Solutions to assigned homework problems from Differential Geometry of Curves and Surfaces by Manfredo Perdigão do Carmo
Assignment 3 - pages 47: 1,2,5
1-7.1. Is there a simple closed curve in the plane with length equal to 6 feet and bounding an area of 3 square feet?
Proof. Since C is a simply closed curve of some length l and bounding some area A, we must have the Isoperimetric Inequality $l^{2}-4 \pi A \geq 0$ (c.f. do Carmo, page 33). However, if $l=6$ and $A=3$, then

$$
\begin{aligned}
l^{2}-4 \pi A & =(6)^{2}-4 \pi(3) \\
& =36-12 \pi \\
& =12(3-\pi) \\
& <0
\end{aligned}
$$

since $3<\pi$. So the Isoperimetric Inequality is not satisfied, which means there does not exist such a simple closed curve with $l=6, A=3$.

1-7.2. Let $\overline{A B}$ be a segment of a straight line and let $l>$ length of $A B$. Show that the curve C joining A and B, with length l, and such that together with $\overline{A B}$ bounds the largest possible area, is an arc of a circle passing through A and B.

Proof. Let S^{1} be a circle such that $\overline{A B}$ is a chord of S^{1}. (Recall that a chord of a circle is any line segment that connects two points on a circle.) Let α and β be two curves which together comprise a closed curve that passes through both endpoints of $\overline{A B}$. Then one of the two arcs has length greater than l; suppose without loss of generality that β is a fixed arc and α is the curve with its length being greater than l. Now we consider a piecewise C^{1} curve, which is one-time differentiable except at finitely many points (such as at some sharp corners of the curve). Then Remark 2 (c.f. do Carmo, page 35) states that the Isoperimetric Inequality also holds for piecewise C^{1} curves; therefore, according to the Isoperimetric Inequality, the largest area in the curve formed by both α and β occurs if and only if α and β comprise a circle passing through the endpoints of $\overline{A B}$. In particular, α must be an arc of a circle passing through the endpoints of $\overline{A B}$. Since we stated already that β is a fixed arc, it follows that α together with segment $\overline{A B}$ bounds the largest possible area.

1-7.5. If a closed plane curve C is contained inside a disk of radius r, prove that there exists a point $p \in C$ such that the curvature k of C at p satisfies $|k| \geq \frac{1}{r}$.

Proof. This problem assumes that the disk of radius r is centered about the origin, and moreover that C is a closed plane curve contained inside the disk. In other words, if we assume t to be the arc length parametrization of $\alpha(t)$ (i.e. $\left|\alpha^{\prime}(t)\right|=1$), the assumptions imply that we have $|\alpha(t)| \leq r$ for all $t \in I$. Now, we obtain the first derivative

$$
\begin{aligned}
\frac{d}{d t}\left(|\alpha(t)|^{2}\right) & =\frac{d}{d t}(\alpha(t) \cdot \alpha(t)) \\
& =\alpha^{\prime}(t) \cdot \alpha(t)+\alpha(t) \cdot \alpha^{\prime}(t) \\
& =2 \alpha(t) \cdot \alpha^{\prime}(t)
\end{aligned}
$$

and the second derivative

$$
\begin{aligned}
\frac{d^{2}}{d t^{2}}\left(|\alpha(t)|^{2}\right) & =\frac{d}{d t}\left(\frac{d}{d t}(\alpha(t) \cdot \alpha(t))\right) \\
& =\frac{d}{d t}\left(2 \alpha^{\prime}(t) \cdot \alpha^{\prime}(t)\right) \\
& =2\left(\alpha^{\prime \prime}(t) \cdot \alpha(t)+\alpha^{\prime}(t) \cdot \alpha^{\prime}(t)\right) \\
& =2\left(\alpha^{\prime \prime}(t) \cdot \alpha(t)+\left|\alpha^{\prime}(t)\right|^{2}\right) \\
& =2\left(\alpha^{\prime \prime}(t) \cdot \alpha(t)+1\right) .
\end{aligned}
$$

Let $t_{0} \in I$ be some critical value at which $|\alpha(t)|$ is maximum (or equivalently $|\alpha(t)|^{2}$ is maximum). Then $\frac{d}{d t}\left(\left|\alpha\left(t_{0}\right)\right|^{2}\right)=0$ by the first derivative test and $\frac{d^{2}}{d t^{2}}\left(\left|\alpha\left(t_{0}\right)\right|^{2}\right) \leq 0$ by the second derivative test. Applying our expressions above, we conclude that $\alpha\left(t_{0}\right) \cdot \alpha^{\prime}\left(t_{0}\right)=0$ and $\alpha^{\prime \prime}\left(t_{0}\right) \cdot \alpha\left(t_{0}\right)+1 \leq 0$. Also, we can take the derivative in t of both sides of $\left|\alpha^{\prime}(t)\right|^{2}=1$, using the product rule while doing so (similar to what we did in Exercise 1-2.5), to obtain eventually $\alpha^{\prime \prime}(t) \cdot \alpha^{\prime}(t)=0$; in particular, we have $\alpha^{\prime \prime}\left(t_{0}\right) \cdot \alpha^{\prime}\left(t_{0}\right)=0$. From the last two sentences, we established that $\alpha\left(t_{0}\right)$ is perpendicular to $\alpha^{\prime}\left(t_{0}\right)$ and that $\alpha^{\prime}\left(t_{0}\right)$ is perpendicualr to $\alpha^{\prime \prime}\left(t_{0}\right)$. This implies that, in a plane, the angle θ between $\alpha\left(t_{0}\right)$ and $\alpha^{\prime \prime}\left(t_{0}\right)$ must be either 0 or π; as we have $\theta=0$ or $\theta=\pi$, we get $\cos \theta= \pm 1$. Therefore, we have

$$
\begin{aligned}
\alpha^{\prime \prime}\left(t_{0}\right) \cdot \alpha\left(t_{0}\right) & =\left|\alpha^{\prime \prime}\left(t_{0}\right)\right|\left|\alpha\left(t_{0}\right)\right| \cos \theta \\
& = \pm\left|\alpha^{\prime \prime}\left(t_{0}\right)\right|\left|\alpha\left(t_{0}\right)\right| \\
& = \pm k\left(t_{0}\right)\left|\alpha\left(t_{0}\right)\right| .
\end{aligned}
$$

So $\alpha^{\prime \prime}\left(t_{0}\right) \cdot \alpha\left(t_{0}\right)+1 \leq 0$ really becomes $\pm k\left(t_{0}\right)\left|\alpha\left(t_{0}\right)\right|+1 \leq 0$, or $\pm k\left(t_{0}\right)\left|\alpha\left(t_{0}\right)\right| \leq-1$. Splitting up the \pm sign, we have either $k\left(t_{0}\right)\left|\alpha\left(t_{0}\right)\right| \leq-1$ or $-k\left(t_{0}\right)\left|\alpha\left(t_{0}\right)\right| \leq-1$; equivalently, either $k\left(t_{0}\right) \leq-\frac{1}{\left|\alpha\left(t_{0}\right)\right|}$ or $k\left(t_{0}\right) \geq \frac{1}{\left|\alpha\left(t_{0}\right)\right|}$. The first inequality $k\left(t_{0}\right) \leq-\frac{1}{\left|\alpha\left(t_{0}\right)\right|}$ is nonsense because the curvature $k\left(t_{0}\right)$ is always nonnegative. So we must have the second inequality $k\left(t_{0}\right) \geq \frac{1}{\left|\alpha\left(t_{0}\right)\right|}$. Finally, we said $|\alpha(t)| \leq r$ at the beginning of this proof, we have in particular $\left|\alpha\left(t_{0}\right)\right| \leq r$, or equivalently $\frac{1}{\mid \alpha\left(t_{0} \mid\right.} \geq \frac{1}{r}$. Combining our last two results together, we conclude that

$$
\begin{aligned}
k\left(t_{0}\right) & \geq \frac{1}{\left|\alpha\left(t_{0}\right)\right|} \\
& \geq \frac{1}{r}
\end{aligned}
$$

as desired.

