Solutions to assigned homework problems from Differential Geometry of Curves and Surfaces by Manfredo Perdigão do Carmo
Assignment 4 - pages 88-92: 1,2,3,4,11,15
2-4.1. Show that the equation of the tangent plane at $\left(x_{0}, y_{0}, z_{0}\right)$ of a regular surface given by $f(x, y, z)=0$, where 0 is a regular valueo $\mathrm{f} f$, is

$$
f_{x}\left(x_{0}, y_{0}, z_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}, z_{0}\right)\left(y-y_{0}\right)+f_{z}\left(x_{0}, y_{0}, z_{0}\right)\left(z-z_{0}\right)=0 .
$$

Proof. Let $\alpha(t)=(x(t), y(t), z(y))$ be a curve on the surface passing through $\left(x_{0}, y_{0}, z_{0}\right)$ at $t=0$. We can take the derivative in $t$ of both sides of $f(x, y, z)=0$, using the multivariable chain rule in doing so, to get

$$
f_{x}(x, y, z) x^{\prime}(t)+f_{y}(x, y, z) y^{\prime}(t)+f_{z}(x, y, z) z^{\prime}(t)=0.0, y_{0}
$$

Equivalently, we have

$$
\begin{aligned}
\nabla f(x, y, z) \cdot \alpha^{\prime}(t) & =\left(f_{x}(x, y, z), f_{y}(x, y, z), f_{z}(x, y, z)\right) \cdot\left(x^{\prime}(t), y^{\prime}(t), z^{\prime}(t)\right) \\
& =f_{x}(x, y, z) x^{\prime}(t)+f_{y}(x, y, z) y^{\prime}(t)+f_{z}(x, y, z) z^{\prime}(t) \\
& =0 .
\end{aligned}
$$

In particular, at $t=0$, we have

$$
\nabla f\left(x_{0}, y_{0}, z_{0}\right) \cdot \alpha^{\prime}(0)=0 .
$$

Since our choice of $\alpha(t)$ passing through $p$ at $t=0$ is arbitrary, $\alpha^{\prime}(0)$ is also arbitrary. In other words, all vectors tangent to the surface at $\left(x_{0}, y_{0}, z_{0}\right)$ must be perpendicular to $\nabla f\left(x_{0}, y_{0}, z_{0}\right)$. In particular, if $(x, y, z)$ is another point in the plane tangent to the surface at $\left(x_{0}, y_{0}, z_{0}\right)$, then the vector $\left(x-x_{0}, y-y_{0}, z-z_{0}\right)$ lies in that tangent plane, and so we have

$$
\nabla f\left(x_{0}, y_{0}, z_{0}\right) \cdot\left(x-x_{0}, y-y_{0}, z-z_{0}\right)=0
$$

or equivalently,

$$
f_{x}\left(x_{0}, y_{0}, z_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}, z_{0}\right)\left(y-y_{0}\right)+f_{z}\left(x_{0}, y_{0}, z_{0}\right)\left(z-z_{0}\right)=0
$$

as desired.
2-4.2. Determine the tangent planes of $x^{2}+y^{2}-z^{2}=1$ at the points $(x, y, 0)$ and show that they are all parallel to the $z$-axis.
Proof. Let $f(x, y, z)=x^{2}+y^{2}-z^{2}$. Then $f_{x}(x, y, z)=2 x, f_{y}(x, y, z)=2 y, f_{z}(x, y, z)=-2 z$; in particular, at the point $\left(x_{0}, y_{0}, 0\right)$, we have $f_{x}\left(x_{0}, y_{0}, 0\right)=2 x_{0}, f_{y}\left(x_{0}, y_{0}, 0\right)=2 y_{0}, f_{z}\left(x_{0}, y_{0}, 0\right)=0$. So the tangent equation at the point $\left(x_{0}, y_{0}, 0\right)$ is

$$
f_{x}\left(x_{0}, y_{0}, 0\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}, 0\right)\left(y-y_{0}\right)+f_{z}\left(x_{0}, y_{0}, 0\right)(z-0)=0
$$

or equivalently,

$$
\begin{aligned}
\nabla f\left(x_{0}, y_{0}, 0\right) \cdot\left(x-x_{0}, y-y_{0}, z-z_{0}\right) & =\left(f_{x}\left(x_{0}, y_{0}, 0\right), f_{y}\left(x_{0}, y_{0}, 0\right), f_{z}\left(x_{0}, y_{0}, 0\right)\right) \cdot\left(x-x_{0}, y-y_{0}, z-z_{0}\right) \\
& =f_{x}\left(x_{0}, y_{0}, 0\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}, 0\right)\left(y-y_{0}\right)+f_{z}\left(x_{0}, y_{0}, 0\right)\left(z-z_{0}\right) \\
& =2 x_{0}\left(x-x_{0}\right)+2 y_{0}\left(y-y_{0}\right)-0(z-0) \\
& =0,
\end{aligned}
$$

which signifies that $\nabla f\left(x_{0}, y_{0}, 0\right)$ is perpendicular to the tangent plane. Now, we consider the vectors $(0,0, \pm 1)$ in the $z$-axis. Then we also have

$$
\begin{aligned}
\nabla f\left(x_{0}, y_{0}, 0\right) \cdot(0,0, \pm 1) & =\left(f_{x}\left(x_{0}, y_{0}, 0\right), f_{y}\left(x_{0}, y_{0}, 0\right), f_{z}\left(x_{0}, y_{0}, 0\right)\right) \cdot(0,0, \pm 1) \\
& =f_{x}\left(x_{0}, y_{0}, 0\right)(0)+f_{y}\left(x_{0}, y_{0}, 0\right)(0)+f_{z}\left(x_{0}, y_{0}, 0\right)( \pm 1) \\
& =\left(2 x_{0}\right)(0)+\left(2 y_{0}\right)(0)+(0)( \pm 1) \\
& =0
\end{aligned}
$$

which signifies that $\nabla f\left(x_{0}, y_{0}, 0\right)$ is also perpendicular to the $z$-axis. Therefore, the tangent plane and the $z$-axis are parallel. Since we argued this for the point $\left(x_{0}, y_{0}, 0\right)$, we can extend our argument to arbitrary points of the form $(x, y, 0)$, as desired.

2-4.3. Show that the equation of the tangent plane of a surface which is the graph of a differentiable function $z=f(x, y)$, at the point $p_{0}=\left(x_{0}, y_{0}\right)$, is given by

$$
z=f\left(x_{0}, y_{0}\right)+f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)
$$

Recall the definition of the differential $d f$ of a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and show that the tangent plane is the graph of the differential $d f_{p}$.

Proof. Define $g(x, y, z):=f(x, y)-z$. Then we are describing the set of all points $(x, y, z)$ satisfying $g(x, y, z)=0$ (that is, satisfying $z=f(x, y))$. We obtain the partial derivatives $g_{x}(x, y, z)=f_{x}(x, y), g_{y}(x, y, z)=f_{y}(x, y), g_{z}(x, y, z)=-1$. According to Exercise 2-4.1, the equation of the tangent plane (applied to $g(x, y, z)$ ) is

$$
g_{x}\left(x_{0}, y_{0}, z_{0}\right)\left(x-x_{0}\right)+g_{y}\left(x_{0}, y_{0}, z_{0}\right)\left(y-y_{0}\right)+g_{z}\left(x_{0}, y_{0}, z_{0}\right)\left(z-z_{0}\right)=0
$$

or equivalently

$$
f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)-1\left(z-f\left(x_{0}, y_{0}\right)\right)=0
$$

Solving for $z$, we arrive at

$$
z=f\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right),
$$

as desired.
2-4.4. Show that the tangent planes of a surface given by $z=x f\left(\frac{y}{x}\right), x \neq 0$, where $f$ is a differentiable function, all pass through the origin $(0,0,0)$.

Proof. Let $t=\frac{y}{x}$. Then $z(x, y)=x f\left(\frac{y}{x}\right)=x f(t)$, and so we obtain the partial derivatives

$$
\begin{aligned}
z_{x}(x, y) & =\frac{\partial z}{\partial x}=\frac{\partial}{\partial x}(x f(t)) \\
& =f(t)+x \frac{\partial}{\partial x} f(t) \\
& =f(t)+x f^{\prime}(t) \frac{\partial t}{\partial x} \\
& =f\left(\frac{y}{x}\right)+x f^{\prime}\left(\frac{y}{x}\right) \frac{\partial}{\partial x}\left(\frac{y}{x}\right) \\
& =f\left(\frac{y}{x}\right)+x f^{\prime}\left(\frac{y}{x}\right)\left(-\frac{y}{x^{2}}\right) \\
& =f\left(\frac{y}{x}\right)-\frac{y}{x} f^{\prime}\left(\frac{y}{x}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
z_{y}(x, y) & =\frac{\partial z}{\partial y}=\frac{\partial}{\partial y}(x f(t)) \\
& =x \frac{\partial}{\partial y} f(t) \\
& =x f^{\prime}(t) \frac{\partial t}{\partial y} \\
& =x f^{\prime}\left(\frac{y}{x}\right) \frac{\partial}{\partial y}\left(\frac{y}{x}\right) \\
& =x f^{\prime}\left(\frac{y}{x}\right) \frac{\partial}{\partial y} \frac{1}{x} \\
& =f^{\prime}\left(\frac{y}{x}\right)
\end{aligned}
$$

The tangent equation in Exercise 2-4.3 gives us

$$
\begin{aligned}
z(x, y) & =f\left(x_{0}, y_{0}\right)+f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right) \\
& =z\left(x_{0}, y_{0}\right)+z_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+z_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right) \\
& =x_{0} f\left(\frac{x_{0}}{y_{0}}\right)+\left(f\left(\frac{y_{0}}{x_{0}}\right)-\frac{y_{0}}{x_{0}} f^{\prime}\left(\frac{y_{0}}{x_{0}}\right)\right)\left(x-x_{0}\right)+f^{\prime}\left(\frac{y_{0}}{x_{0}}\right)\left(y-y_{0}\right) .
\end{aligned}
$$

In particular, our equation of the tangent plane satisfies

$$
\begin{aligned}
z(0,0) & =x_{0} f\left(\frac{x_{0}}{y_{0}}\right)+\left(f\left(\frac{y_{0}}{x_{0}}\right)-\frac{y_{0}}{x_{0}} f^{\prime}\left(\frac{y_{0}}{x_{0}}\right)\right)\left(0-x_{0}\right)+f^{\prime}\left(\frac{y_{0}}{x_{0}}\right)\left(0-y_{0}\right) \\
& =x_{0} f\left(\frac{x_{0}}{y_{0}}\right)-f\left(\frac{y_{0}}{x_{0}}\right) x_{0}+\frac{y_{0}}{x_{0}} f^{\prime}\left(\frac{y_{0}}{x_{0}}\right) x_{0}-f^{\prime}\left(\frac{y_{0}}{x_{0}}\right) y_{0} \\
& =0
\end{aligned}
$$

which implies that the tangent plane goes through the point $(0,0,0)$ (that is, the origin).
2-4.11. Show that the normals to a parametrized surface given by

$$
\mathbf{x}(u, v)=(f(u) \cos v, f(u) \sin v, g(u))
$$

$f(u) \neq 0, g^{\prime} \neq 0$, all pass through the $z$-axis.

Proof. Given $\mathbf{x}(u, v)=(f(u) \cos v, f(u) \sin v, g(u))$, we obtain the derivatives

$$
\begin{aligned}
\mathbf{x}_{u}(u, v) & =\frac{\partial \mathbf{x}}{\partial u}=\frac{\partial}{\partial u}(f(u) \cos v, f(u) \sin v, g(u)) \\
& =\left(\frac{\partial}{\partial u}(f(u) \cos v), \frac{\partial}{\partial u}(f(u) \sin v), \frac{\partial}{\partial u} g(u)\right) \\
& =\left(f^{\prime}(u) \cos v, f^{\prime}(u) \sin v, g^{\prime}(u)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\mathbf{x}_{v}(u, v) & =\frac{\partial \mathbf{x}}{\partial v}=\frac{\partial}{\partial v}(f(u) \cos v, f(u) \sin v, g(u)) \\
& =\left(\frac{\partial}{\partial v}(f(u) \cos v), \frac{\partial}{\partial v}(f(u) \sin v), \frac{\partial}{\partial v} g(u)\right) \\
& =(-f(u) \sin v, f(u) \cos v, 0) .
\end{aligned}
$$

So we obtain the cross product

$$
\begin{aligned}
\mathbf{x}_{u}(u, v) \times \mathbf{x}_{v}(u, v)= & \left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
f^{\prime}(u) \cos v & f^{\prime}(u) \sin v & g^{\prime}(u) \\
-f(u) \sin v & f(u) \cos v & 0
\end{array}\right| \\
= & \left|\begin{array}{cc}
f^{\prime}(u) \sin v & g^{\prime}(u) \\
f(u) \cos v & 0
\end{array}\right| \mathbf{i}-\left|\begin{array}{cc}
f^{\prime}(u) \cos v & g^{\prime}(u) \\
-f(u) \sin v & 0
\end{array}\right| \mathbf{j}+\left|\begin{array}{cc}
f^{\prime}(u) \cos v & f^{\prime}(u) \cos v \\
-f(u) \sin v & f(u) \cos v
\end{array}\right| \mathbf{k} \\
= & \left(\left(f^{\prime}(u) \sin v\right)(0)-(f(u) \cos v)\left(g^{\prime}(u)\right)\right) \mathbf{i}-\left(\left(f^{\prime}(u) \cos v\right)(0)-(-f(u) \sin v)\left(g^{\prime}(u)\right)\right) \mathbf{j} \\
& -\left(\left(f^{\prime}(u) \cos v\right)(f(u) \cos v)-(-f(u) \sin v)\left(f^{\prime}(u) \sin v\right)\right) \mathbf{k} \\
= & \left(-f(u) g^{\prime}(u) \cos v\right) \mathbf{i}+\left(-f(u) g^{\prime}(u) \sin v\right) \mathbf{j}+\left(f(u) f^{\prime}(u)\right) \mathbf{k} \\
= & \left(-f(u) g^{\prime}(u) \cos v,-f(u) g^{\prime}(u) \sin v, f(u) f^{\prime}(u)\right)
\end{aligned}
$$

and its associated magnitude

$$
\begin{aligned}
\left|\mathbf{x}_{u}(u, v) \times \mathbf{x}_{v}(u, v)\right| & =\sqrt{\left(-f(u) g^{\prime}(u) \cos v\right)^{2}+\left(-f(u) g^{\prime}(u) \sin v\right)^{2}+\left(f(u) f^{\prime}(u)\right)^{2}} \\
& =\sqrt{\left(f(u) g^{\prime}(u)\right)^{2}\left(\cos ^{2} v+\sin ^{2} v\right)+\left(f(u) f^{\prime}(u)\right)^{2}} \\
& =\sqrt{\left(f(u) g^{\prime}(u)\right)^{2}+\left(f(u) f^{\prime}(u)\right)^{2}} \\
& =\sqrt{(f(u))^{2}\left(\left(g^{\prime}(u)\right)^{2}+\left(f^{\prime}(u)\right)^{2}\right)} \\
& =|f(u)| \sqrt{\left(g^{\prime}(u)\right)^{2}+\left(f^{\prime}(u)\right)^{2}} .
\end{aligned}
$$

According to the definition on page 87 of do Carmo, we obtain the unit normal vector

$$
\begin{aligned}
N & =\frac{\mathbf{x}_{u}(u, v) \times \mathbf{x}_{v}(u, v)}{\left|\mathbf{x}_{u}(u, v) \times \mathbf{x}_{v}(u, v)\right|} \\
& =\frac{\left(-f(u) g^{\prime}(u) \cos v,-f(u) g^{\prime}(u) \sin v, f(u) f^{\prime}(u)\right)}{|f(u)| \sqrt{\left(g^{\prime}(u)\right)^{2}+\left(f^{\prime}(u)\right)^{2}}} .
\end{aligned}
$$

Since the problem assumed that $f(u) \neq 0$ and $g^{\prime} \neq 0$, it follows that $\left|\mathbf{x}_{u} \times \mathbf{x}_{v}\right|>0$, which means $N$ cannot possibly be undefined. The line that contains $N$ is given by

$$
\begin{aligned}
\alpha(t) & =\mathbf{x}(u, v)+t N \\
& =(f(u) \cos v, f(u) \sin v, g(u))+t \frac{\left(-f(u) g^{\prime}(u) \cos v,-f(u) g^{\prime}(u) \sin v, f(u) f^{\prime}(u)\right)}{|f(u)| \sqrt{\left(g^{\prime}(u)\right)^{2}+\left(f^{\prime}(u)\right)^{2}}}
\end{aligned}
$$

for all $t \in \mathbb{R}$. However, this expression of $\alpha(t)$ is quickly getting complicated. So we should consider a slight workaround. To this end, it is important to observe that, if the line described by $\alpha(t)$ contains $N$, the same line also contains the vector $|f(u)| \sqrt{\left(g^{\prime}(u)\right)^{2}+\left(f^{\prime}(u)\right)^{2}} N=\left(-f(u) g^{\prime}(u) \cos v, f(u) g^{\prime}(u) \sin v, f(u) f^{\prime}(u)\right)$, which is a scalar multiple of $N$. So we can describe the same line as

$$
\begin{aligned}
\beta(t) & =\mathbf{x}(u, v)+t\left(|f(u)| \sqrt{\left(g^{\prime}(u)\right)^{2}+\left(f^{\prime}(u)\right)^{2}} N\right) \\
& =(f(u) \cos v, f(u) \sin v, g(u))+t\left(-f(u) g^{\prime}(u) \cos v,-f(u) g^{\prime}(u) \sin v, f(u) f^{\prime}(u)\right) \\
& =\left(f(u) \cos v-t f(u) g^{\prime}(u) \cos v, f(u) \sin v-t f(u) g^{\prime}(u) \sin v, g(u)+t f(u) f^{\prime}(u)\right) \\
& \left.=\left(1-t g^{\prime}(u)\right) f(u) \cos v,\left(1-t g^{\prime}(u)\right) f(u) \sin v, g(u)+t f(u) f^{\prime}(u)\right),
\end{aligned}
$$

which is a much easier expression to work with. Now, to prove that this line passes through the $z$-axis, we need to find some $t_{0} \in \mathbb{R}$ such that $\beta\left(t_{0}\right)=(0,0, k)$ for some $k \in \mathbb{R}$. To satisfy this condition, we must set the first and second coordinates of $\beta\left(t_{0}\right)$ equal to zero; that is, we must set

$$
\begin{aligned}
\left(1-t_{0} g^{\prime}(u)\right) f(u) \cos v & =0 \\
\left(1-t_{0} g^{\prime}(u)\right) f(u) \sin v & =0
\end{aligned}
$$

from which we will solve for $t_{0}$. To this end, we can multiply both sides of the first equation by $\cos v$ and both sides of the second equation by $\sin v$ so that our system of equations becomes

$$
\begin{aligned}
\left(1-t_{0} g^{\prime}(u)\right) f(u) \cos ^{2} v & =0 \\
\left(1-t_{0} g^{\prime}(u)\right) f(u) \sin ^{2} v & =0
\end{aligned}
$$

So we can add up the two equations to obtain $\left(1-t_{0} g^{\prime}(u)\right) f(u)=0$. Since $f(u) \neq 0$, we can divide both sides of our latest equation by $f(u)$ to obtain $1-t_{0} g^{\prime}(u)=0$, and so $t_{0}=\frac{1}{g^{\prime}(u)}$. Hence, we have $\beta\left(t_{0}\right)=\left(0,0, g(u)+t_{0} f(u) f^{\prime}(u)\right)$, which means that the line $\beta(t)$ crosses the $z$-axis at $t=t_{0}$.

2-4.15. Show that if all normals to a connected surface pass through a fixed point, the surface is contained in a sphere.
Proof. Notice that this question is a three-dimensional analog of Exercise 1-5.4; the proof for Exercise 2-4.15 will be copied verbatim from Exercise 1-5.4 except for minor adjustments. Let $p=\left(x_{0}, y_{0}, z_{0}\right)$ be a fixed point and $n(s)$ a unit normal vector of the parametrized surface $\alpha(s)=(x(u(s), v(s)), y(u(s), v(s)), z(u(s), v(s)))$; that is, $\alpha^{\prime}(s) \cdot n(s)=0$. Since $n(s)$ passes through $p$, we have $\alpha(s)-p=\lambda n(s)$ for some scalar $\lambda \in \mathbb{R}$. So we have

$$
\begin{aligned}
\frac{d}{d s}\left(|\alpha(s)-p|^{2}\right) & =\frac{d}{d s}((\alpha(s)-p) \cdot(\alpha(s)-p)) \\
& =\frac{d}{d s}(\alpha(s)-p) \cdot(\alpha(s)-p)+(\alpha(s)-p) \cdot \frac{d}{d s}(\alpha(s)-p) \\
& =2 \frac{d}{d s}(\alpha(s)-p) \cdot(\alpha(s)-p) \\
& =2 \alpha^{\prime}(s) \cdot(\alpha(s)-p) \\
& =2 \alpha^{\prime}(s) \cdot \lambda n(s) \\
& =2 \lambda \alpha^{\prime}(s) \cdot n(s) \\
& =0 .
\end{aligned}
$$

Hence, $|\alpha(s)-p|^{2}$ is constant, which means $|\alpha(s)-p|$ is constant. In other words, for all $s \in I$ the distance between $\alpha(s)$ and $p$ is the same, which implies that the surface parametrized by $\alpha(s)$ is contained in a sphere of center $p$.

