Solutions to assigned homework problems from Differential Geometry of Curves and Surfaces by Manfredo Perdigão do Carmo

Assignment 4 - pages 88-92: 1,2,3,4,11,15

2-4.1. Show that the equation of the tangent plane at (x_0, y_0, z_0) of a regular surface given by f(x, y, z) = 0, where 0 is a regular value of f, is

$$f_x(x_0, y_0, z_0)(x - x_0) + f_y(x_0, y_0, z_0)(y - y_0) + f_z(x_0, y_0, z_0)(z - z_0) = 0.$$

Proof. Let $\alpha(t) = (x(t), y(t), z(y))$ be a curve on the surface passing through (x_0, y_0, z_0) at t = 0. We can take the derivative in t of both sides of f(x, y, z) = 0, using the multivariable chain rule in doing so, to get

$$f_x(x, y, z)x'(t) + f_y(x, y, z)y'(t) + f_z(x, y, z)z'(t) = 0_{0}, y_0$$

Equivalently, we have

$$\nabla f(x, y, z) \cdot \alpha'(t) = (f_x(x, y, z), f_y(x, y, z), f_z(x, y, z)) \cdot (x'(t), y'(t), z'(t))$$

= $f_x(x, y, z)x'(t) + f_y(x, y, z)y'(t) + f_z(x, y, z)z'(t)$
= 0.

In particular, at t = 0, we have

$$\nabla f(x_0, y_0, z_0) \cdot \alpha'(0) = 0.$$

Since our choice of $\alpha(t)$ passing through *p* at t = 0 is arbitrary, $\alpha'(0)$ is also arbitrary. In other words, all vectors tangent to the surface at (x_0, y_0, z_0) must be perpendicular to $\nabla f(x_0, y_0, z_0)$. In particular, if (x, y, z) is another point in the plane tangent to the surface at (x_0, y_0, z_0) , then the vector $(x - x_0, y - y_0, z - z_0)$ lies in that tangent plane, and so we have

$$\nabla f(x_0, y_0, z_0) \cdot (x - x_0, y - y_0, z - z_0) = 0$$

or equivalently,

$$f_x(x_0, y_0, z_0)(x - x_0) + f_y(x_0, y_0, z_0)(y - y_0) + f_z(x_0, y_0, z_0)(z - z_0) = 0,$$

as desired.

2-4.2. Determine the tangent planes of $x^2 + y^2 - z^2 = 1$ at the points (x, y, 0) and show that they are all parallel to the *z*-axis.

Proof. Let $f(x, y, z) = x^2 + y^2 - z^2$. Then $f_x(x, y, z) = 2x$, $f_y(x, y, z) = 2y$, $f_z(x, y, z) = -2z$; in particular, at the point $(x_0, y_0, 0)$, we have $f_x(x_0, y_0, 0) = 2x_0$, $f_y(x_0, y_0, 0) = 2y_0$, $f_z(x_0, y_0, 0) = 0$. So the tangent equation at the point $(x_0, y_0, 0)$ is

$$f_x(x_0, y_0, 0)(x - x_0) + f_y(x_0, y_0, 0)(y - y_0) + f_z(x_0, y_0, 0)(z - 0) = 0,$$

or equivalently,

$$\nabla f(x_0, y_0, 0) \cdot (x - x_0, y - y_0, z - z_0) = (f_x(x_0, y_0, 0), f_y(x_0, y_0, 0), f_z(x_0, y_0, 0)) \cdot (x - x_0, y - y_0, z - z_0)$$

= $f_x(x_0, y_0, 0)(x - x_0) + f_y(x_0, y_0, 0)(y - y_0) + f_z(x_0, y_0, 0)(z - z_0)$
= $2x_0(x - x_0) + 2y_0(y - y_0) - 0(z - 0)$
= 0.

which signifies that $\nabla f(x_0, y_0, 0)$ is perpendicular to the tangent plane. Now, we consider the vectors $(0, 0, \pm 1)$ in the *z*-axis. Then we also have

$$\nabla f(x_0, y_0, 0) \cdot (0, 0, \pm 1) = (f_x(x_0, y_0, 0), f_y(x_0, y_0, 0), f_z(x_0, y_0, 0)) \cdot (0, 0, \pm 1)$$

= $f_x(x_0, y_0, 0)(0) + f_y(x_0, y_0, 0)(0) + f_z(x_0, y_0, 0)(\pm 1)$
= $(2x_0)(0) + (2y_0)(0) + (0)(\pm 1)$
= $0.$

which signifies that $\nabla f(x_0, y_0, 0)$ is also perpendicular to the *z*-axis. Therefore, the tangent plane and the *z*-axis are parallel. Since we argued this for the point $(x_0, y_0, 0)$, we can extend our argument to arbitrary points of the form (x, y, 0), as desired. \Box

2-4.3. Show that the equation of the tangent plane of a surface which is the graph of a differentiable function z = f(x, y), at the point $p_0 = (x_0, y_0)$, is given by

$$z = f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0).$$

Recall the definition of the differential df of a function $f : \mathbb{R}^2 \to \mathbb{R}$ and show that the tangent plane is the graph of the differential df_p .

Proof. Define g(x, y, z) := f(x, y) - z. Then we are describing the set of all points (x, y, z) satisfying g(x, y, z) = 0 (that is, satisfying z = f(x, y)). We obtain the partial derivatives $g_x(x, y, z) = f_x(x, y)$, $g_y(x, y, z) = f_y(x, y)$, $g_z(x, y, z) = -1$. According to Exercise 2-4.1, the equation of the tangent plane (applied to g(x, y, z)) is

$$g_x(x_0, y_0, z_0)(x - x_0) + g_y(x_0, y_0, z_0)(y - y_0) + g_z(x_0, y_0, z_0)(z - z_0) = 0,$$

or equivalently

$$f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0) - 1(z - f(x_0, y_0)) = 0.$$

Solving for *z*, we arrive at

$$z = f(x_0, y_0)(x - x_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0),$$

as desired.

2-4.4. Show that the tangent planes of a surface given by $z = xf(\frac{y}{x}), x \neq 0$, where f is a differentiable function, all pass through the origin (0, 0, 0).

Proof. Let $t = \frac{y}{x}$. Then $z(x, y) = xf(\frac{y}{x}) = xf(t)$, and so we obtain the partial derivatives

$$z_x(x, y) = \frac{\partial z}{\partial x} = \frac{\partial}{\partial x}(xf(t))$$
$$= f(t) + x\frac{\partial}{\partial x}f(t)$$
$$= f(t) + xf'(t)\frac{\partial t}{\partial x}$$
$$= f\left(\frac{y}{x}\right) + xf'\left(\frac{y}{x}\right)\frac{\partial}{\partial x}\left(\frac{y}{x}\right)$$
$$= f\left(\frac{y}{x}\right) + xf'\left(\frac{y}{x}\right)\left(-\frac{y}{x^2}\right)$$
$$= f\left(\frac{y}{x}\right) - \frac{y}{x}f'\left(\frac{y}{x}\right)$$

and

$$z_{y}(x, y) = \frac{\partial z}{\partial y} = \frac{\partial}{\partial y}(xf(t))$$
$$= x\frac{\partial}{\partial y}f(t)$$
$$= xf'(t)\frac{\partial t}{\partial y}$$
$$= xf'\left(\frac{y}{x}\right)\frac{\partial}{\partial y}\left(\frac{y}{x}\right)$$
$$= xf'\left(\frac{y}{x}\right)\frac{\partial}{\partial y}\frac{1}{x}$$
$$= f'\left(\frac{y}{x}\right).$$

The tangent equation in Exercise 2-4.3 gives us

$$z(x, y) = f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$$

= $z(x_0, y_0) + z_x(x_0, y_0)(x - x_0) + z_y(x_0, y_0)(y - y_0)$
= $x_0 f\left(\frac{x_0}{y_0}\right) + \left(f\left(\frac{y_0}{x_0}\right) - \frac{y_0}{x_0}f'\left(\frac{y_0}{x_0}\right)\right)(x - x_0) + f'\left(\frac{y_0}{x_0}\right)(y - y_0)$

In particular, our equation of the tangent plane satisfies

$$z(0,0) = x_0 f\left(\frac{x_0}{y_0}\right) + \left(f\left(\frac{y_0}{x_0}\right) - \frac{y_0}{x_0}f'\left(\frac{y_0}{x_0}\right)\right)(0 - x_0) + f'\left(\frac{y_0}{x_0}\right)(0 - y_0)$$

= $x_0 f\left(\frac{x_0}{y_0}\right) - f\left(\frac{y_0}{x_0}\right)x_0 + \frac{y_0}{x_0}f'\left(\frac{y_0}{x_0}\right)x_0 - f'\left(\frac{y_0}{x_0}\right)y_0$
= 0

which implies that the tangent plane goes through the point (0, 0, 0) (that is, the origin).

2-4.11. Show that the normals to a parametrized surface given by

$$\mathbf{x}(u, v) = (f(u)\cos v, f(u)\sin v, g(u)),$$

 $f(u) \neq 0, g' \neq 0$, all pass through the *z*-axis.

Proof. Given $\mathbf{x}(u, v) = (f(u) \cos v, f(u) \sin v, g(u))$, we obtain the derivatives

$$\mathbf{x}_{u}(u, v) = \frac{\partial \mathbf{x}}{\partial u} = \frac{\partial}{\partial u} (f(u) \cos v, f(u) \sin v, g(u))$$
$$= \left(\frac{\partial}{\partial u} (f(u) \cos v), \frac{\partial}{\partial u} (f(u) \sin v), \frac{\partial}{\partial u} g(u)\right)$$
$$= (f'(u) \cos v, f'(u) \sin v, g'(u))$$

and

$$\mathbf{x}_{v}(u,v) = \frac{\partial \mathbf{x}}{\partial v} = \frac{\partial}{\partial v} (f(u)\cos v, f(u)\sin v, g(u))$$
$$= \left(\frac{\partial}{\partial v} (f(u)\cos v), \frac{\partial}{\partial v} (f(u)\sin v), \frac{\partial}{\partial v} g(u)\right)$$
$$= (-f(u)\sin v, f(u)\cos v, 0).$$

So we obtain the cross product

$$\begin{aligned} \mathbf{x}_{u}(u,v) \times \mathbf{x}_{v}(u,v) &= \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ f'(u)\cos v & f'(u)\sin v & g'(u) \\ -f(u)\sin v & f(u)\cos v & 0 \end{vmatrix} \\ &= \begin{vmatrix} f'(u)\sin v & g'(u) \\ f(u)\cos v & 0 \end{vmatrix} \left| \mathbf{i} - \begin{vmatrix} f'(u)\cos v & g'(u) \\ -f(u)\sin v & 0 \end{vmatrix} \right| \mathbf{j} + \begin{vmatrix} f'(u)\cos v & f'(u)\cos v \\ -f(u)\sin v & f(u)\cos v \end{vmatrix} \mathbf{k} \\ &= ((f'(u)\sin v)(0) - (f(u)\cos v)(g'(u)))\mathbf{i} - ((f'(u)\cos v)(0) - (-f(u)\sin v)(g'(u)))\mathbf{j} \\ &- ((f'(u)\cos v)(f(u)\cos v) - (-f(u)\sin v)(f'(u)\sin v))\mathbf{k} \\ &= (-f(u)g'(u)\cos v)\mathbf{i} + (-f(u)g'(u)\sin v)\mathbf{j} + (f(u)f'(u))\mathbf{k} \\ &= (-f(u)g'(u)\cos v, -f(u)g'(u)\sin v, f(u)f'(u)) \end{aligned}$$

and its associated magnitude

$$\begin{aligned} |\mathbf{x}_{u}(u,v) \times \mathbf{x}_{v}(u,v)| &= \sqrt{(-f(u)g'(u)\cos v)^{2} + (-f(u)g'(u)\sin v)^{2} + (f(u)f'(u))^{2}} \\ &= \sqrt{(f(u)g'(u))^{2}(\cos^{2}v + \sin^{2}v) + (f(u)f'(u))^{2}} \\ &= \sqrt{(f(u)g'(u))^{2} + (f(u)f'(u))^{2}} \\ &= \sqrt{(f(u))^{2}((g'(u))^{2} + (f'(u))^{2})} \\ &= |f(u)|\sqrt{(g'(u))^{2} + (f'(u))^{2}}. \end{aligned}$$

According to the definition on page 87 of do Carmo, we obtain the unit normal vector

$$N = \frac{\mathbf{x}_{u}(u, v) \times \mathbf{x}_{v}(u, v)}{|\mathbf{x}_{u}(u, v) \times \mathbf{x}_{v}(u, v)|}$$

=
$$\frac{(-f(u)g'(u)\cos v, -f(u)g'(u)\sin v, f(u)f'(u))}{|f(u)|\sqrt{(g'(u))^{2} + (f'(u))^{2}}}.$$

Since the problem assumed that $f(u) \neq 0$ and $g' \neq 0$, it follows that $|\mathbf{x}_u \times \mathbf{x}_v| > 0$, which means N cannot possibly be undefined. The line that contains N is given by

$$\begin{aligned} \alpha(t) &= \mathbf{x}(u, v) + tN \\ &= (f(u)\cos v, f(u)\sin v, g(u)) + t \frac{(-f(u)g'(u)\cos v, -f(u)g'(u)\sin v, f(u)f'(u))}{|f(u)|\sqrt{(g'(u))^2 + (f'(u))^2}} \end{aligned}$$

for all $t \in \mathbb{R}$. However, this expression of $\alpha(t)$ is quickly getting complicated. So we should consider a slight workaround. To this end, it is important to observe that, if the line described by $\alpha(t)$ contains N, the same line also contains the vector $|f(u)|\sqrt{(g'(u))^2 + (f'(u))^2}N = (-f(u)g'(u)\cos v, f(u)g'(u)\sin v, f(u)f'(u))$, which is a scalar multiple of N. So we can describe the same line as

$$\begin{aligned} \beta(t) &= \mathbf{x}(u, v) + t(|f(u)| \sqrt{(g'(u))^2 + (f'(u))^2 N}) \\ &= (f(u)\cos v, f(u)\sin v, g(u)) + t(-f(u)g'(u)\cos v, -f(u)g'(u)\sin v, f(u)f'(u)) \\ &= (f(u)\cos v - tf(u)g'(u)\cos v, f(u)\sin v - tf(u)g'(u)\sin v, g(u) + tf(u)f'(u)) \\ &= (1 - tg'(u))f(u)\cos v, (1 - tg'(u))f(u)\sin v, g(u) + tf(u)f'(u)), \end{aligned}$$

which is a much easier expression to work with. Now, to prove that this line passes through the *z*-axis, we need to find some $t_0 \in \mathbb{R}$ such that $\beta(t_0) = (0, 0, k)$ for some $k \in \mathbb{R}$. To satisfy this condition, we must set the first and second coordinates of $\beta(t_0)$ equal to zero; that is, we must set

$$(1 - t_0 g'(u)) f(u) \cos v = 0$$

(1 - t_0 g'(u)) f(u) \sin v = 0,

from which we will solve for t_0 . To this end, we can multiply both sides of the first equation by $\cos v$ and both sides of the second equation by $\sin v$ so that our system of equations becomes

$$(1 - t_0 g'(u)) f(u) \cos^2 v = 0$$

(1 - t_0 g'(u)) f(u) sin² v = 0.

So we can add up the two equations to obtain $(1 - t_0g'(u))f(u) = 0$. Since $f(u) \neq 0$, we can divide both sides of our latest equation by f(u) to obtain $1 - t_0g'(u) = 0$, and so $t_0 = \frac{1}{g'(u)}$. Hence, we have $\beta(t_0) = (0, 0, g(u) + t_0f(u)f'(u))$, which means that the line $\beta(t)$ crosses the *z*-axis at $t = t_0$.

2-4.15. Show that if all normals to a connected surface pass through a fixed point, the surface is contained in a sphere.

Proof. Notice that this question is a three-dimensional analog of Exercise 1-5.4; the proof for Exercise 2-4.15 will be copied verbatim from Exercise 1-5.4 except for minor adjustments. Let $p = (x_0, y_0, z_0)$ be a fixed point and n(s) a unit normal vector of the parametrized surface $\alpha(s) = (x(u(s), v(s)), y(u(s), v(s)), z(u(s), v(s)))$; that is, $\alpha'(s) \cdot n(s) = 0$. Since n(s) passes through p, we have $\alpha(s) - p = \lambda n(s)$ for some scalar $\lambda \in \mathbb{R}$. So we have

$$\frac{d}{ds}(|\alpha(s) - p|^2) = \frac{d}{ds}((\alpha(s) - p) \cdot (\alpha(s) - p))$$

$$= \frac{d}{ds}(\alpha(s) - p) \cdot (\alpha(s) - p) + (\alpha(s) - p) \cdot \frac{d}{ds}(\alpha(s) - p))$$

$$= 2\frac{d}{ds}(\alpha(s) - p) \cdot (\alpha(s) - p)$$

$$= 2\alpha'(s) \cdot (\alpha(s) - p)$$

$$= 2\alpha'(s) \cdot \lambda n(s)$$

$$= 2\lambda \alpha'(s) \cdot n(s)$$

$$= 0.$$

Hence, $|\alpha(s) - p|^2$ is constant, which means $|\alpha(s) - p|$ is constant. In other words, for all $s \in I$ the distance between $\alpha(s)$ and p is the same, which implies that the surface parametrized by $\alpha(s)$ is contained in a sphere of center p.