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1-7.1. Is there a simple closed curve in the plane with length equal to 6 feet and bounding an area of 3 square feet?

Proof. Since C is a simply closed curve of some length l and bounding some area A, we must have the Isoperimetric Inequality
l2 − 4πA ≥ 0 (c.f. do Carmo, page 33). However, if l = 6 and A = 3, then

l2 − 4πA = (6)2 − 4π(3)
= 36 − 12π
= 12(3 − π)
< 0

since 3 < π. So the Isoperimetric Inequality is not satisfied, which means there does not exist such a simple closed curve with
l = 6, A = 3. �

1-7.2. Let AB be a segment of a straight line and let l > length of AB. Show that the curve C joining A and B, with length l, and
such that together with AB bounds the largest possible area, is an arc of a circle passing through A and B.

Proof. Let S1 be a circle such that AB is a chord of S1. (Recall that a chord of a circle is any line segment that connects two
points on a circle.) Let α and β be two curves which together comprise a closed curve that passes through both endpoints of
AB. Then one of the two arcs has length greater than l; suppose without loss of generality that β is a fixed arc and α is the
curve with its length being greater than l. Now we consider a piecewise C1 curve, which is one-time differentiable except at
finitely many points (such as at some sharp corners of the curve). Then Remark 2 (c.f. do Carmo, page 35) states that the
Isoperimetric Inequality also holds for piecewise C1 curves; therefore, according to the Isoperimetric Inequality, the largest
area in the curve formed by both α and β occurs if and only if α and β comprise a circle passing through the endpoints of AB.
In particular, α must be an arc of a circle passing through the endpoints of AB. Since we stated already that β is a fixed arc, it
follows that α together with segment AB bounds the largest possible area. �

1-7.5. If a closed plane curve C is contained inside a disk of radius r , prove that there exists a point p ∈ C such that the curvature k
of C at p satisfies |k | ≥ 1

r .

Proof. This problem assumes that the disk of radius r is centered about the origin, and moreover that C is a closed plane curve
contained inside the disk. In other words, if we assume t to be the arc length parametrization of α(t) (i.e. |α′(t)| = 1), the
assumptions imply that we have |α(t)| ≤ r for all t ∈ I. Now, we obtain the first derivative

d
dt
(|α(t)|2) =

d
dt
(α(t) · α(t))

= α′(t) · α(t) + α(t) · α′(t)

= 2α(t) · α′(t)

and the second derivative

d2

dt2 (|α(t)|
2) =

d
dt

(
d
dt
(α(t) · α(t))

)
=

d
dt
(2α′(t) · α′(t))

= 2(α′′(t) · α(t) + α′(t) · α′(t))

= 2(α′′(t) · α(t) + |α′(t)|2)
= 2(α′′(t) · α(t) + 1).

Let t0 ∈ I be some critical value at which |α(t)| is maximum (or equivalently |α(t)|2 is maximum). Then d
dt (|α(t0)|

2) = 0
by the first derivative test and d2

dt2 (|α(t0)|2) ≤ 0 by the second derivative test. Applying our expressions above, we conclude
that α(t0) · α′(t0) = 0 and α′′(t0) · α(t0) + 1 ≤ 0. Also, we can take the derivative in t of both sides of |α′(t)|2 = 1, using the
product rule while doing so (similar to what we did in Exercise 1-2.5), to obtain eventually α′′(t) · α′(t) = 0; in particular,
we have α′′(t0) · α′(t0) = 0. From the last two sentences, we established that α(t0) is perpendicular to α′(t0) and that α′(t0) is
perpendicualr to α′′(t0). This implies that, in a plane, the angle θ between α(t0) and α′′(t0) must be either 0 or π; as we have
θ = 0 or θ = π, we get cos θ = ±1. Therefore, we have

α′′(t0) · α(t0) = |α′′(t0)| |α(t0)| cos θ
= ±|α′′(t0)| |α(t0)|

= ±k(t0)|α(t0)|.



So α′′(t0) · α(t0) + 1 ≤ 0 really becomes ±k(t0)|α(t0)| + 1 ≤ 0, or ±k(t0)|α(t0)| ≤ −1. Splitting up the ± sign, we have
either k(t0)|α(t0)| ≤ −1 or −k(t0)|α(t0)| ≤ −1; equivalently, either k(t0) ≤ − 1

|α(t0) |
or k(t0) ≥ 1

|α(t0) |
. The first inequality

k(t0) ≤ − 1
|α(t0) |

is nonsense because the curvature k(t0) is always nonnegative. So we must have the second inequality
k(t0) ≥ 1

|α(t0) |
. Finally, we said |α(t)| ≤ r at the beginning of this proof, we have in particular |α(t0)| ≤ r , or equivalently

1
|α(t0 |

≥ 1
r . Combining our last two results together, we conclude that

k(t0) ≥
1
|α(t0)|

≥
1
r
,

as desired. �


