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Assignment 1 – page 5: 1,2,4,5 and page 7: 1,2

1-2.1. Find a parametrized curve α(t) whose trace is the circle x2 + y2 = 1 such that α(t) runs clockwise around the circle with
α(0) = (0, 1).

Proof. An example of such a curve is
α(t) =

(
cos

( π
2
− t

)
, sin

( π
2
− t

))
.

Indeed, α(0) = (cos π
2 , sin π

2 ) = (0, 1) and α(t) travels clockwise in the unit circle whenever t is increasing. �

1-2.2. Let α(t) be a parametrized curve which does not pass through the origin. If α(t0) is the point of the trace of α closest to the
origin and α′(t0) , 0, show that the position vector α(t0) is orthogonal to α′(t0).

Proof. Consider the function f (t) = |α(t)|2, which measures the distance between the origin and α(t) for all t ∈ I. If t0 ∈ I is
a value at which α(t0) is the point of the trace of α(t) closest to the origin, then the distance is minimzed, which means f (t) is
at its minimum at t0, and so f ′(t) = 0. But we also have

f ′(t) =
df
dt

=
d
dt
(|α(t)|2)

=
d
dt
(α(t) · α(t))

= α′(t) · α(t) + α(t) · α′(t)

= α′(t) · α(t) + α′(t) · α(t)

= 2α′(t) · α(t).

In particular, we have f ′(t0) = 2α′(t0) · α(t0). Equating both expression of f ′(t0), we conclude that α(t0) · α(t0) = 0, which
means α(t0) is orthogonal to α′(t0). �

1-2.4. Let α : I → R3 be a parametrized cure and let v ∈ R3 be a fixed vector. Assume that α′(t) is orthogonal to v for all t ∈ I and
that α(0) is also orthogonal to v. Prove that α(t) is orthogonal to v for all t ∈ I.

Proof. Since α′(t) is orthogonal to v, we have α′(t) · v = 0. Since v is a fixed vector, it does not depend on t, which means
dv
dt = 0. So

d
dt
(α(t) · v) =

dα
dt
· v + α(t) ·

dv
dt

= α′(t) · v + α(t) · 0
= α′(t) · v

= 0.

Hence, α(t) · v is constant in t. In particular, α(t) · v = α(0) · v = 0, which means α(t) is perpendicular to v, for all t ∈ I. �

1-2.5. Let α : I → R3 be a parametrized curve, with α′(t) , 0 for all t ∈ I. Show that |α(t)| is a nonzero constant if and only if α(t)
is orthogonal to α′(t) for all t ∈ I.

Proof. Suppose |α(t)| = const.. Then

d
dt
(α(t) · α(t)) =

d
dt
(|α(t)|2)

=
d
dt
(const.)2

= 0.

At the same time, we have

d
dt
(α(t) · α(t)) = α′(t) · α(t) + α(t) · α′(t)

= α(t) · α′(t) + α(t) · α′(t)

= 2α(t) · α′(t).



Equating the two expressions, we conclude that α(t) · α′(t) = 0; that is, α(t) is orthogonal to α(t).

Conversely, suppose α(t) is orthogonal to α′(t); that is, α(t) · α′(t) = 0. Then by the calculations of the previous paragraph,
we have |α(t)| = const.. Now we need to show that the constant is nonzero. Instead, suppose to the contrary that the constant
is zero. Then |α(t)| = 0, which means α(t) = 0 for all t ∈ I. This implies that α′(t) = 0 for all t ∈ I, which contradicts one of
the hypotheses which states α′(t) , 0 for all t ∈ I. So we must have that the constant be nonzero; that is, |α(t)| is a nonzero
constant. �

1-3.1. Show that the tangent lines to the regular parametrized curve α(t) = (3t, 3t2, 2t3) make a constant angle with the line y = 0,
z = x.

Proof. Let θ be the angle between α′(t) and the line described by y = 0 and z = x. Also consider the vectors (1, 0, 1) and
(−1, 0,−1), both of which lie in the line y = 0, z = x. For convenience in our calculations, we will describe (1, 0, 1) and
(−1, 0,−1) simultaneously as (±1, 0,±1). These two vectors have the same magnitude |(±1, 0,±1)| =

√
(±1)2 + (0)2 + (±1)2 =

√
2. Now considering the parametrized curve α(t) = (3t, 3t2, 2t3), We obtain the derivative

α′(t) =
dα
dt

=
d
dt
(3t, 3t2, 2t3)

=

(
d
dt
(3t),

d
dt
(3t2),

d
dt
(2t3)

)
= (3, 6t, 6t2)

and its associated magnitude

|α′(t)| =
√
(3)2 + (6t)2 + (6t2)2

=
√

9 + 36t2 + 36t4

=
√

9(1 + 4t2 + 4t4)

=
√

9(1 + 2t2)2

=
√

9
√
(1 + 2t2)2

= 3(1 + 2t2).

So we have

cos θ =
α′(t) · (±1, 0,±1)
|α′(t)| |(±1, 0,±1)|

=
(3, 6t, 6t2) · (±1, 0,±1)

(3(1 + 2t2))(
√

2)

=
(3)(±1) + (6t)(0) + (6t2)(±1)

3
√

2(1 + 2t2)

=
±3 ± 6t2

3
√

2(1 + 2t2)

=
±3(1 + 2t2)

3
√

2(1 + 2t2)

= ±
1
√

2
,

and so θ = cos( 1√
2
) = π

4 or θ = cos(− 1√
2
) = 3π

4 . Since neither of these two values depends on s, we conclude that θ is a
constant angle (that only depends on the choice of one of the two vectors (1, 0, 1) or (−1, 0,−1) in the line y = 0, z = x). �

1-3.2. A circular disk of radius 1 in the plane xy rolls without slipping along the x-axis. The figure described by a point of the
circumference of the disk is called a cycloid.

a. Obtain a parametrized curve α : R→ R2, the trace of which is the cycloid, and determine its singular (critical) points.

Proof. Since the circular disk rolls to the right without slipping, the horizontal distance traveled by the wheel is equal
to the arc length of the circle. In other words, since the given angle at time t is t radians, it follows that the arc length
is rθ = (1)(t) = t, which means the horizontal distance from the origin at time t is t as well. Moreover, since the radius
of the circular disk is 1, the height of the center from the x-axis is 1. Therefore, the (x, y)-coordinate of the center of
the circular disk is (t, 1). Now, the point on the edge of the circular disk is located initially at − π

2 radians, and the point
rotates clockwise by t radians at time t. So the clockwise motion of the point on the edge of the circular disk is described



by (cos(− π
2 − t), sin(− π

2 − t)). Therefore, the overall motion of the point on the bottom at the circular disk initially on
the origin is parametrized by

α(t) := (t, 1) +
(
cos

(
−
π

2
− t

)
, sin

(
−
π

2
− t

))
.

Furthermore, since sine is an odd function and cosine is an even function (i.e. sin(−t) = − sin t and cos(−t) = cos t, and
using the trigonometric identities sin(a + b) = sin a cos b + cos a sin b and cos(a + b) = cos a cos b − sin a sin b, we have(

cos
(
−
π

2
− t

)
, sin

(
−
π

2
− t

))
=

(
cos

(
−
π

2

)
cos(−t) − sin

(
−
π

2

)
sin(−t), sin

(
−
π

2

)
cos(−t) + cos

(
−
π

2

)
sin(−t)

)
= (0 cos(−t) − (−1) sin(−t), (−1) cos(−t) + 0 sin(−t))

= (sin(−t),− cos(−t))

= (− sin t,− cos t)

Therefore, we obtain a much nicer expression for the same parametrized curve:

α(t) = (t − sin t, 1 − cos t).

With this nicer expression of α(t), we obtain the derivative

α′(t) =
dα
dt

=
d
dt
(t − sin t, 1 − cos t)

=

(
d
dt
(t − sin t),

d
dt
(1 − cos t)

)
= (1 − cos t, sin t).

To find the critical points, we need to set α′(t) = 0, which is equivalent to saying 1 − cos t = 0 and sin t = 0. Note that,
for all n ∈ Z, t = nπ solve sin t = 0; moreover, t = nπ also solves sin t = 0 whenever n is even (i.e. n = 2k for some
k ∈ Z). Therefore, all solutions to α′(t) = 0 and hence the critical points of α(t) are t = 2πk for any k ∈ Z. �

b. Compute the arc length of the cycloid corresponding to a complete rotation of the disk.

Proof. In general, for all t ∈ R the half-angle trigonometric identity states

sin
( t
2

)
= ±

√
1 − cos t

2
.

But sin( t2 ) > 0 for all 0 < t
2 < π (or equivalently for all 0 < t < 2π), which implies

sin
( t
2

)
=

√
1 − cos t

2



for all 0 < t < 2π. Therefore, we have

L |2π0 =

∫ 2π

0
|α′(t)| dt

=

∫ 2π

0

√
(1 − cos t)2 + (sin t)2 dt

=

∫ 2π

0

√
(1 − 2 cos t + cos2 t) + sin2 t

=

∫ 2π

0

√
1 − 2 cos t + (cos2 t + sin2 t) dt

=

∫ 2π

0

√
1 − 2 cos t + 1 dt

=

∫ 2π

0

√
2 − 2 cos t dt

=

∫ 2π

0

√
2(1 − cos t) dt

= 2
∫ 2π

0

√
1 − cos t

2
dt

= 2
∫ 2π

0
sin

( t
2

)
dt

= −4 cos
( t
2

)���2π
0

= −4
(
cos

(
2π
2

)
− cos

(
0
2

))
= −4(cos π − cos 0)
= −4(−1 − 1)
= 8,

the arc length of the cycloid corresponding to one complete rotation of the disk. �


