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University of California, Riverside Winter 2019

Solutions to assigned homework problems from Differential Geometry of Curves and Surfaces by Manfredo Perdigdo do Carmo

Assignment 4 — pages 88-92: 1,2,3,4,11,15

2-4.1.

2-4.2.

2-4.3.

Show that the equation of the tangent plane at (xo, yo, zo) of a regular surface given by f(x,y,z) = 0, where 0 is a regular
valueo f f, is

S (x0, Yo, 20)(x = x0) + fy(x0, ¥0, 20)(¥ = yo) + fz(x0, Y0, 20)(z = 20) = 0.

Proof. Let a(t) = (x(2), y(), z(y)) be a curve on the surface passing through (xo, yo, zo) at r = 0. We can take the derivative in
t of both sides of f(x, y, z) = 0, using the multivariable chain rule in doing so, to get

Sy, 2)x"(t) + fy(x, 3, 2)y" (1) + fo(x, ¥, 2)Z'(t) = 0.9, Yo,

Equivalently, we have

Vf(x’ Y Z) ! Q’I(I) = (fx(xa s Z)? f;’(x7 Ys Z)’ fz(x’ Vs Z)) : (.X’(t), y/(t)7 Z,(t))
= fx(x, 3, X' () + fy(x, 3. 2)y'(0) + f(x, . 2)2 (1)
=0.

In particular, at r = 0, we have
V f (x0, Y0, 20) - @’ (0) = 0.

Since our choice of a(t) passing through p at ¢t = 0 is arbitrary, a’(0) is also arbitrary. In other words, all vectors tangent to
the surface at (x, yo, zo) must be perpendicular to V f(xg, yo, zo). In particular, if (x, y, z) is another point in the plane tangent
to the surface at (x, yo, zo), then the vector (x — xo, ¥ — yo, 2 — 2o) lies in that tangent plane, and so we have

V f(x0, Yo, 20) - (x = X0,y — Y0, 2 — 20) = 0,
or equivalently,
fi(x0, Yo, 20)(x = x0) + fy,(x0, Y0, 20)(y = y0) + fz(x0, Y0, 20)(z = 20) = 0,

as desired. O
Determine the tangent planes of x> + y> — z> = 1 at the points (x, y, 0) and show that they are all parallel to the z-axis.

Proof. Let f(x,y,z) = x* + y*> — z2. Then fi(x,y,z) = 2x, £y, z2) = 2y, f:(x,y,2) = —2z; in particular, at the point
(x0, y0, 0), we have fi(xo, Y0, 0) = 2x0, f;(x0, Y0, 0) = 2y0, fz(x0, yo, 0) = 0. So the tangent equation at the point (xo, yo, 0) is

fre(x0, Y0, 0)(x = x0) + fy (x0, Y0, 0)(y = ¥o) + fz(x0, Y0, 0)(z — 0) = 0,

or equivalently,

Vf(.X(), Yo, 0) : ()C — X0, Y — Y0, 2 — ZO) = (fx(xo’ Yo, 0)7 fy(x()’ Yo, 0)7 fZ(xO’ Yo, 0)) : ('x — X0,y — Y0, 2 — ZO)
= fx(x0, 0, 0)(x = x0) + fy(x0, y0, 0)(y = y0) + fz(x0, y0, 0)(z — z0)
= 2xo(x = x0) + 2y0(y — y0) = 0(z = 0)
= 0’

which signifies that V f(xo, yo, 0) is perpendicular to the tangent plane. Now, we consider the vectors (0,0, 1) in the z-axis.
Then we also have

Vf(.XO, Yo, O) . (Oa Oa il) = (fx(XOv Yo, 0)7 Jg/(xo’ Yo, 0)7 fz(x07 Yo, O)) : (0’ 0’ i1)
= fx(x0, y0,0)(0) + fy(x0, y0, 0)(0) + fz(x0, yo, 0)(x1)
= (2x0)(0) + (2y0)(0) + (0)(£1)
= 0’

which signifies that V f(xo, yo, 0) is also perpendicular to the z-axis. Therefore, the tangent plane and the z-axis are parallel.
Since we argued this for the point (xg, yo, 0), we can extend our argument to arbitrary points of the form (x, y, 0), as desired. O

Show that the equation of the tangent plane of a surface which is the graph of a differentiable function z = f(x, y), at the point
po = (xo, yo), is given by
z = f(x0. yo) + fx(x0, yo)(x = x0) + £y (x0, y0)(¥ = yo)-

Recall the definition of the differential df of a function f : R> — R and show that the tangent plane is the graph of the
differential df,,.



Proof. Define g(x,y,z) := f(x,y) — z. Then we are describing the set of all points (x, y, z) satisfying g(x, y,z) = 0 (that
is, satisfying z = f(x,y)). We obtain the partial derivatives g(x,y,z) = fi(x,y), &(x, 3,2) = fy(x,¥), g:(x,y,2) = -1
According to Exercise 2-4.1, the equation of the tangent plane (applied to g(x, y, z)) is

8x(%0, ¥0, 20)(x = X0) + gy (X0, Y0, 20)(y — Yo) + &z(x0, Y0 20)(z — 20) = 0,

or equivalently
Jx(x0, y0)(x = x0) + fy(x0, yo)(y = y0) — 1(z = f(x0, ¥0)) = 0
Solving for z, we arrive at
z = f(xo, yo)(x — x0) + fx(x0, yo)(x = x0) + fy(x0, yo)(y = o),
as desired. O

2-4.4. Show that the tangent planes of a surface given by z = x f (f—c), x # 0, where f is a differentiable function, all pass through the
origin (0, 0, 0).

Proof. Lett = 2. Then z(x,y) = xf(2) = x (1), and so we obtain the partial derivatives

ay) = 55 = ()

= () + X2 1)
= F()+ </ ()5
=1 (5) s (-);—x(ﬁ)
=1 (5) (3 (-5)
=1 (3)-3(3)

ooy = 22 —( 10
y

and

= Xaf(t)

- xf’(t)g

= xf’ (y)aay (3)
=5/ (2) 5

()
X
The tangent equation in Exercise 2-4.3 gives us

2(x,y) = f(x0, y0) + fx(x0, yo)(x = x0) + fy(x0, y0)(y = Yo)
= z(x0, Yo) + zx(x0, Yo)(x = X0) + zy(x0, Y0)(¥ = Yo0)

:xof(%)+(f(z—z)——f( ))(x—x)+f( )(y Y0)-

In particular, our equation of the tangent plane satisfies

X
z(0,0)=xof(—’) + (f(y—) -t ( ))(0 x0)+ [ ( )(0 ¥0)
Yo X0
=Xof(ﬁ) —f(&)xov“&f'(&)xo—f'(&)yo
Yo X0 X0 X0 X0
=0
which implies that the tangent plane goes through the point (0, 0, 0) (that is, the origin). O

2-4.11. Show that the normals to a parametrized surface given by

X(u, v) = (f(u)cosv, f(u)sinv, g(u)),
f(u) #0, g’ # 0, all pass through the z-axis.



Proof. Given x(u, v) = (f(u)cosv, f(u)sinv, g(u)), we obtain the derivatives
xul) = 2% = L (fwycos, fw)siny, g)

(—(f(u) cos ), —(f(u) sinv), —g(u))
= (f"(u)cosv, f'(u)sinv, g’ (u))

and

ox
ov

= (B—(f(u) cos V), —(f(u) sin v), —g(u))
v av v
= (=f(u)sinv, f(u)cosv,0).

= —(f(u) cos v, f(u)sin v, g(u))

Xp(u,v) =

So we obtain the cross product

i j k
f'(u)ycosv  f'(u)sinv g’(u)
—f(u) sin v f(u) cos v 0
f(w)ycosv g'(w)|. |f'(u)cosv f'(u)cosv K
f(u)cosv 0 | |-f(usinv I —f(u)sinv  f(u)cosv
= ((f'(u) sinv)(0) = (f(u) cos v)(g" ()i — ((f"(u) cos v)(0) = (= f(u) sinv)(g'(u)))j

= ((f'(u) cos v)(f(u) cos v) = (= f(u) sinv)(f'(u) sinv))k
= (—f(u)g'(u) cos V)i + (= f(u)g’(u) sinv)j + (f () f'(u))k
= (=f()g'(u) cos v, — f(u)g'(u) sinv, f(u) f'(u))

X, (u, v) X X, (u,v) =

and its associated magnitude

1% (1, V) X X, (1, V)] = V(= f (u)g" () cos v)2 + (= f(u)g’ () sinv)? + (f(u) ()2
=—wfwmxmﬁwm2v+aﬁvrufmvxwﬁ
= V(f)g" ) + (fu)f(w)?
= V(F@)2((g" W) + (f'(w)?)
= | £ V(8" ) + (f'(w))2.

According to the definition on page 87 of do Carmo, we obtain the unit normal vector

X, (1, v) X X, (1, v)
X (1t v) X Xy (16, 0)]
_ (=S’ () cos v, — [ (u)g"(w)sin v, f () f" ()
£l V(g" )P + (f(w)?

Since the problem assumed that f(#) # 0 and g’ # 0, it follows that |x,, X x,,| > 0, which means N cannot possibly be
undefined. The line that contains N is given by

a(t) = x(u,v) + tN

o v, Fw)sinv. gl + 1 LW W0 Y —Fg'@)sin v, F(0)fw)
L) V(" w))? + (f'(w)?

for all + € R. However, this expression of a(¢) is quickly getting complicated. So we should consider a slight workaround.

To this end, it is important to observe that, if the line described by a(f) contains N, the same line also contains the vector

| f(u)] \/(g’(u))2 +(f'(w)*N = (—f(uw)g’(u)cosv, f(u)g’(u)sinv, f(u)f’(u)), which is a scalar multiple of N. So we can
describe the same line as

B(t) = x(u,v) + 1(| f )] V(8" ())* + (f'(u)>N)
= (f(u)cos v, f(u)sinv, g(u)) + t(~f(u)g'(u) cos v, — f(u)g’ (u) sinv, f(u) f'(u))
= (f(u)cosv —tf(u)g'(u)cosv, f(u)sinv — ¢ f(u)g'(u) sinv, g(u) + ¢ f(u) f' (1))
= (1 —tg'(w) f(u)cosv, (1 —tg"(w)) f(u) sinv, g(u) + ¢ f(u) f'(u)),




2-4.15.

which is a much easier expression to work with. Now, to prove that this line passes through the z-axis, we need to find some
to € R such that B(tg) = (0,0, k) for some k € R. To satisfy this condition, we must set the first and second coordinates of
B(ty) equal to zero; that is, we must set

(1 = 108" () f (u) cosv = 0
(1 = 108" () f (u) sinv = 0,

from which we will solve for #y. To this end, we can multiply both sides of the first equation by cos v and both sides of the
second equation by sin v so that our system of equations becomes

(1 —tog"(u)) f(u)cos® v = 0
(1 — 108" () f(u)sin® v = 0.
So we can add up the two equations to obtain (1 — #9g’(u))f(u) = 0. Since f(u) # 0, we can divide both sides of our latest

equation by f(u) to obtain 1 — fog’(«) = 0, and so fy = ﬁ. Hence, we have B(fg) = (0,0, g(u) + to f(u) f'(u)), which means
that the line B(¢) crosses the z-axis at t = fy. O

Show that if all normals to a connected surface pass through a fixed point, the surface is contained in a sphere.

Proof. Notice that this question is a three-dimensional analog of Exercise 1-5.4; the proof for Exercise 2-4.15 will be copied
verbatim from Exercise 1-5.4 except for minor adjustments. Let p = (xo, ¥o, z0) be a fixed point and n(s) a unit normal vector
of the parametrized surface a(s) = (x(u(s), v(s)), y(u(s), v(s)), z(u(s), v(s))); that is, @’(s) - n(s) = 0. Since n(s) passes through
p, we have a(s) — p = An(s) for some scalar 1 € R. So we have

—j (lats) = pI*) = —j ((a(s) = p) - (a(s) = p))
s s
= —j (a(s) = p) - (a(s) = p) + (a(s) = p) - 4 (a(s) —p)
s ds

=25 (als) = p) - (al5) - )
=2a’(s) - (a(s) - p)
=2a’(s) - An(s)

=21a’(s) - n(s)

=0.

Hence, |a(s) — p|? is constant, which means |a(s) — p| is constant. In other words, for all s € I the distance between a(s) and
p is the same, which implies that the surface parametrized by a(s) is contained in a sphere of center p. O





