
MATH 138A discussion Ryan Ta
University of California, Riverside Winter 2019

Final exam solutions

1. Compute the mean, Gaussian, and principal curvatures of the surface z = x2 − y2 at (0, 0, 0).

Proof. Consider the parametrized surface
x(u, v) = (u, v, u2 − v2).

We obtain the first derivatives

xu(u, v) =
∂x
∂u

=
∂

∂u
(u, v, u2 − v2)

=

(
∂

∂u
(u),

∂

∂u
(v),

∂

∂u
(u2 − v2)

)
= (1, 0, 2u)

and

xv(u, v) =
∂x
∂v

=
∂

∂v
(u, v, u2 − v2)

=

(
∂

∂v
(u),

∂

∂v
(v),

∂

∂v
(u2 − v2)

)
= (0, 1,−2v).

So the coefficients of the first fundamental form are

E(u, v) = xu(u, v) · xu(u, v)
= (1, 0, 2u) · (1, 0, 2u)

= (1)(1) + (0)(0) + (2u)(2u)

= 1 + 4u2

as well as

F(u, v) = xu(u, v) · xv(u, v)
= (1, 0, 2u) · (0, 1, 2v)
= (1)(0) + (0)(1) + (2u)(−2v)
= −4uv

and

G(u, v) = xv(u, v) · xv(u, v)
= (0, 1, 2v) · (0, 1, 2v)
= (0)(0) + (1)(1) + (−2v)(−2v)

= 1 + 4v2.

To find the coefficients of the second fundamental form, first we must compute the normal vector. The cross product of xu(u, v)
and xv(u, v) is

xu(u, v) × xv(u, v) =

������ i j k
1 0 2u
0 1 −2v

������
=

����0 2u
1 −2v

���� i − ����1 2u
0 −2v

���� j +

����1 0
0 1

���� k
= ((0)(−2v) − (1)(2u))i − ((1)(−2v) − (0)(2u))j + ((1)(1) − (0)(0))k
= (−2u)i + (2v)j + (1)k
= (−2u, 2v, 1)

and its associated magnitude

|xu(u, v) × xv(u, v)| =
√
(−2u)2 + (2v)2 + (1)2

=
√

4u2 + 4v2 + 1

=
√

4(u2 + v2) + 1,



and so the normal vector is

N(u, v) =
xu(u, v) × xv(u, v)
|xu(u, v) × xv(u, v)|

=
(−2u, 2v, 1)√
4(u2 + v2) + 1

.

Meanwhile, we obtain the second derivatives

xuu(u, v) =
∂xu
∂u

=
∂

∂u
(1, 0, 2u)

=

(
∂

∂u
(1),

∂

∂u
(0),

∂

∂u
(2u)

)
= (0, 0, 2),

as well as

xuv(u, v) =
∂xu
∂v

=
∂

∂v
(1, 0, 2u)

=

(
∂

∂v
(1),

∂

∂v
(0),

∂

∂v
(2u)

)
= (0, 0, 0)

and

xvv(u, v) =
∂xv
∂v

=
∂

∂v
(0, 1,−2v)

=

(
∂

∂v
(0),

∂

∂v
(1),

∂

∂v
(−2v)

)
= (0, 0,−2).

So the coefficients of the second fundamental form are

e(u, v) = N(u, v) · xuu(u, v)

=
(−2u, 2v, 1)√
4(u2 + v2) + 1

· (0, 0, 2)

=
(−2u)(0) + (2v)(0) + (1)(2)√

4(u2 + v2) + 1

=
2√

4(u2 + v2) + 1
,

as well as

f (u, v) = N(u, v) · xuv(u, v)

=
(−2u, 2v, 1)√
4(u2 + v2) + 1

· (0, 0, 0)

=
(−2u)(0) + (−2v)(0) + (1)(0)√

4(u2 + v2) + 1
= 0

and

g(u, v) = N(u, v) · xuu(u, v)

=
(−2u, 2v, 1)√
4(u2 + v2) + 1

· (0, 0,−2)

=
(−2u)(0) + (2v)(0) + (1)(−2)√

4(u2 + v2) + 1

= −
2√

4(u2 + v2) + 1
.



Using the formula on page 155 of do Carmo, the Gaussian curvature is

K(u, v) =
eg − f 2

EG − F2

=

( 2√
4(u2+v2)+1

)(− 2√
4(u2+v2)+1

) − (0)2

(1 + 4u2)(1 + 4v2) − (4uv)2

= −

4
4(u2+v2)+1

(1 + 4(u2 + v2) + 16u2v2) − 16u2v2

= −
4

(1 + 4(u2 + v2))2
.

Using the formula on page 156 of do Carmo, the mean curvature is

H(u, v) =
1
2

eG − 2 f F + gE
EG − F2

=
1
2

( 2√
4(u2+v2)+1

)(1 + 4v2) − 2(0)(4uv) + (− 2√
4(u2+v2)+1

)(1 + 4u2)

(1 + 4u2)(1 + 4v2) − (4uv)2

=
1
2

2√
4(u2+v2)+1

(4(v2 − u2))

(1 + 4(u2 + v2) + 16u2v2) − 16u2v2

=
4(v2 − u2)

(1 + 4(u2 + v2))
3
2

.

We will now compute the principal curvatures k1, k2. To do this, we will solve for k1, k2 from the formulas H =
k1+k2

2 and
K = k1k2. From H =

k1+k2
2 , we get k1 = 2H − k2, and so we get

K = k1k2

= (2H − k2)k2

= 2Hk2 − k2
2,

which is algebraically equivalent to the quadratic equation

k2
2 − 2Hk2 + K = 0.

Employing the quadratic formula, we get

k2 =
−(−2H) ±

√
(−2H)2 − 4(1)(K)
2(1)

=
2H ±

√
4(H2 − K)
2

= H ±
√

H2 − K .

This also means

k1 = 2H − k2

= 2H − (H ±
√

H2 − K)

= H ∓
√

H2 − K .

As we conventionally require k1 > k2, we will choose k1 = H +
√

H2 − K and k2 = H −
√

H2 − K . Substituting our
expressions for H,K , our principal curvatures are

k1(u, v) = H(u, v) +
√

H(u, v)2 − K(u, v)

=

(
4(v2 − u2)

(1 + 4(u2 + v2))
3
2

)
+

√√√(
4(v2 − u2)

(1 + 4(u2 + v2))
3
2

)2

−

(
−

4
(1 + 4(u2 + v2))2

)2

=
4(v2 − u2)

(1 + 4(u2 + v2))
3
2

+

√
16(v2 − u2)2

(1 + 4(u2 + v2))3
+

16
(1 + 4(u2 + v2))4



and

k2(u, v) = H(u, v) −
√

H(u, v)2 − K(u, v)

=

(
4(v2 − u2)

(1 + 4(u2 + v2))
3
2

)
−

√√√(
4(v2 − u2)

(1 + 4(u2 + v2))
3
2

)2

−

(
−

4
(1 + 4(u2 + v2))2

)2

=
4(v2 − u2)

(1 + 4(u2 + v2))
3
2

−

√
16(v2 − u2)2

(1 + 4(u2 + v2))3
+

16
(1 + 4(u2 + v2))4

.

(Note: The general formulas for principal curvatures k1(u, v), k2(u, v) we just derived here are completely optional; they are
here but you do not have to find the general formulas in the first place in order to find k1(0, 0), k2(0, 0).) At the origin (0, 0, 0),
our original parametrization x(u, v) = (u, v, u2 − v2) implies u = 0 and v = 0. So, at the origin, the Gaussian curvature is

K(0, 0) = −
4

(1 + 4(02 + 02))2

= −4

and the mean curvature is

H(0, 0) =
4(02 − 02)

(1 + 4(02 + 02))
3
2

= 0,

and so

k1(0, 0) = H(0, 0) +
√

H(0, 0)2 − K(0, 0)

= 0 +
√

02 − (−4)
= 0 + 2
= 2

and

k2(0, 0) = H(0, 0) −
√

H(0, 0)2 − K(0, 0)

= 0 −
√

02 − (−4)
= 0 − 2
= −2,

are our principal curvatures at the origin. �

2. State and prove the Meusnier Theorem.

Proof. Statement of Meusnier Theorem: All curves lying on a surface S and having at a given point p ∈ S the same tangent
line have at this point the same normal curvatures (c.f. Proposition 2 of Section 3.2; c.f. do Carmo, page 142).

Proof of Meusnier Theorem: Following page 142 of do Carmo, we will instead prove the more general claim: The value of the
second fundamenatal form IIp for a unit vector v ∈ Tp(S) is equal to the normal curvature of a regular curve passing through
p and tangent to v, i.e. IIp(α(0)) = kn(p). Once we do this, Meusnier’s Theorem will follow. To prove our claim, let C be a
regular curve in the surface S parametrized by α(s), which satisfies α(0) = p, where s is the arc length of C. Let N(s) be the
restriction of the normal vector N defined on S to the curve α(s). Then we have N(s) · α′(s) = 0, from which we can take the
derivatives in s of both sides to obtain

N ′(s) · α′(s) + N(s) · α′′(s) = 0,

or
N(s) · α′′(s) = −N ′(s) · α′(s).

Therefore, using this and a Frenet formula, we can conclude

IIp(α′(0)) = −dNp(α
′(0)) · α′(0)

= −N ′(0) · α′(0)
= N(0) · α′′(0)
= N(0) · t ′(0)
= N(0) · kn(0)
= (N · kn)(p)

= kn(p),

which proves our claim. �



3. Let S be a connected regular surface in R3 that is umbilical at every point. Prove that the Gaussian curvature of S is constant.

Proof. We recall that a point p ∈ S is said to be umbilical if the principal curvatures k1, k2 of S satisfy k1 = k2 at p. To prove
that the Gaussian curvature of S is constant, it suffices to prove that S is contained in the sphere S2 of radius r > 0 or in a plane
such as R2, for they have constant Gaussian curvatures KR2 = 0 and KS2 = 1

r2 , respectively. This reduces our goal to proving
Proposition 4 of Section 3-2 in do Carmo (c.f. pages 147-148); we will now follow the proof. Let x(u, v) be a parametrization
such that the coordinate neighborhood V ⊂ S containing p is connected. Since each q ∈ V is an umbilical point, for any vector
w ∈ Tq(S), which we can write

w(u, v) = a1(u, v)xu(u, v) + a2xv(u, v)

as a local coordinate expression in V , we have
dN(w) = λ(q)w,

where λ = λ(q) is a real differentiable function in V . We first show that λ(q) is constant in V . Using local coordinates in V ,
our above equation gives us

Nu(u, v)a1 + Nv(u, v)a2 = dN(w)

= λ(q)w

= λ(q)(xu(u, v)a1 + xu(u, v)a2)

= λ(q)xu(u, v)a1 + λ(q)xu(u, v)a2.

Hence, since w is arbitrary, we can equate the terms (or, rather, equate the coefficients) to conclude that our partial derivatives
of N are

Nu(u, v) = λ(q)xu(u, v),
Nv(u, v) = λ(q)xv(u, v).

If we perform partial differentiations on both sides of the first equation Nu(u, v) = λ(q)xu(u, v) with respect to v and both sides
of the second equation Nv(u, v) = λ(q)xv(u, v) with respect to u, then we get

Nuv(u, v) = λv(q)xu(u, v) + λ(q)xuv(u, v),
Nvu(u, v) = λu(q)xv(u, v) + λ(q)xvu(u, v),

from which we conclude

λu(q)xv(u, v) − λv(q)xu(u, v) = (Nuv(u, v) − λ(q)xuv(u, v)) − (Nvu(u, v) − λ(q)xvu(u, v))
= Nuv(u, v) − Nvu(u, v) + λ(q)(xvu(u, v) − xuv(u, v))
= 0.

In fact, since xu, xv are linearly independent vectors, we conclude that the coefficients λu, λv must be zero, i.e. λu = 0 and
λv = 0, for all q ∈ V . The zero partial derivatives of λ therefore suggest that λ is constant on V , since V is connected.
Now, we must deal with two cases of our constant λ separately. For the first case, if λ ≡ 0, then Nu = λxu ≡ 0xu = 0 and
Nv = λxv ≡ 0xv = 0, and so N must be constant on V , say N = N0 for some constant vector on V . This means

∂

∂u
(x(u, v) · N0) = xu(u, v) · N0

= 0 · N0

= 0

and

∂

∂v
(x(u, v) · N0) = xv(u, v) · N0

= 0 · N0

= 0.

Hence, x(u, v) · N0 is constant, and so all the points x(u, v) on V are contained in a plane. For the second case, if λ , 0, then 1
λ

is well-defined, which means we can have

∂

∂u

(
x(u, v) −

1
λ

N(u, v)
)

= xu(u, v) −
1
λ

Nu(u, v)

= 0 −
1
λ

0

= 0



and

∂

∂v

(
x(u, v) −

1
λ

N(u, v)
)

= xv(u, v) −
1
λ

Nv(u, v)

= 0 −
1
λ

0

= 0.

These two statements imply that the point

y(u, v) := x(u, v) −
1
λ

N(u, v)

is constant in (u, v) ∈ V , i.e. fixed on V . Hence,

|x(u, v) − y(u, v)| =
���� 1λN(u, v)

����
=

1
|λ |
|N(u, v)|

=
1
|λ |
(1)

=
1
|λ |
,

and so all points of V are contained in a sphere of center y(u, v) and radius 1
|λ | . �

4. Let α(s) be a unit speed curve in R2. Prove that the torsion τ(s) of the curve is zero if and only if the curve is planar.

Proof. We will prove the forward direction: If the torsion τ(s) of the curve α(s) is zero (i.e. τ ≡ 0), then the curve is planar.
Since we assumed τ ≡ 0, we must have

b′(s) = τ(s)n(s)

= 0n(s)

= 0,

and so b(s) is constant, i.e. b(s) = b0 for some fixed vector b0. Therefore,

d
ds
(α(s) · b0) = α′(s) · b0

= 0 · b0

= 0,

from which we conclude that α(s) · b0 is constant, and so α(s) is contained in a plane normal to b0.

Now, we will prove the backward direction: If our curve α(s) is planar, then τ ≡ 0. Since α(s) is planar for all s ∈ I (i.e. α(I)
is contained in a plane), it follows that the plane containing our curve agrees with the osculating plane. And any curve in an
osculating plane must have zero torsion; in particular, our curve α(s) satisfies τ ≡ 0.

(This proof is taken from Section 1-5 of do Carmo; c.f. page 18.) �

5. a. State the Isoperimetric Inequality.

Proof. Let C be a simple closed plane curve with length l, and let A be the area of the region bounded by C. Then

l2 − 4πA ≥ 0,

and equality holds if and only if C is a circle. (This is Theorem 1 of Section 1-7 of do Carmo; c.f. page 33). �

b. Is there a simple closed curve C in the plane with length equal to 5 feet bounding an area of 2 square feet?

Proof. Since C is a simply closed curve of some length l and bounding some area A, we must have the Isoperimetric
Inequality l2 − 4πA ≥ 0 (c.f. do Carmo, page 33). However, if l = 5 and A = 2, then

l2 − 4πA = (5)2 − 4π(2)
= 25 − 8π
< 0.

So the Isoperimetric Inequality is not satisfied, which means there does not exist such a simple closed curve with l = 5,
A = 2. �



c. In part b, what is the maximum area that C can bound? What is this curve?

Proof. We can algebraically rearrange the inequality l2 − 4πA ≥ 0 to find an upper bound of the area:

A ≤
l2

4π
,

from which it is easier to see that the maximum area is

Amax =
l2

4π
.

Since we were given that our curve C has length l = 5, the maximum area A that C can bound is

Amax =
l2

4π

=
(5)2

4π

=
25
4π
.

Furthermore, the statement of the Isoperimetric Inequality from part a asserts that C must be a circle. �

6. Let S be a compact regular surface in R3. Prove that its mean curvature cannot vanish everywhere. (Since S with vanishing
mean curvature is really another way of saying that S is minimal, this question is the same as Exercise 3-5.12 of do Carmo,
and the solution to that exercise is in Homework 7.)

Proof. Suppose to the contrary that there exists some surface S ⊂ R3 whose curvature vanishes everywhere, i.e. H ≡ 0. So
we have

0 = H

=
k1 + k2

2

which implies that k1, k2 have opposite signs. Consequently, we have

det(dNp) = K

= k1k2

< 0

for any arbitrary point p ∈ S, which implies that S does not have any elliptic points. But this contradicts Exercise 3-3.16,
which asserts that S has an elliptic point since we also assumed that S is compact. Therefore, no compact minimal surfaces
exist in R3.

It remains to prove Exercise 3-3.16 (whose solution is also found in Homework 7). Let p ∈ R3 be an elliptic point, which
means det(dNp) > 0 (c.f. do Carmo, page 146), where we recall that dNp is the differential of the Gauss map Np . Now, let
S be a compact surface. Then there exists a sphere of a sufficiently large radius R > 0 such that S lies inside of the sphere,
except at only one point—call it p—that touches the sphere. (Note: it would be helpful to draw a picture of this.) Let KS

and KS2 denote respectively the Gaussian curvatures of the surface S ⊂ R3 and of the sphere S2 ⊂ R3 at the point p. Then
KS2 = 1

R2 > 0 for some large enough R > 0, where R is the radius of the sphere S2. Also, KS ≥ KS2 at the point p, since S is
contained inside S2. Therefore,

det(dNp) = KS

≥ KS2

=
1
R2

> 0,

which means p is an elliptic point. �

7. a. State the fundamental theorem for the local theory of curves.

Proof. Given differentiable functions k(s) > 0 and τ(s) for all s ∈ I, where I is an interval in R, there exists a regular
parametrized curve α : I → R3 such that s is the arc length, k(s) is the curvature, and τ(s) is the torsion of α. Moreover,
any other curve ᾱ satisfying the same conditions differs from α by a rigid motion; that is, there exists an orthogonal
linear map ρ of R3, with positive determinant, and a vector c such that ᾱ = ρ ◦ α + c. (This is in Section 1-5 of do
Carmo; c.f. page 19.) �



b. Prove the uniqueness part (i.e. rigidity theorem) of part a.

Proof. (The following proof is taken from Section 1-5 of do Carmo, c.f. pages 20-21, although for clarity I added a
couple additional steps to the calculations.) Assume that two curves α = α(s) and ᾱ = ᾱ(s) satisfy the conditions
k(s) = k̄(s) and τ(s) = τ̄(s) for all s ∈ I. Let t0, n0, b0 and t̄0, n̄0, b̄0 be the Frenet trihedrons at s0 ∈ I of α and ᾱ,
respectively. Then there is a rigid motion which sends ᾱ(s0) into α(s0) and t̄0, n̄0, b̄0 into t0, n0, b0, respectively. Thus,
after performing this rigid motion on ᾱ, we have that α(s0) = α(s0) and that the Frenet trihedrons t(s), n(s), b(s) and
t̄(s), n̄(s), b̄(s) of α and ᾱ, respectively, satisfy the Frenet equations

dt
ds

= kn
dt̄
ds

= kn̄

dn
ds

= −kt − τb
dn̄
ds

= −kt̄ − τn̄

db
ds

= τn
db̄
ds

= τn̄,

with t(s0) = t̄(s0), n(s0) = n̄(s0), b(s0) = b̄(s0). We now observe, by using the Frenet equations, that

1
2

d
ds
(|t − t̄ |2 + |n − n̄|2 + |b − b̄|2) = (t − t̄) · (t ′ − t̄ ′) + (b − b̄) · (b′ − b̄′) + (n − n̄) · (n′ − n̄′)

= (t − t̄) · (kn − kn̄) + (b − b̄) · (τn − τn′) + (n − n̄) · ((−kt − τb) − (−kt̄ − τb̄))

= k(t − t̄) · (n − n̄) + τ(b − b̄) · (n − n̄) − k(n − n̄) · (t − t̄) − τ(n − n̄) · (b − b̄)

= k(t − t̄) · (n − n̄) − k(n − n̄) · (t − t̄) + τ(b − b̄) · (n − n̄) − τ(n − n̄) · (b − b̄)

= 0

for all s ∈ I. Thus, the expression |t − t̄ |2 + |n− n̄|2 + |b− b̄|2 is constant in s, and, since it is zero at s = s0, we conclude
that the expression must be identically zero, i.e.

|t − t̄ |2 + |n − n̄|2 + |b − b̄|2 ≡ 0,

from which we get |t − t̄ | = |n − n̄| = |b − b̄| = 0, and so it follows that t(s) = t̄(s), n(s) = n̄(s), b(s) = b̄(s) for all s ∈ I.
Since we also have

dα
ds

= t = t̄ =
dᾱ
ds
,

we obtain

d
ds
(α(s) − ᾱ(s)) = ᾱ′(s) − α′(s)

= t̄(s) − t(s)

= 0.

Thus, ᾱ(s) − α(s) is constant, i.e. ᾱ(s) − α(s) = a, or

α(s) = ᾱ(s) + a,

where a is a constant vector in R3. Since α(s0) = ᾱ(s0), we must have a = 0. Hence,

α(s) = ᾱ(s)

for all s ∈ I. �

8. Show that the mean curvature H at p ∈ S of a regular surface in R3 is given by

H =
1
π

∫ π

0
kn(θ) dθ,

where kn(θ) is the normal curvature at p along a direction making an angle θ with a fixed direction. (This is Exercise 3-2.5 of
do Carmo, and the solution to that exercise is in Homework 6.)

Proof. The normal curvature kn is given by Euler’s formula (c.f. do Carmo, page 145)

kn(θ) = k1 cos2 θ + k2 sin2 θ.

We also recall that the mean curvature is given by (c.f. do Carmo, page 146)

H =
k1 + k2

2
.



So we have∫ π

0
kn(θ) dθ =

∫ π

0
k1 cos2 θ + k2 sin2 θ dθ

=

∫ π

0
k1

1 + cos(2θ)
2

+ k2
1 − cos(2θ)

2
dθ

=
k1

2

∫ π

0
1 + cos(2θ) dθ +

k2

2

∫ π

0
1 − cos(2θ) dθ

=
k1

2

(
θ +

1
2

sin(2θ)
)����π

0
+

k2

2

(
θ −

1
2

sin(2θ)
)����π

0

=
k1

2

((
π +

1
2

sin(2π)
)
−

(
0 +

1
2

sin(2(0))
))

+
k2

2

((
π −

1
2

sin(2π)
)
−

(
0 −

1
2

sin(2(0))
))

=
k1

2
π +

k2

2
π

= π
k1 + k2

2
= πH,

which implies algebraically

H =
1
π

∫ π

0
kn(θ) dθ

as desired. �


