \cdot(1,0,2 u) \\
& =(1)(1)+(0)(0)+(2 u)(2 u) \\
& =1+4 u^{2}
\end{aligned}
$$

as well as

$$
\begin{aligned}
F(u, v) & =\mathbf{x}_{u}(u, v) \cdot \mathbf{x}_{v}(u, v) \\
& =(1,0,2 u) \cdot(0,1,2 v) \\
& =(1)(0)+(0)(1)+(2 u)(-2 v) \\
& =-4 u v
\end{aligned}
$$

and

$$
\begin{aligned}
G(u, v) & =\mathbf{x}_{v}(u, v) \cdot \mathbf{x}_{v}(u, v) \\
& =(0,1,2 v) \cdot(0,1,2 v) \\
& =(0)(0)+(1)(1)+(-2 v)(-2 v) \\
& =1+4 v^{2} .
\end{aligned}
$$

To find the coefficients of the second fundamental form, first we must compute the normal vector. The cross product of $\mathbf{x}_{u}(u, v)$ and $\mathbf{x}_{v}(u, v)$ is

$$
\begin{aligned}
\mathbf{x}_{u}(u, v) \times \mathbf{x}_{v}(u, v) & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 0 & 2 u \\
0 & 1 & -2 v
\end{array}\right| \\
& =\left|\begin{array}{cc}
0 & 2 u \\
1 & -2 v
\end{array}\right| \mathbf{i}-\left|\begin{array}{cc}
1 & 2 u \\
0 & -2 v
\end{array}\right| \mathbf{j}+\left|\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right| \mathbf{k} \\
& =((0)(-2 v)-(1)(2 u)) \mathbf{i}-((1)(-2 v)-(0)(2 u)) \mathbf{j}+((1)(1)-(0)(0)) \mathbf{k} \\
& =(-2 u) \mathbf{i}+(2 v) \mathbf{j}+(1) \mathbf{k} \\
& =(-2 u, 2 v, 1)
\end{aligned}
$$

and its associated magnitude

$$
\begin{aligned}
\left|\mathbf{x}_{u}(u, v) \times \mathbf{x}_{v}(u, v)\right| & =\sqrt{(-2 u)^{2}+(2 v)^{2}+(1)^{2}} \\
& =\sqrt{4 u^{2}+4 v^{2}+1} \\
& =\sqrt{4\left(u^{2}+v^{2}\right)+1}
\end{aligned}
$$

and so the normal vector is

$$
\begin{aligned}
N(u, v) & =\frac{\mathbf{x}_{u}(u, v) \times \mathbf{x}_{v}(u, v)}{\left|\mathbf{x}_{u}(u, v) \times \mathbf{x}_{v}(u, v)\right|} \\
& =\frac{(-2 u, 2 v, 1)}{\sqrt{4\left(u^{2}+v^{2}\right)+1}} .
\end{aligned}
$$

Meanwhile, we obtain the second derivatives

$$
\begin{aligned}
\mathbf{x}_{u u}(u, v) & =\frac{\partial \mathbf{x}_{u}}{\partial u}=\frac{\partial}{\partial u}(1,0,2 u) \\
& =\left(\frac{\partial}{\partial u}(1), \frac{\partial}{\partial u}(0), \frac{\partial}{\partial u}(2 u)\right) \\
& =(0,0,2),
\end{aligned}
$$

as well as

$$
\begin{aligned}
\mathbf{x}_{u v}(u, v) & =\frac{\partial \mathbf{x}_{u}}{\partial v}=\frac{\partial}{\partial v}(1,0,2 u) \\
& =\left(\frac{\partial}{\partial v}(1), \frac{\partial}{\partial v}(0), \frac{\partial}{\partial v}(2 u)\right) \\
& =(0,0,0)
\end{aligned}
$$

and

$$
\begin{aligned}
\mathbf{x}_{v v}(u, v) & =\frac{\partial \mathbf{x}_{v}}{\partial v}=\frac{\partial}{\partial v}(0,1,-2 v) \\
& =\left(\frac{\partial}{\partial v}(0), \frac{\partial}{\partial v}(1), \frac{\partial}{\partial v}(-2 v)\right) \\
& =(0,0,-2) .
\end{aligned}
$$

So the coefficients of the second fundamental form are

$$
\begin{aligned}
e(u, v) & =N(u, v) \cdot \mathbf{x}_{u u}(u, v) \\
& =\frac{(-2 u, 2 v, 1)}{\sqrt{4\left(u^{2}+v^{2}\right)+1}} \cdot(0,0,2) \\
& =\frac{(-2 u)(0)+(2 v)(0)+(1)(2)}{\sqrt{4\left(u^{2}+v^{2}\right)+1}} \\
& =\frac{2}{\sqrt{4\left(u^{2}+v^{2}\right)+1}},
\end{aligned}
$$

as well as

$$
\begin{aligned}
f(u, v) & =N(u, v) \cdot \mathbf{x}_{u v}(u, v) \\
& =\frac{(-2 u, 2 v, 1)}{\sqrt{4\left(u^{2}+v^{2}\right)+1}} \cdot(0,0,0) \\
& =\frac{(-2 u)(0)+(-2 v)(0)+(1)(0)}{\sqrt{4\left(u^{2}+v^{2}\right)+1}} \\
& =0
\end{aligned}
$$

and

$$
\begin{aligned}
g(u, v) & =N(u, v) \cdot \mathbf{x}_{u u}(u, v) \\
& =\frac{(-2 u, 2 v, 1)}{\sqrt{4\left(u^{2}+v^{2}\right)+1}} \cdot(0,0,-2) \\
& =\frac{(-2 u)(0)+(2 v)(0)+(1)(-2)}{\sqrt{4\left(u^{2}+v^{2}\right)+1}} \\
& =-\frac{2}{\sqrt{4\left(u^{2}+v^{2}\right)+1}} .
\end{aligned}
$$

Using the formula on page 155 of do Carmo, the Gaussian curvature is

$$
\begin{aligned}
K(u, v) & =\frac{e g-f^{2}}{E G-F^{2}} \\
& =\frac{\left(\frac{2}{\sqrt{4\left(u^{2}+v^{2}\right)+1}}\right)\left(-\frac{2}{\sqrt{4\left(u^{2}+v^{2}\right)+1}}\right)-(0)^{2}}{\left(1+4 u^{2}\right)\left(1+4 v^{2}\right)-(4 u v)^{2}} \\
& =-\frac{\frac{4}{4\left(u^{2}+v^{2}\right)+1}}{\left(1+4\left(u^{2}+v^{2}\right)+16 u^{2} v^{2}\right)-16 u^{2} v^{2}} \\
& =-\frac{4}{\left(1+4\left(u^{2}+v^{2}\right)\right)^{2}} .
\end{aligned}
$$

Using the formula on page 156 of do Carmo, the mean curvature is

$$
\begin{aligned}
H(u, v) & =\frac{1}{2} \frac{e G-2 f F+g E}{E G-F^{2}} \\
& =\frac{1}{2} \frac{\left(\frac{2}{\sqrt{4\left(u^{2}+v^{2}\right)+1}}\right)\left(1+4 v^{2}\right)-2(0)(4 u v)+\left(-\frac{2}{\sqrt{4\left(u^{2}+v^{2}\right)+1}}\right)\left(1+4 u^{2}\right)}{\left(1+4 u^{2}\right)\left(1+4 v^{2}\right)-(4 u v)^{2}} \\
& =\frac{1}{2} \frac{\frac{2}{\sqrt{4\left(u^{2}+v^{2}\right)+1}}\left(4\left(v^{2}-u^{2}\right)\right)}{\left(1+4\left(u^{2}+v^{2}\right)+16 u^{2} v^{2}\right)-16 u^{2} v^{2}} \\
& =\frac{4\left(v^{2}-u^{2}\right)}{\left(1+4\left(u^{2}+v^{2}\right)\right)^{\frac{3}{2}}} .
\end{aligned}
$$

We will now compute the principal curvatures k_{1}, k_{2}. To do this, we will solve for k_{1}, k_{2} from the formulas $H=\frac{k_{1}+k_{2}}{2}$ and $K=k_{1} k_{2}$. From $H=\frac{k_{1}+k_{2}}{2}$, we get $k_{1}=2 H-k_{2}$, and so we get

$$
\begin{aligned}
K & =k_{1} k_{2} \\
& =\left(2 H-k_{2}\right) k_{2} \\
& =2 H k_{2}-k_{2}^{2},
\end{aligned}
$$

which is algebraically equivalent to the quadratic equation

$$
k_{2}^{2}-2 H k_{2}+K=0 .
$$

Employing the quadratic formula, we get

$$
\begin{aligned}
k_{2} & =\frac{-(-2 H) \pm \sqrt{(-2 H)^{2}-4(1)(K)}}{2(1)} \\
& =\frac{2 H \pm \sqrt{4\left(H^{2}-K\right)}}{2} \\
& =H \pm \sqrt{H^{2}-K} .
\end{aligned}
$$

This also means

$$
\begin{aligned}
k_{1} & =2 H-k_{2} \\
& =2 H-\left(H \pm \sqrt{H^{2}-K}\right) \\
& =H \mp \sqrt{H^{2}-K}
\end{aligned}
$$

As we conventionally require $k_{1}>k_{2}$, we will choose $k_{1}=H+\sqrt{H^{2}-K}$ and $k_{2}=H-\sqrt{H^{2}-K}$. Substituting our expressions for H, K, our principal curvatures are

$$
\begin{aligned}
k_{1}(u, v) & =H(u, v)+\sqrt{H(u, v)^{2}-K(u, v)} \\
& =\left(\frac{4\left(v^{2}-u^{2}\right)}{\left(1+4\left(u^{2}+v^{2}\right)\right)^{\frac{3}{2}}}\right)+\sqrt{\left(\frac{4\left(v^{2}-u^{2}\right)}{\left(1+4\left(u^{2}+v^{2}\right)\right)^{\frac{3}{2}}}\right)^{2}-\left(-\frac{4}{\left(1+4\left(u^{2}+v^{2}\right)\right)^{2}}\right)^{2}} \\
& =\frac{4\left(v^{2}-u^{2}\right)}{\left(1+4\left(u^{2}+v^{2}\right)\right)^{\frac{3}{2}}}+\sqrt{\frac{16\left(v^{2}-u^{2}\right)^{2}}{\left(1+4\left(u^{2}+v^{2}\right)\right)^{3}}+\frac{16}{\left(1+4\left(u^{2}+v^{2}\right)\right)^{4}}}
\end{aligned}
$$

and

$$
\begin{aligned}
k_{2}(u, v) & =H(u, v)-\sqrt{H(u, v)^{2}-K(u, v)} \\
& =\left(\frac{4\left(v^{2}-u^{2}\right)}{\left(1+4\left(u^{2}+v^{2}\right)\right)^{\frac{3}{2}}}\right)-\sqrt{\left(\frac{4\left(v^{2}-u^{2}\right)}{\left(1+4\left(u^{2}+v^{2}\right)\right)^{\frac{3}{2}}}\right)^{2}-\left(-\frac{4}{\left(1+4\left(u^{2}+v^{2}\right)\right)^{2}}\right)^{2}} \\
& =\frac{4\left(v^{2}-u^{2}\right)}{\left(1+4\left(u^{2}+v^{2}\right)\right)^{\frac{3}{2}}}-\sqrt{\frac{16\left(v^{2}-u^{2}\right)^{2}}{\left(1+4\left(u^{2}+v^{2}\right)\right)^{3}}+\frac{16}{\left(1+4\left(u^{2}+v^{2}\right)\right)^{4}}} .
\end{aligned}
$$

(Note: The general formulas for principal curvatures $k_{1}(u, v), k_{2}(u, v)$ we just derived here are completely optional; they are here but you do not have to find the general formulas in the first place in order to find $k_{1}(0,0), k_{2}(0,0)$.) At the origin $(0,0,0)$, our original parametrization $\mathbf{x}(u, v)=\left(u, v, u^{2}-v^{2}\right)$ implies $u=0$ and $v=0$. So, at the origin, the Gaussian curvature is

$$
\begin{aligned}
K(0,0) & =-\frac{4}{\left(1+4\left(0^{2}+0^{2}\right)\right)^{2}} \\
& =-4
\end{aligned}
$$

and the mean curvature is

$$
\begin{aligned}
H(0,0) & =\frac{4\left(0^{2}-0^{2}\right)}{\left(1+4\left(0^{2}+0^{2}\right)\right)^{\frac{3}{2}}} \\
& =0
\end{aligned}
$$

and so

$$
\begin{aligned}
k_{1}(0,0) & =H(0,0)+\sqrt{H(0,0)^{2}-K(0,0)} \\
& =0+\sqrt{0^{2}-(-4)} \\
& =0+2 \\
& =2
\end{aligned}
$$

and

$$
\begin{aligned}
k_{2}(0,0) & =H(0,0)-\sqrt{H(0,0)^{2}-K(0,0)} \\
& =0-\sqrt{0^{2}-(-4)} \\
& =0-2 \\
& =-2
\end{aligned}
$$

are our principal curvatures at the origin.
2. State and prove the Meusnier Theorem.

Proof. Statement of Meusnier Theorem: All curves lying on a surface S and having at a given point $p \in S$ the same tangent line have at this point the same normal curvatures (c.f. Proposition 2 of Section 3.2; c.f. do Carmo, page 142).
Proof of Meusnier Theorem: Following page 142 of do Carmo, we will instead prove the more general claim: The value of the second fundamenatal form II_{p} for a unit vector $v \in T_{p}(S)$ is equal to the normal curvature of a regular curve passing through p and tangent to v, i.e. $\mathrm{II}_{p}(\alpha(0))=k_{n}(p)$. Once we do this, Meusnier's Theorem will follow. To prove our claim, let C be a regular curve in the surface S parametrized by $\alpha(s)$, which satisfies $\alpha(0)=p$, where s is the arc length of C. Let $N(s)$ be the restriction of the normal vector N defined on S to the curve $\alpha(s)$. Then we have $N(s) \cdot \alpha^{\prime}(s)=0$, from which we can take the derivatives in s of both sides to obtain

$$
N^{\prime}(s) \cdot \alpha^{\prime}(s)+N(s) \cdot \alpha^{\prime \prime}(s)=0,
$$

or

$$
N(s) \cdot \alpha^{\prime \prime}(s)=-N^{\prime}(s) \cdot \alpha^{\prime}(s)
$$

Therefore, using this and a Frenet formula, we can conclude

$$
\begin{aligned}
\mathrm{II}_{p}\left(\alpha^{\prime}(0)\right) & =-d N_{p}\left(\alpha^{\prime}(0)\right) \cdot \alpha^{\prime}(0) \\
& =-N^{\prime}(0) \cdot \alpha^{\prime}(0) \\
& =N(0) \cdot \alpha^{\prime \prime}(0) \\
& =N(0) \cdot t^{\prime}(0) \\
& =N(0) \cdot k n(0) \\
& =(N \cdot k n)(p) \\
& =k_{n}(p),
\end{aligned}
$$

which proves our claim.
3. Let S be a connected regular surface in \mathbb{R}^{3} that is umbilical at every point. Prove that the Gaussian curvature of S is constant.

Proof. We recall that a point $p \in S$ is said to be umbilical if the principal curvatures k_{1}, k_{2} of S satisfy $k_{1}=k_{2}$ at p. To prove that the Gaussian curvature of S is constant, it suffices to prove that S is contained in the sphere S^{2} of radius $r>0$ or in a plane such as \mathbb{R}^{2}, for they have constant Gaussian curvatures $K_{\mathbb{R}^{2}}=0$ and $K_{S^{2}}=\frac{1}{r^{2}}$, respectively. This reduces our goal to proving Proposition 4 of Section 3-2 in do Carmo (c.f. pages 147-148); we will now follow the proof. Let $\mathbf{x}(u, v)$ be a parametrization such that the coordinate neighborhood $V \subset S$ containing p is connected. Since each $q \in V$ is an umbilical point, for any vector $w \in T_{q}(S)$, which we can write

$$
w(u, v)=a_{1}(u, v) \mathbf{x}_{u}(u, v)+a_{2} \mathbf{x}_{v}(u, v)
$$

as a local coordinate expression in V, we have

$$
d N(w)=\lambda(q) w,
$$

where $\lambda=\lambda(q)$ is a real differentiable function in V. We first show that $\lambda(q)$ is constant in V. Using local coordinates in V, our above equation gives us

$$
\begin{aligned}
N_{u}(u, v) a_{1}+N_{v}(u, v) a_{2} & =d N(w) \\
& =\lambda(q) w \\
& =\lambda(q)\left(\mathbf{x}_{u}(u, v) a_{1}+\mathbf{x}_{u}(u, v) a_{2}\right) \\
& =\lambda(q) \mathbf{x}_{u}(u, v) a_{1}+\lambda(q) \mathbf{x}_{u}(u, v) a_{2} .
\end{aligned}
$$

Hence, since w is arbitrary, we can equate the terms (or, rather, equate the coefficients) to conclude that our partial derivatives of N are

$$
\begin{aligned}
& N_{u}(u, v)=\lambda(q) \mathbf{x}_{u}(u, v), \\
& N_{v}(u, v)=\lambda(q) \mathbf{x}_{v}(u, v)
\end{aligned}
$$

If we perform partial differentiations on both sides of the first equation $N_{u}(u, v)=\lambda(q) \mathbf{x}_{u}(u, v)$ with respect to v and both sides of the second equation $N_{v}(u, v)=\lambda(q) \mathbf{x}_{v}(u, v)$ with respect to u, then we get

$$
\begin{aligned}
& N_{u v}(u, v)=\lambda_{v}(q) \mathbf{x}_{u}(u, v)+\lambda(q) \mathbf{x}_{u v}(u, v), \\
& N_{v u}(u, v)=\lambda_{u}(q) \mathbf{x}_{v}(u, v)+\lambda(q) \mathbf{x}_{v u}(u, v),
\end{aligned}
$$

from which we conclude

$$
\begin{aligned}
\lambda_{u}(q) \mathbf{x}_{v}(u, v)-\lambda_{v}(q) \mathbf{x}_{u}(u, v) & =\left(N_{u v}(u, v)-\lambda(q) \mathbf{x}_{u v}(u, v)\right)-\left(N_{v u}(u, v)-\lambda(q) \mathbf{x}_{v u}(u, v)\right) \\
& =N_{u v}(u, v)-N_{v u}(u, v)+\lambda(q)\left(\mathbf{x}_{v u}(u, v)-\mathbf{x}_{u v}(u, v)\right) \\
& =0 .
\end{aligned}
$$

In fact, since $\mathbf{x}_{u}, \mathbf{x}_{v}$ are linearly independent vectors, we conclude that the coefficients λ_{u}, λ_{v} must be zero, i.e. $\lambda_{u}=0$ and $\lambda_{v}=0$, for all $q \in V$. The zero partial derivatives of λ therefore suggest that λ is constant on V, since V is connected. Now, we must deal with two cases of our constant λ separately. For the first case, if $\lambda \equiv 0$, then $N_{u}=\lambda \mathbf{x}_{u} \equiv 0 \mathbf{x}_{u}=0$ and $N_{v}=\lambda \mathbf{x}_{v} \equiv 0 \mathbf{x}_{v}=0$, and so N must be constant on V, say $N=N_{0}$ for some constant vector on V. This means

$$
\begin{aligned}
\frac{\partial}{\partial u}\left(\mathbf{x}(u, v) \cdot N_{0}\right) & =\mathbf{x}_{u}(u, v) \cdot N_{0} \\
& =0 \cdot N_{0} \\
& =0
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{\partial}{\partial v}\left(\mathbf{x}(u, v) \cdot N_{0}\right) & =\mathbf{x}_{v}(u, v) \cdot N_{0} \\
& =0 \cdot N_{0} \\
& =0
\end{aligned}
$$

Hence, $\mathbf{x}(u, v) \cdot N_{0}$ is constant, and so all the points $\mathbf{x}(u, v)$ on V are contained in a plane. For the second case, if $\lambda \neq 0$, then $\frac{1}{\lambda}$ is well-defined, which means we can have

$$
\begin{aligned}
\frac{\partial}{\partial u}\left(\mathbf{x}(u, v)-\frac{1}{\lambda} N(u, v)\right) & =\mathbf{x}_{u}(u, v)-\frac{1}{\lambda} N_{u}(u, v) \\
& =0-\frac{1}{\lambda} 0 \\
& =0
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{\partial}{\partial v}\left(\mathbf{x}(u, v)-\frac{1}{\lambda} N(u, v)\right) & =\mathbf{x}_{v}(u, v)-\frac{1}{\lambda} N_{v}(u, v) \\
& =0-\frac{1}{\lambda} 0 \\
& =0 .
\end{aligned}
$$

These two statements imply that the point

$$
\mathbf{y}(u, v):=\mathbf{x}(u, v)-\frac{1}{\lambda} N(u, v)
$$

is constant in $(u, v) \in V$, i.e. fixed on V. Hence,

$$
\begin{aligned}
|\mathbf{x}(u, v)-\mathbf{y}(u, v)| & =\left|\frac{1}{\lambda} N(u, v)\right| \\
& =\frac{1}{|\lambda|}|N(u, v)| \\
& =\frac{1}{|\lambda|}(1) \\
& =\frac{1}{|\lambda|},
\end{aligned}
$$

and so all points of V are contained in a sphere of center $\mathbf{y}(u, v)$ and radius $\frac{1}{|\lambda|}$.
4. Let $\alpha(s)$ be a unit speed curve in \mathbb{R}^{2}. Prove that the torsion $\tau(s)$ of the curve is zero if and only if the curve is planar.

Proof. We will prove the forward direction: If the torsion $\tau(s)$ of the curve $\alpha(s)$ is zero (i.e. $\tau \equiv 0$), then the curve is planar. Since we assumed $\tau \equiv 0$, we must have

$$
\begin{aligned}
b^{\prime}(s) & =\tau(s) n(s) \\
& =0 n(s) \\
& =0,
\end{aligned}
$$

and so $b(s)$ is constant, i.e. $b(s)=b_{0}$ for some fixed vector b_{0}. Therefore,

$$
\begin{aligned}
\frac{d}{d s}\left(\alpha(s) \cdot b_{0}\right) & =\alpha^{\prime}(s) \cdot b_{0} \\
& =0 \cdot b_{0} \\
& =0,
\end{aligned}
$$

from which we conclude that $\alpha(s) \cdot b_{0}$ is constant, and so $\alpha(s)$ is contained in a plane normal to b_{0}.
Now, we will prove the backward direction: If our curve $\alpha(s)$ is planar, then $\tau \equiv 0$. Since $\alpha(s)$ is planar for all $s \in I$ (i.e. $\alpha(I)$ is contained in a plane), it follows that the plane containing our curve agrees with the osculating plane. And any curve in an osculating plane must have zero torsion; in particular, our curve $\alpha(s)$ satisfies $\tau \equiv 0$.
(This proof is taken from Section 1-5 of do Carmo; c.f. page 18.)
5. a. State the Isoperimetric Inequality.

Proof. Let C be a simple closed plane curve with length l, and let A be the area of the region bounded by C. Then

$$
l^{2}-4 \pi A \geq 0
$$

and equality holds if and only if C is a circle. (This is Theorem 1 of Section 1-7 of do Carmo; c.f. page 33).
b. Is there a simple closed curve C in the plane with length equal to 5 feet bounding an area of 2 square feet?

Proof. Since C is a simply closed curve of some length l and bounding some area A, we must have the Isoperimetric Inequality $l^{2}-4 \pi A \geq 0$ (c.f. do Carmo, page 33). However, if $l=5$ and $A=2$, then

$$
\begin{aligned}
l^{2}-4 \pi A & =(5)^{2}-4 \pi(2) \\
& =25-8 \pi \\
& <0
\end{aligned}
$$

So the Isoperimetric Inequality is not satisfied, which means there does not exist such a simple closed curve with $l=5$, $A=2$.
c. In part b , what is the maximum area that C can bound? What is this curve?

Proof. We can algebraically rearrange the inequality $l^{2}-4 \pi A \geq 0$ to find an upper bound of the area:

$$
A \leq \frac{l^{2}}{4 \pi}
$$

from which it is easier to see that the maximum area is

$$
A_{\max }=\frac{l^{2}}{4 \pi}
$$

Since we were given that our curve C has length $l=5$, the maximum area A that C can bound is

$$
\begin{aligned}
A_{\max } & =\frac{l^{2}}{4 \pi} \\
& =\frac{(5)^{2}}{4 \pi} \\
& =\frac{25}{4 \pi} .
\end{aligned}
$$

Furthermore, the statement of the Isoperimetric Inequality from part a asserts that C must be a circle.
6. Let S be a compact regular surface in \mathbb{R}^{3}. Prove that its mean curvature cannot vanish everywhere. (Since S with vanishing mean curvature is really another way of saying that S is minimal, this question is the same as Exercise 3-5.12 of do Carmo, and the solution to that exercise is in Homework 7.)

Proof. Suppose to the contrary that there exists some surface $S \subset \mathbb{R}^{3}$ whose curvature vanishes everywhere, i.e. $H \equiv 0$. So we have

$$
\begin{aligned}
0 & =H \\
& =\frac{k_{1}+k_{2}}{2}
\end{aligned}
$$

which implies that k_{1}, k_{2} have opposite signs. Consequently, we have

$$
\begin{aligned}
\operatorname{det}\left(d N_{p}\right) & =K \\
& =k_{1} k_{2} \\
& <0
\end{aligned}
$$

for any arbitrary point $p \in S$, which implies that S does not have any elliptic points. But this contradicts Exercise 3-3.16, which asserts that S has an elliptic point since we also assumed that S is compact. Therefore, no compact minimal surfaces exist in \mathbb{R}^{3}.
It remains to prove Exercise 3-3.16 (whose solution is also found in Homework 7). Let $p \in \mathbb{R}^{3}$ be an elliptic point, which means $\operatorname{det}\left(d N_{p}\right)>0$ (c.f. do Carmo, page 146), where we recall that $d N_{p}$ is the $\operatorname{differential~of~the~Gauss~map~} N_{p}$. Now, let S be a compact surface. Then there exists a sphere of a sufficiently large radius $R>0$ such that S lies inside of the sphere, except at only one point-call it p-that touches the sphere. (Note: it would be helpful to draw a picture of this.) Let K_{S} and $K_{S^{2}}$ denote respectively the Gaussian curvatures of the surface $S \subset \mathbb{R}^{3}$ and of the sphere $S^{2} \subset \mathbb{R}^{3}$ at the point p. Then $K_{S^{2}}=\frac{1}{R^{2}}>0$ for some large enough $R>0$, where R is the radius of the sphere S^{2}. Also, $K_{S} \geq K_{S^{2}}$ at the point p, since S is contained inside S^{2}. Therefore,

$$
\begin{aligned}
\operatorname{det}\left(d N_{p}\right) & =K_{S} \\
& \geq K_{S^{2}} \\
& =\frac{1}{R^{2}} \\
& >0,
\end{aligned}
$$

which means p is an elliptic point.
7. a. State the fundamental theorem for the local theory of curves.

Proof. Given differentiable functions $k(s)>0$ and $\tau(s)$ for all $s \in I$, where I is an interval in \mathbb{R}, there exists a regular parametrized curve $\alpha: I \rightarrow \mathbb{R}^{3}$ such that s is the arc length, $k(s)$ is the curvature, and $\tau(s)$ is the torsion of α. Moreover, any other curve $\bar{\alpha}$ satisfying the same conditions differs from α by a rigid motion; that is, there exists an orthogonal linear map ρ of \mathbb{R}^{3}, with positive determinant, and a vector c such that $\bar{\alpha}=\rho \circ \alpha+c$. (This is in Section 1-5 of do Carmo; c.f. page 19.)
b. Prove the uniqueness part (i.e. rigidity theorem) of part a.

Proof. (The following proof is taken from Section 1-5 of do Carmo, c.f. pages 20-21, although for clarity I added a couple additional steps to the calculations.) Assume that two curves $\alpha=\alpha(s)$ and $\bar{\alpha}=\bar{\alpha}(s)$ satisfy the conditions $k(s)=\bar{k}(s)$ and $\tau(s)=\bar{\tau}(s)$ for all $s \in I$. Let t_{0}, n_{0}, b_{0} and $\bar{t}_{0}, \bar{n}_{0}, \bar{b}_{0}$ be the Frenet trihedrons at $s_{0} \in I$ of α and $\bar{\alpha}$, respectively. Then there is a rigid motion which sends $\bar{\alpha}\left(s_{0}\right)$ into $\alpha\left(s_{0}\right)$ and $\bar{t}_{0}, \bar{n}_{0}, \bar{b}_{0}$ into t_{0}, n_{0}, b_{0}, respectively. Thus, after performing this rigid motion on $\bar{\alpha}$, we have that $\alpha\left(s_{0}\right)=\alpha\left(s_{0}\right)$ and that the Frenet trihedrons $t(s), n(s), b(s)$ and $\bar{t}(s), \bar{n}(s), \bar{b}(s)$ of α and $\bar{\alpha}$, respectively, satisfy the Frenet equations

$$
\begin{array}{ll}
\frac{d t}{d s}=k n & \frac{d \bar{t}}{d s}=k \bar{n} \\
\frac{d n}{d s}=-k t-\tau b & \frac{d \bar{n}}{d s}=-k \bar{t}-\tau \bar{n} \\
\frac{d b}{d s}=\tau n & \frac{d \bar{b}}{d s}=\tau \bar{n},
\end{array}
$$

with $t\left(s_{0}\right)=\bar{t}\left(s_{0}\right), n\left(s_{0}\right)=\bar{n}\left(s_{0}\right), b\left(s_{0}\right)=\bar{b}\left(s_{0}\right)$. We now observe, by using the Frenet equations, that

$$
\begin{aligned}
\frac{1}{2} \frac{d}{d s}\left(|t-\bar{t}|^{2}+|n-\bar{n}|^{2}+|b-\bar{b}|^{2}\right) & =(t-\bar{t}) \cdot\left(t^{\prime}-\bar{t}^{\prime}\right)+(b-\bar{b}) \cdot\left(b^{\prime}-\bar{b}^{\prime}\right)+(n-\bar{n}) \cdot\left(n^{\prime}-\bar{n}^{\prime}\right) \\
& =(t-\bar{t}) \cdot(k n-k \bar{n})+(b-\bar{b}) \cdot\left(\tau n-\tau n^{\prime}\right)+(n-\bar{n}) \cdot((-k t-\tau b)-(-k \bar{t}-\tau \bar{b})) \\
& =k(t-\bar{t}) \cdot(n-\bar{n})+\tau(b-\bar{b}) \cdot(n-\bar{n})-k(n-\bar{n}) \cdot(t-\bar{t})-\tau(n-\bar{n}) \cdot(b-\bar{b}) \\
& =k(t-\bar{t}) \cdot(n-\bar{n})-k(n-\bar{n}) \cdot(t-\bar{t})+\tau(b-\bar{b}) \cdot(n-\bar{n})-\tau(n-\bar{n}) \cdot(b-\bar{b}) \\
& =0
\end{aligned}
$$

for all $s \in I$. Thus, the expression $|t-\bar{t}|^{2}+|n-\bar{n}|^{2}+|b-\bar{b}|^{2}$ is constant in s, and, since it is zero at $s=s_{0}$, we conclude that the expression must be identically zero, i.e.

$$
|t-\bar{t}|^{2}+|n-\bar{n}|^{2}+|b-\bar{b}|^{2} \equiv 0,
$$

from which we get $|t-\bar{t}|=|n-\bar{n}|=|b-\bar{b}|=0$, and so it follows that $t(s)=\bar{t}(s), n(s)=\bar{n}(s), b(s)=\bar{b}(s)$ for all $s \in I$. Since we also have

$$
\frac{d \alpha}{d s}=t=\bar{t}=\frac{d \bar{\alpha}}{d s}
$$

we obtain

$$
\begin{aligned}
\frac{d}{d s}(\alpha(s)-\bar{\alpha}(s)) & =\bar{\alpha}^{\prime}(s)-\alpha^{\prime}(s) \\
& =\bar{t}(s)-t(s) \\
& =0
\end{aligned}
$$

Thus, $\bar{\alpha}(s)-\alpha(s)$ is constant, i.e. $\bar{\alpha}(s)-\alpha(s)=a$, or

$$
\alpha(s)=\bar{\alpha}(s)+a,
$$

where a is a constant vector in \mathbb{R}^{3}. Since $\alpha\left(s_{0}\right)=\bar{\alpha}\left(s_{0}\right)$, we must have $a=0$. Hence,

$$
\alpha(s)=\bar{\alpha}(s)
$$

for all $s \in I$.
8. Show that the mean curvature H at $p \in S$ of a regular surface in \mathbb{R}^{3} is given by

$$
H=\frac{1}{\pi} \int_{0}^{\pi} k_{n}(\theta) d \theta
$$

where $k_{n}(\theta)$ is the normal curvature at p along a direction making an angle θ with a fixed direction. (This is Exercise 3-2.5 of do Carmo, and the solution to that exercise is in Homework 6.)

Proof. The normal curvature k_{n} is given by Euler's formula (c.f. do Carmo, page 145)

$$
k_{n}(\theta)=k_{1} \cos ^{2} \theta+k_{2} \sin ^{2} \theta .
$$

We also recall that the mean curvature is given by (c.f. do Carmo, page 146)

$$
H=\frac{k_{1}+k_{2}}{2}
$$

So we have

$$
\begin{aligned}
\int_{0}^{\pi} k_{n}(\theta) d \theta & =\int_{0}^{\pi} k_{1} \cos ^{2} \theta+k_{2} \sin ^{2} \theta d \theta \\
& =\int_{0}^{\pi} k_{1} \frac{1+\cos (2 \theta)}{2}+k_{2} \frac{1-\cos (2 \theta)}{2} d \theta \\
& =\frac{k_{1}}{2} \int_{0}^{\pi} 1+\cos (2 \theta) d \theta+\frac{k_{2}}{2} \int_{0}^{\pi} 1-\cos (2 \theta) d \theta \\
& =\left.\frac{k_{1}}{2}\left(\theta+\frac{1}{2} \sin (2 \theta)\right)\right|_{0} ^{\pi}+\left.\frac{k_{2}}{2}\left(\theta-\frac{1}{2} \sin (2 \theta)\right)\right|_{0} ^{\pi} \\
& =\frac{k_{1}}{2}\left(\left(\pi+\frac{1}{2} \sin (2 \pi)\right)-\left(0+\frac{1}{2} \sin (2(0))\right)\right)+\frac{k_{2}}{2}\left(\left(\pi-\frac{1}{2} \sin (2 \pi)\right)-\left(0-\frac{1}{2} \sin (2(0))\right)\right) \\
& =\frac{k_{1}}{2} \pi+\frac{k_{2}}{2} \pi \\
& =\pi \frac{k_{1}+k_{2}}{2} \\
& =\pi H
\end{aligned}
$$

which implies algebraically

$$
H=\frac{1}{\pi} \int_{0}^{\pi} k_{n}(\theta) d \theta
$$

as desired.

