Solutions to assigned homework problems from Differential Geometry of Curves and Surfaces by Manfredo Perdigão do Carmo

Assignment 3 - pages 47: 1,2,5

1-7.1. Is there a simple closed curve in the plane with length equal to 6 feet and bounding an area of 3 square feet?

Proof. Since *C* is a simply closed curve of some length *l* and bounding some area *A*, we must have the Isoperimetric Inequality $l^2 - 4\pi A \ge 0$ (c.f. do Carmo, page 33). However, if l = 6 and A = 3, then

$$l^{2} - 4\pi A = (6)^{2} - 4\pi(3)$$

= 36 - 12\pi
= 12(3 - \pi)
< 0

since $3 < \pi$. So the Isoperimetric Inequality is not satisfied, which means there does not exist such a simple closed curve with l = 6, A = 3.

1-7.2. Let \overline{AB} be a segment of a straight line and let l >length of AB. Show that the curve C joining A and B, with length l, and such that together with \overline{AB} bounds the largest possible area, is an arc of a circle passing through A and B.

Proof. Let S^1 be a circle such that \overline{AB} is a chord of S^1 . (Recall that a chord of a circle is any line segment that connects two points on a circle.) Let α and β be two curves which together comprise a closed curve that passes through both endpoints of \overline{AB} . Then one of the two arcs has length greater than l; suppose without loss of generality that β is a fixed arc and α is the curve with its length being greater than l. Now we consider a piecewise C^1 curve, which is one-time differentiable except at finitely many points (such as at some sharp corners of the curve). Then Remark 2 (c.f. do Carmo, page 35) states that the Isoperimetric Inequality also holds for piecewise C^1 curves; therefore, according to the Isoperimetric Inequality, the largest area in the curve formed by both α and β occurs if and only if α and β comprise a circle passing through the endpoints of \overline{AB} . In particular, α must be an arc of a circle passing through the endpoints of \overline{AB} . Since we stated already that β is a fixed arc, it follows that α together with segment \overline{AB} bounds the largest possible area.

1-7.5. If a closed plane curve C is contained inside a disk of radius r, prove that there exists a point $p \in C$ such that the curvature k of C at p satisfies $|k| \ge \frac{1}{r}$.

Proof. This problem assumes that the disk of radius *r* is centered about the origin, and moreover that *C* is a closed plane curve contained inside the disk. In other words, if we assume *t* to be the arc length parametrization of $\alpha(t)$ (i.e. $|\alpha'(t)| = 1$), the assumptions imply that we have $|\alpha(t)| \le r$ for all $t \in I$. Now, we obtain the first derivative

$$\frac{d}{dt}(|\alpha(t)|^2) = \frac{d}{dt}(\alpha(t) \cdot \alpha(t))$$
$$= \alpha'(t) \cdot \alpha(t) + \alpha(t) \cdot \alpha'(t)$$
$$= 2\alpha(t) \cdot \alpha'(t)$$

and the second derivative

$$\frac{d^2}{dt^2}(|\alpha(t)|^2) = \frac{d}{dt}\left(\frac{d}{dt}(\alpha(t)\cdot\alpha(t))\right)$$
$$= \frac{d}{dt}(2\alpha'(t)\cdot\alpha'(t))$$
$$= 2(\alpha''(t)\cdot\alpha(t) + \alpha'(t)\cdot\alpha'(t))$$
$$= 2(\alpha''(t)\cdot\alpha(t) + |\alpha'(t)|^2)$$
$$= 2(\alpha''(t)\cdot\alpha(t) + 1).$$

Let $t_0 \in I$ be some critical value at which $|\alpha(t)|$ is maximum (or equivalently $|\alpha(t)|^2$ is maximum). Then $\frac{d}{dt}(|\alpha(t_0)|^2) = 0$ by the first derivative test and $\frac{d^2}{dt^2}(|\alpha(t_0)|^2) \leq 0$ by the second derivative test. Applying our expressions above, we conclude that $\alpha(t_0) \cdot \alpha'(t_0) = 0$ and $\alpha''(t_0) \cdot \alpha(t_0) + 1 \leq 0$. Also, we can take the derivative in t of both sides of $|\alpha'(t)|^2 = 1$, using the product rule while doing so (similar to what we did in Exercise 1-2.5), to obtain eventually $\alpha''(t) \cdot \alpha'(t) = 0$; in particular, we have $\alpha''(t_0) \cdot \alpha'(t_0) = 0$. From the last two sentences, we established that $\alpha(t_0)$ is perpendicular to $\alpha'(t_0)$ and that $\alpha'(t_0)$ is perpendicular to $\alpha''(t_0)$. This implies that, in a plane, the angle θ between $\alpha(t_0)$ and $\alpha''(t_0)$ must be either 0 or π ; as we have $\theta = 0$ or $\theta = \pi$, we get $\cos \theta = \pm 1$. Therefore, we have

$$\alpha^{\prime\prime}(t_0) \cdot \alpha(t_0) = |\alpha^{\prime\prime}(t_0)| |\alpha(t_0)| \cos \theta$$
$$= \pm |\alpha^{\prime\prime}(t_0)| |\alpha(t_0)|$$
$$= \pm k(t_0) |\alpha(t_0)|.$$

So $\alpha''(t_0) \cdot \alpha(t_0) + 1 \leq 0$ really becomes $\pm k(t_0)|\alpha(t_0)| + 1 \leq 0$, or $\pm k(t_0)|\alpha(t_0)| \leq -1$. Splitting up the \pm sign, we have either $k(t_0)|\alpha(t_0)| \leq -1$ or $-k(t_0)|\alpha(t_0)| \leq -1$; equivalently, either $k(t_0) \leq -\frac{1}{|\alpha(t_0)|}$ or $k(t_0) \geq \frac{1}{|\alpha(t_0)|}$. The first inequality $k(t_0) \leq -\frac{1}{|\alpha(t_0)|}$ is nonsense because the curvature $k(t_0)$ is always nonnegative. So we must have the second inequality $k(t_0) \geq \frac{1}{|\alpha(t_0)|}$. Finally, we said $|\alpha(t)| \leq r$ at the beginning of this proof, we have in particular $|\alpha(t_0)| \leq r$, or equivalently $\frac{1}{|\alpha(t_0)|} \geq \frac{1}{r}$. Combining our last two results together, we conclude that

$$k(t_0) \ge \frac{1}{|\alpha(t_0)|}$$
$$\ge \frac{1}{r},$$

as desired.