Final exam solutions

1. Compute the mean, Gaussian, and principal curvatures of the surface $z = x^2 - y^2$ at (0, 0, 0).

Proof. Consider the parametrized surface

$$\mathbf{x}(u,v) = (u,v,u^2 - v^2).$$

We obtain the first derivatives

$$\mathbf{x}_{u}(u,v) = \frac{\partial \mathbf{x}}{\partial u} = \frac{\partial}{\partial u}(u,v,u^{2}-v^{2})$$
$$= \left(\frac{\partial}{\partial u}(u),\frac{\partial}{\partial u}(v),\frac{\partial}{\partial u}(u^{2}-v^{2})\right)$$
$$= (1,0,2u)$$

and

$$\begin{aligned} \mathbf{x}_{\nu}(u,v) &= \frac{\partial \mathbf{x}}{\partial v} = \frac{\partial}{\partial v}(u,v,u^2 - v^2) \\ &= \left(\frac{\partial}{\partial v}(u), \frac{\partial}{\partial v}(v), \frac{\partial}{\partial v}(u^2 - v^2)\right) \\ &= (0, 1, -2v). \end{aligned}$$

So the coefficients of the first fundamental form are

$$E(u, v) = \mathbf{x}_u(u, v) \cdot \mathbf{x}_u(u, v)$$

= (1, 0, 2u) \cdot (1, 0, 2u)
= (1)(1) + (0)(0) + (2u)(2u)
= 1 + 4u^2

as well as

$$F(u, v) = \mathbf{x}_u(u, v) \cdot \mathbf{x}_v(u, v)$$

= (1, 0, 2u) \cdot (0, 1, 2v)
= (1)(0) + (0)(1) + (2u)(-2v)
= -4uv

and

$$G(u, v) = \mathbf{x}_{v}(u, v) \cdot \mathbf{x}_{v}(u, v)$$

= (0, 1, 2v) \cdot (0, 1, 2v)
= (0)(0) + (1)(1) + (-2v)(-2v)
= 1 + 4v^{2}.

To find the coefficients of the second fundamental form, first we must compute the normal vector. The cross product of $\mathbf{x}_u(u, v)$ and $\mathbf{x}_v(u, v)$ is

$$\begin{aligned} \mathbf{x}_{u}(u,v) \times \mathbf{x}_{v}(u,v) &= \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 0 & 2u \\ 0 & 1 & -2v \end{vmatrix} \\ &= \begin{vmatrix} 0 & 2u \\ 1 & -2v \end{vmatrix} \mathbf{i} - \begin{vmatrix} 1 & 2u \\ 0 & -2v \end{vmatrix} \mathbf{j} + \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} \mathbf{k} \\ &= ((0)(-2v) - (1)(2u))\mathbf{i} - ((1)(-2v) - (0)(2u))\mathbf{j} + ((1)(1) - (0)(0))\mathbf{k} \\ &= (-2u)\mathbf{i} + (2v)\mathbf{j} + (1)\mathbf{k} \\ &= (-2u, 2v, 1) \end{aligned}$$

and its associated magnitude

$$\begin{aligned} |\mathbf{x}_{u}(u,v) \times \mathbf{x}_{v}(u,v)| &= \sqrt{(-2u)^{2} + (2v)^{2} + (1)^{2}} \\ &= \sqrt{4u^{2} + 4v^{2} + 1} \\ &= \sqrt{4(u^{2} + v^{2}) + 1}, \end{aligned}$$

and so the normal vector is

$$N(u, v) = \frac{\mathbf{x}_u(u, v) \times \mathbf{x}_v(u, v)}{|\mathbf{x}_u(u, v) \times \mathbf{x}_v(u, v)|}$$
$$= \frac{(-2u, 2v, 1)}{\sqrt{4(u^2 + v^2) + 1}}.$$

Meanwhile, we obtain the second derivatives

$$\mathbf{x}_{uu}(u, v) = \frac{\partial \mathbf{x}_u}{\partial u} = \frac{\partial}{\partial u}(1, 0, 2u)$$
$$= \left(\frac{\partial}{\partial u}(1), \frac{\partial}{\partial u}(0), \frac{\partial}{\partial u}(2u)\right)$$
$$= (0, 0, 2),$$

as well as

$$\mathbf{x}_{uv}(u,v) = \frac{\partial \mathbf{x}_u}{\partial v} = \frac{\partial}{\partial v}(1,0,2u)$$
$$= \left(\frac{\partial}{\partial v}(1), \frac{\partial}{\partial v}(0), \frac{\partial}{\partial v}(2u)\right)$$
$$= (0,0,0)$$

and

$$\mathbf{x}_{\nu\nu}(u,v) = \frac{\partial \mathbf{x}_{\nu}}{\partial v} = \frac{\partial}{\partial v}(0,1,-2v)$$
$$= \left(\frac{\partial}{\partial v}(0),\frac{\partial}{\partial v}(1),\frac{\partial}{\partial v}(-2v)\right)$$
$$= (0,0,-2).$$

So the coefficients of the second fundamental form are

$$e(u, v) = N(u, v) \cdot \mathbf{x}_{uu}(u, v)$$

= $\frac{(-2u, 2v, 1)}{\sqrt{4(u^2 + v^2) + 1}} \cdot (0, 0, 2)$
= $\frac{(-2u)(0) + (2v)(0) + (1)(2)}{\sqrt{4(u^2 + v^2) + 1}}$
= $\frac{2}{\sqrt{4(u^2 + v^2) + 1}}$,

as well as

$$f(u, v) = N(u, v) \cdot \mathbf{x}_{uv}(u, v)$$

= $\frac{(-2u, 2v, 1)}{\sqrt{4(u^2 + v^2) + 1}} \cdot (0, 0, 0)$
= $\frac{(-2u)(0) + (-2v)(0) + (1)(0)}{\sqrt{4(u^2 + v^2) + 1}}$
= 0

and

$$g(u, v) = N(u, v) \cdot \mathbf{x}_{uu}(u, v)$$

= $\frac{(-2u, 2v, 1)}{\sqrt{4(u^2 + v^2) + 1}} \cdot (0, 0, -2)$
= $\frac{(-2u)(0) + (2v)(0) + (1)(-2)}{\sqrt{4(u^2 + v^2) + 1}}$
= $-\frac{2}{\sqrt{4(u^2 + v^2) + 1}}$.

Using the formula on page 155 of do Carmo, the Gaussian curvature is

$$\begin{split} K(u,v) &= \frac{eg - f^2}{EG - F^2} \\ &= \frac{(\frac{2}{\sqrt{4(u^2 + v^2) + 1}})(-\frac{2}{\sqrt{4(u^2 + v^2) + 1}}) - (0)^2}{(1 + 4u^2)(1 + 4v^2) - (4uv)^2} \\ &= -\frac{\frac{4}{4(u^2 + v^2) + 1}}{(1 + 4(u^2 + v^2) + 16u^2v^2) - 16u^2v^2} \\ &= -\frac{4}{(1 + 4(u^2 + v^2))^2}. \end{split}$$

Using the formula on page 156 of do Carmo, the mean curvature is

$$\begin{split} H(u,v) &= \frac{1}{2} \frac{eG - 2fF + gE}{EG - F^2} \\ &= \frac{1}{2} \frac{(\frac{2}{\sqrt{4(u^2 + v^2) + 1}})(1 + 4v^2) - 2(0)(4uv) + (-\frac{2}{\sqrt{4(u^2 + v^2) + 1}})(1 + 4u^2)}{(1 + 4u^2)(1 + 4v^2) - (4uv)^2} \\ &= \frac{1}{2} \frac{\frac{2}{\sqrt{4(u^2 + v^2) + 1}}(4(v^2 - u^2))}{(1 + 4(u^2 + v^2) + 16u^2v^2) - 16u^2v^2} \\ &= \frac{4(v^2 - u^2)}{(1 + 4(u^2 + v^2))^{\frac{3}{2}}}. \end{split}$$

We will now compute the principal curvatures k_1, k_2 . To do this, we will solve for k_1, k_2 from the formulas $H = \frac{k_1+k_2}{2}$ and $K = k_1k_2$. From $H = \frac{k_1+k_2}{2}$, we get $k_1 = 2H - k_2$, and so we get

$$K = k_1 k_2$$

= $(2H - k_2)k_2$
= $2Hk_2 - k_2^2$,

which is algebraically equivalent to the quadratic equation

$$k_2^2 - 2Hk_2 + K = 0.$$

Employing the quadratic formula, we get

$$k_{2} = \frac{-(-2H) \pm \sqrt{(-2H)^{2} - 4(1)(K)}}{2(1)}$$
$$= \frac{2H \pm \sqrt{4(H^{2} - K)}}{2}$$
$$= H \pm \sqrt{H^{2} - K}.$$

This also means

$$k_1 = 2H - k_2$$

= 2H - (H \pm \sqrt{H^2 - K})
= H \pm \sqrt{H^2 - K}.

As we conventionally require $k_1 > k_2$, we will choose $k_1 = H + \sqrt{H^2 - K}$ and $k_2 = H - \sqrt{H^2 - K}$. Substituting our expressions for H, K, our principal curvatures are

$$\begin{aligned} k_1(u,v) &= H(u,v) + \sqrt{H(u,v)^2 - K(u,v)} \\ &= \left(\frac{4(v^2 - u^2)}{(1 + 4(u^2 + v^2))^{\frac{3}{2}}}\right) + \sqrt{\left(\frac{4(v^2 - u^2)}{(1 + 4(u^2 + v^2))^{\frac{3}{2}}}\right)^2 - \left(-\frac{4}{(1 + 4(u^2 + v^2))^2}\right)^2} \\ &= \frac{4(v^2 - u^2)}{(1 + 4(u^2 + v^2))^{\frac{3}{2}}} + \sqrt{\frac{16(v^2 - u^2)^2}{(1 + 4(u^2 + v^2))^3} + \frac{16}{(1 + 4(u^2 + v^2))^4}} \end{aligned}$$

$$\begin{aligned} k_2(u,v) &= H(u,v) - \sqrt{H(u,v)^2 - K(u,v)} \\ &= \left(\frac{4(v^2 - u^2)}{(1 + 4(u^2 + v^2))^{\frac{3}{2}}}\right) - \sqrt{\left(\frac{4(v^2 - u^2)}{(1 + 4(u^2 + v^2))^{\frac{3}{2}}}\right)^2 - \left(-\frac{4}{(1 + 4(u^2 + v^2))^2}\right)^2} \\ &= \frac{4(v^2 - u^2)}{(1 + 4(u^2 + v^2))^{\frac{3}{2}}} - \sqrt{\frac{16(v^2 - u^2)^2}{(1 + 4(u^2 + v^2))^3} + \frac{16}{(1 + 4(u^2 + v^2))^4}}. \end{aligned}$$

(Note: The general formulas for principal curvatures $k_1(u, v)$, $k_2(u, v)$ we just derived here are *completely optional*; they are here but you do not have to find the general formulas in the first place in order to find $k_1(0, 0)$, $k_2(0, 0)$.) At the origin (0, 0, 0), our original parametrization $\mathbf{x}(u, v) = (u, v, u^2 - v^2)$ implies u = 0 and v = 0. So, at the origin, the Gaussian curvature is

$$K(0,0) = -\frac{4}{(1+4(0^2+0^2))^2}$$
$$= -4$$

and the mean curvature is

$$H(0,0) = \frac{4(0^2 - 0^2)}{(1 + 4(0^2 + 0^2))^{\frac{3}{2}}}$$

= 0,

and so

$$k_1(0,0) = H(0,0) + \sqrt{H(0,0)^2 - K(0,0)}$$
$$= 0 + \sqrt{0^2 - (-4)}$$
$$= 0 + 2$$
$$= 2$$

and

$$k_2(0,0) = H(0,0) - \sqrt{H(0,0)^2} - K(0,0)$$

= 0 - \sqrt{0^2 - (-4)}
= 0 - 2
= -2,

are our principal curvatures at the origin.

2. State and prove the Meusnier Theorem.

Proof. Statement of Meusnier Theorem: All curves lying on a surface *S* and having at a given point $p \in S$ the same tangent line have at this point the same normal curvatures (c.f. Proposition 2 of Section 3.2; c.f. do Carmo, page 142).

Proof of Meusnier Theorem: Following page 142 of do Carmo, we will instead prove the more general claim: The value of the second fundamental form Π_p for a unit vector $v \in T_p(S)$ is equal to the normal curvature of a regular curve passing through p and tangent to v, i.e. $\Pi_p(\alpha(0)) = k_n(p)$. Once we do this, Meusnier's Theorem will follow. To prove our claim, let C be a regular curve in the surface S parametrized by $\alpha(s)$, which satisfies $\alpha(0) = p$, where s is the arc length of C. Let N(s) be the restriction of the normal vector N defined on S to the curve $\alpha(s)$. Then we have $N(s) \cdot \alpha'(s) = 0$, from which we can take the derivatives in s of both sides to obtain

$$N'(s) \cdot \alpha'(s) + N(s) \cdot \alpha''(s) = 0$$

or

$$N(s) \cdot \alpha''(s) = -N'(s) \cdot \alpha'(s).$$

Therefore, using this and a Frenet formula, we can conclude

$$\Pi_{p}(\alpha'(0)) = -dN_{p}(\alpha'(0)) \cdot \alpha'(0)$$

= $-N'(0) \cdot \alpha'(0)$
= $N(0) \cdot \alpha''(0)$
= $N(0) \cdot t'(0)$
= $N(0) \cdot kn(0)$
= $(N \cdot kn)(p)$
= $k_{n}(p)$,

3. Let *S* be a connected regular surface in \mathbb{R}^3 that is umbilical at every point. Prove that the Gaussian curvature of *S* is constant.

Proof. We recall that a point $p \in S$ is said to be umbilical if the principal curvatures k_1, k_2 of S satisfy $k_1 = k_2$ at p. To prove that the Gaussian curvature of S is constant, it suffices to prove that S is contained in the sphere S^2 of radius r > 0 or in a plane such as \mathbb{R}^2 , for they have constant Gaussian curvatures $K_{\mathbb{R}^2} = 0$ and $K_{S^2} = \frac{1}{r^2}$, respectively. This reduces our goal to proving Proposition 4 of Section 3-2 in do Carmo (c.f. pages 147-148); we will now follow the proof. Let $\mathbf{x}(u, v)$ be a parametrization such that the coordinate neighborhood $V \subset S$ containing p is connected. Since each $q \in V$ is an umbilical point, for any vector $w \in T_q(S)$, which we can write

$$w(u, v) = a_1(u, v)\mathbf{x}_u(u, v) + a_2\mathbf{x}_v(u, v)$$

as a local coordinate expression in V, we have

$$dN(w) = \lambda(q)w,$$

where $\lambda = \lambda(q)$ is a real differentiable function in *V*. We first show that $\lambda(q)$ is constant in *V*. Using local coordinates in *V*, our above equation gives us

$$N_u(u, v)a_1 + N_v(u, v)a_2 = dN(w)$$

= $\lambda(q)w$
= $\lambda(q)(\mathbf{x}_u(u, v)a_1 + \mathbf{x}_u(u, v)a_2)$
= $\lambda(q)\mathbf{x}_u(u, v)a_1 + \lambda(q)\mathbf{x}_u(u, v)a_2.$

Hence, since w is arbitrary, we can equate the terms (or, rather, equate the coefficients) to conclude that our partial derivatives of N are

$$N_u(u, v) = \lambda(q)\mathbf{x}_u(u, v),$$

$$N_v(u, v) = \lambda(q)\mathbf{x}_v(u, v).$$

If we perform partial differentiations on both sides of the first equation $N_u(u, v) = \lambda(q)\mathbf{x}_u(u, v)$ with respect to v and both sides of the second equation $N_v(u, v) = \lambda(q)\mathbf{x}_v(u, v)$ with respect to u, then we get

$$N_{uv}(u,v) = \lambda_v(q)\mathbf{x}_u(u,v) + \lambda(q)\mathbf{x}_{uv}(u,v),$$

$$N_{vu}(u,v) = \lambda_u(q)\mathbf{x}_v(u,v) + \lambda(q)\mathbf{x}_{vu}(u,v),$$

from which we conclude

$$\lambda_u(q)\mathbf{x}_v(u,v) - \lambda_v(q)\mathbf{x}_u(u,v) = (N_{uv}(u,v) - \lambda(q)\mathbf{x}_{uv}(u,v)) - (N_{vu}(u,v) - \lambda(q)\mathbf{x}_{vu}(u,v))$$
$$= N_{uv}(u,v) - N_{vu}(u,v) + \lambda(q)(\mathbf{x}_{vu}(u,v) - \mathbf{x}_{uv}(u,v))$$
$$= 0.$$

In fact, since $\mathbf{x}_u, \mathbf{x}_v$ are linearly independent vectors, we conclude that the coefficients λ_u, λ_v must be zero, i.e. $\lambda_u = 0$ and $\lambda_v = 0$, for all $q \in V$. The zero partial derivatives of λ therefore suggest that λ is constant on V, since V is connected. Now, we must deal with two cases of our constant λ separately. For the first case, if $\lambda \equiv 0$, then $N_u = \lambda \mathbf{x}_u \equiv 0 \mathbf{x}_u = 0$ and $N_v = \lambda \mathbf{x}_v \equiv 0 \mathbf{x}_v = 0$, and so N must be constant on V, say $N = N_0$ for some constant vector on V. This means

$$\frac{\partial}{\partial u} (\mathbf{x}(u, v) \cdot N_0) = \mathbf{x}_u(u, v) \cdot N_0$$
$$= 0 \cdot N_0$$
$$= 0$$

and

$$\frac{\partial}{\partial v} (\mathbf{x}(u, v) \cdot N_0) = \mathbf{x}_v(u, v) \cdot N_0$$
$$= 0 \cdot N_0$$
$$= 0.$$

Hence, $\mathbf{x}(u, v) \cdot N_0$ is constant, and so all the points $\mathbf{x}(u, v)$ on *V* are contained in a plane. For the second case, if $\lambda \neq 0$, then $\frac{1}{\lambda}$ is well-defined, which means we can have

$$\frac{\partial}{\partial u} \left(\mathbf{x}(u, v) - \frac{1}{\lambda} N(u, v) \right) = \mathbf{x}_u(u, v) - \frac{1}{\lambda} N_u(u, v)$$
$$= 0 - \frac{1}{\lambda} 0$$
$$= 0$$

and

$$\frac{\partial}{\partial v} \left(\mathbf{x}(u, v) - \frac{1}{\lambda} N(u, v) \right) = \mathbf{x}_v(u, v) - \frac{1}{\lambda} N_v(u, v)$$
$$= 0 - \frac{1}{\lambda} 0$$
$$= 0.$$

These two statements imply that the point

$$\mathbf{y}(u,v) := \mathbf{x}(u,v) - \frac{1}{\lambda}N(u,v)$$

is constant in $(u, v) \in V$, i.e. fixed on V. Hence,

$$\begin{aligned} |\mathbf{x}(u,v) - \mathbf{y}(u,v)| &= \left| \frac{1}{\lambda} N(u,v) \right| \\ &= \frac{1}{|\lambda|} |N(u,v)| \\ &= \frac{1}{|\lambda|} (1) \\ &= \frac{1}{|\lambda|}, \end{aligned}$$

and so all points of V are contained in a sphere of center $\mathbf{y}(u, v)$ and radius $\frac{1}{|\lambda|}$.

4. Let $\alpha(s)$ be a unit speed curve in \mathbb{R}^2 . Prove that the torsion $\tau(s)$ of the curve is zero if and only if the curve is planar.

Proof. We will prove the forward direction: If the torsion $\tau(s)$ of the curve $\alpha(s)$ is zero (i.e. $\tau \equiv 0$), then the curve is planar. Since we assumed $\tau \equiv 0$, we must have

$$b'(s) = \tau(s)n(s)$$
$$= 0n(s)$$
$$= 0,$$

and so b(s) is constant, i.e. $b(s) = b_0$ for some fixed vector b_0 . Therefore,

$$\frac{d}{ds}(\alpha(s) \cdot b_0) = \alpha'(s) \cdot b_0$$
$$= 0 \cdot b_0$$
$$= 0.$$

from which we conclude that $\alpha(s) \cdot b_0$ is constant, and so $\alpha(s)$ is contained in a plane normal to b_0 .

Now, we will prove the backward direction: If our curve $\alpha(s)$ is planar, then $\tau \equiv 0$. Since $\alpha(s)$ is planar for all $s \in I$ (i.e. $\alpha(I)$ is contained in a plane), it follows that the plane containing our curve agrees with the osculating plane. And any curve in an osculating plane must have zero torsion; in particular, our curve $\alpha(s)$ satisfies $\tau \equiv 0$.

(This proof is taken from Section 1-5 of do Carmo; c.f. page 18.)

5. a. State the Isoperimetric Inequality.

Proof. Let C be a simple closed plane curve with length l, and let A be the area of the region bounded by C. Then

$$l^2 - 4\pi A \ge 0,$$

and equality holds if and only if C is a circle. (This is Theorem 1 of Section 1-7 of do Carmo; c.f. page 33). \Box

b. Is there a simple closed curve *C* in the plane with length equal to 5 feet bounding an area of 2 square feet?

Proof. Since C is a simply closed curve of some length l and bounding some area A, we must have the Isoperimetric Inequality $l^2 - 4\pi A \ge 0$ (c.f. do Carmo, page 33). However, if l = 5 and A = 2, then

$$l^{2} - 4\pi A = (5)^{2} - 4\pi(2)$$

= 25 - 8\pi
< 0.

So the Isoperimetric Inequality is not satisfied, which means there does not exist such a simple closed curve with l = 5, A = 2.

c. In part b, what is the maximum area that C can bound? What is this curve?

Proof. We can algebraically rearrange the inequality $l^2 - 4\pi A \ge 0$ to find an upper bound of the area:

$$A \le \frac{l^2}{4\pi}$$

from which it is easier to see that the maximum area is

$$A_{\max} = \frac{l^2}{4\pi}$$

Since we were given that our curve C has length l = 5, the maximum area A that C can bound is

$$A_{\max} = \frac{l^2}{4\pi}$$
$$= \frac{(5)}{4\pi}$$
$$= \frac{25}{4\pi}$$

Furthermore, the statement of the Isoperimetric Inequality from part a asserts that C must be a circle.

6. Let *S* be a compact regular surface in \mathbb{R}^3 . Prove that its mean curvature cannot vanish everywhere. (Since *S* with vanishing mean curvature is really another way of saying that *S* is minimal, this question is the same as Exercise 3-5.12 of do Carmo, and the solution to that exercise is in Homework 7.)

Proof. Suppose to the contrary that there exists some surface $S \subset \mathbb{R}^3$ whose curvature vanishes everywhere, i.e. $H \equiv 0$. So we have

$$0 = H$$
$$= \frac{k_1 + k_2}{2}$$

which implies that k_1, k_2 have opposite signs. Consequently, we have

$$det(dN_p) = K$$
$$= k_1 k_2$$
$$< 0$$

for any arbitrary point $p \in S$, which implies that S does not have any elliptic points. But this contradicts Exercise 3-3.16, which asserts that S has an elliptic point since we also assumed that S is compact. Therefore, no compact minimal surfaces exist in \mathbb{R}^3 .

It remains to prove Exercise 3-3.16 (whose solution is also found in Homework 7). Let $p \in \mathbb{R}^3$ be an elliptic point, which means det $(dN_p) > 0$ (c.f. do Carmo, page 146), where we recall that dN_p is the differential of the Gauss map N_p . Now, let S be a compact surface. Then there exists a sphere of a sufficiently large radius R > 0 such that S lies inside of the sphere, except at only one point—call it p—that touches the sphere. (Note: it would be helpful to draw a picture of this.) Let K_S and K_{S^2} denote respectively the Gaussian curvatures of the surface $S \subset \mathbb{R}^3$ and of the sphere $S^2 \subset \mathbb{R}^3$ at the point p. Then $K_{S^2} = \frac{1}{R^2} > 0$ for some large enough R > 0, where R is the radius of the sphere S^2 . Also, $K_S \ge K_{S^2}$ at the point p, since S is contained inside S^2 . Therefore,

$$det(dN_p) = K_S$$

$$\geq K_{S^2}$$

$$= \frac{1}{R^2}$$

$$> 0,$$

which means p is an elliptic point.

7. a. State the fundamental theorem for the local theory of curves.

Proof. Given differentiable functions k(s) > 0 and $\tau(s)$ for all $s \in I$, where *I* is an interval in \mathbb{R} , there exists a regular parametrized curve $\alpha : I \to \mathbb{R}^3$ such that *s* is the arc length, k(s) is the curvature, and $\tau(s)$ is the torsion of α . Moreover, any other curve $\bar{\alpha}$ satisfying the same conditions differs from α by a rigid motion; that is, there exists an orthogonal linear map ρ of \mathbb{R}^3 , with positive determinant, and a vector *c* such that $\bar{\alpha} = \rho \circ \alpha + c$. (This is in Section 1-5 of do Carmo; c.f. page 19.)

b. Prove the uniqueness part (i.e. rigidity theorem) of part a.

Proof. (The following proof is taken from Section 1-5 of do Carmo, c.f. pages 20-21, although for clarity I added a couple additional steps to the calculations.) Assume that two curves $\alpha = \alpha(s)$ and $\bar{\alpha} = \bar{\alpha}(s)$ satisfy the conditions $k(s) = \bar{k}(s)$ and $\tau(s) = \bar{\tau}(s)$ for all $s \in I$. Let t_0, n_0, b_0 and $\bar{t}_0, \bar{n}_0, \bar{b}_0$ be the Frenet trihedrons at $s_0 \in I$ of α and $\bar{\alpha}$, respectively. Then there is a rigid motion which sends $\bar{\alpha}(s_0)$ into $\alpha(s_0)$ and $\bar{t}_0, \bar{n}_0, \bar{b}_0$ into t_0, n_0, b_0 , respectively. Thus, after performing this rigid motion on $\bar{\alpha}$, we have that $\alpha(s_0) = \alpha(s_0)$ and that the Frenet trihedrons t(s), n(s), b(s) and $\bar{t}(s), \bar{n}(s), \bar{b}(s)$ of α and $\bar{\alpha}$, respectively, satisfy the Frenet equations

$$\frac{dt}{ds} = kn \qquad \qquad \frac{d\bar{t}}{ds} = k\bar{n}$$

$$\frac{dn}{ds} = -kt - \tau b \qquad \qquad \frac{d\bar{n}}{ds} = -k\bar{t} - \tau\bar{n}$$

$$\frac{db}{ds} = \tau n \qquad \qquad \frac{d\bar{b}}{ds} = \tau\bar{n},$$

with $t(s_0) = \bar{t}(s_0)$, $n(s_0) = \bar{n}(s_0)$, $b(s_0) = \bar{b}(s_0)$. We now observe, by using the Frenet equations, that

$$\begin{aligned} \frac{1}{2} \frac{d}{ds} (|t - \bar{t}|^2 + |n - \bar{n}|^2 + |b - \bar{b}|^2) &= (t - \bar{t}) \cdot (t' - \bar{t}') + (b - \bar{b}) \cdot (b' - \bar{b}') + (n - \bar{n}) \cdot (n' - \bar{n}') \\ &= (t - \bar{t}) \cdot (kn - k\bar{n}) + (b - \bar{b}) \cdot (\tau n - \tau n') + (n - \bar{n}) \cdot ((-kt - \tau b) - (-k\bar{t} - \tau \bar{b})) \\ &= k(t - \bar{t}) \cdot (n - \bar{n}) + \tau(b - \bar{b}) \cdot (n - \bar{n}) - k(n - \bar{n}) \cdot (t - \bar{t}) - \tau(n - \bar{n}) \cdot (b - \bar{b}) \\ &= k(t - \bar{t}) \cdot (n - \bar{n}) - k(n - \bar{n}) \cdot (t - \bar{t}) + \tau(b - \bar{b}) \cdot (n - \bar{n}) - \tau(n - \bar{n}) \cdot (b - \bar{b}) \\ &= 0 \end{aligned}$$

for all $s \in I$. Thus, the expression $|t - \bar{t}|^2 + |n - \bar{n}|^2 + |b - \bar{b}|^2$ is constant in *s*, and, since it is zero at $s = s_0$, we conclude that the expression must be identically zero, i.e.

$$|t - \bar{t}|^2 + |n - \bar{n}|^2 + |b - \bar{b}|^2 \equiv 0,$$

from which we get $|t - \bar{t}| = |n - \bar{n}| = |b - \bar{b}| = 0$, and so it follows that $t(s) = \bar{t}(s)$, $n(s) = \bar{n}(s)$, $b(s) = \bar{b}(s)$ for all $s \in I$. Since we also have

$$\frac{d\alpha}{ds} = t = \bar{t} = \frac{d\bar{\alpha}}{ds},$$

we obtain

$$\frac{d}{ds}(\alpha(s) - \bar{\alpha}(s)) = \bar{\alpha}'(s) - \alpha'(s)$$
$$= \bar{t}(s) - t(s)$$
$$= 0.$$

Thus, $\bar{\alpha}(s) - \alpha(s)$ is constant, i.e. $\bar{\alpha}(s) - \alpha(s) = a$, or

$$\alpha(s) = \bar{\alpha}(s) + a$$

where *a* is a constant vector in \mathbb{R}^3 . Since $\alpha(s_0) = \overline{\alpha}(s_0)$, we must have a = 0. Hence,

$$\alpha(s) = \bar{\alpha}(s)$$

for all $s \in I$.

8. Show that the mean curvature *H* at $p \in S$ of a regular surface in \mathbb{R}^3 is given by

$$H = \frac{1}{\pi} \int_0^\pi k_n(\theta) \, d\theta,$$

where $k_n(\theta)$ is the normal curvature at p along a direction making an angle θ with a fixed direction. (This is Exercise 3-2.5 of do Carmo, and the solution to that exercise is in Homework 6.)

Proof. The normal curvature k_n is given by Euler's formula (c.f. do Carmo, page 145)

$$k_n(\theta) = k_1 \cos^2 \theta + k_2 \sin^2 \theta$$

We also recall that the mean curvature is given by (c.f. do Carmo, page 146)

$$H = \frac{k_1 + k_2}{2}.$$

So we have

$$\begin{split} \int_{0}^{\pi} k_{n}(\theta) \, d\theta &= \int_{0}^{\pi} k_{1} \cos^{2} \theta + k_{2} \sin^{2} \theta \, d\theta \\ &= \int_{0}^{\pi} k_{1} \frac{1 + \cos(2\theta)}{2} + k_{2} \frac{1 - \cos(2\theta)}{2} \, d\theta \\ &= \frac{k_{1}}{2} \int_{0}^{\pi} 1 + \cos(2\theta) \, d\theta + \frac{k_{2}}{2} \int_{0}^{\pi} 1 - \cos(2\theta) \, d\theta \\ &= \frac{k_{1}}{2} \left(\theta + \frac{1}{2} \sin(2\theta) \right) \Big|_{0}^{\pi} + \frac{k_{2}}{2} \left(\theta - \frac{1}{2} \sin(2\theta) \right) \Big|_{0}^{\pi} \\ &= \frac{k_{1}}{2} \left(\left(\pi + \frac{1}{2} \sin(2\pi) \right) - \left(0 + \frac{1}{2} \sin(2(0)) \right) \right) + \frac{k_{2}}{2} \left(\left(\pi - \frac{1}{2} \sin(2\pi) \right) - \left(0 - \frac{1}{2} \sin(2(0)) \right) \right) \\ &= \frac{k_{1}}{2} \pi + \frac{k_{2}}{2} \pi \\ &= \pi \frac{k_{1} + k_{2}}{2} \\ &= \pi H, \end{split}$$

which implies algebraically

 $H = \frac{1}{\pi} \int_0^\pi k_n(\theta) \, d\theta$

as desired.

-	_		
L			
		_	