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Assignment 4 – pages 88-92: 1,2,3,4,11,15

2-4.1. Show that the equation of the tangent plane at (x0, y0, z0) of a regular surface given by f (x, y, z) = 0, where 0 is a regular
valueo f f , is

fx(x0, y0, z0)(x − x0) + fy(x0, y0, z0)(y − y0) + fz(x0, y0, z0)(z − z0) = 0.

Proof. Let α(t) = (x(t), y(t), z(y)) be a curve on the surface passing through (x0, y0, z0) at t = 0. We can take the derivative in
t of both sides of f (x, y, z) = 0, using the multivariable chain rule in doing so, to get

fx(x, y, z)x ′(t) + fy(x, y, z)y′(t) + fz(x, y, z)z′(t) = 0.0, y0,

Equivalently, we have

∇ f (x, y, z) · α′(t) = ( fx(x, y, z), fy(x, y, z), fz(x, y, z)) · (x ′(t), y′(t), z′(t))

= fx(x, y, z)x ′(t) + fy(x, y, z)y′(t) + fz(x, y, z)z′(t)

= 0.

In particular, at t = 0, we have
∇ f (x0, y0, z0) · α

′(0) = 0.

Since our choice of α(t) passing through p at t = 0 is arbitrary, α′(0) is also arbitrary. In other words, all vectors tangent to
the surface at (x0, y0, z0) must be perpendicular to ∇ f (x0, y0, z0). In particular, if (x, y, z) is another point in the plane tangent
to the surface at (x0, y0, z0), then the vector (x − x0, y − y0, z − z0) lies in that tangent plane, and so we have

∇ f (x0, y0, z0) · (x − x0, y − y0, z − z0) = 0,

or equivalently,
fx(x0, y0, z0)(x − x0) + fy(x0, y0, z0)(y − y0) + fz(x0, y0, z0)(z − z0) = 0,

as desired. �

2-4.2. Determine the tangent planes of x2 + y2 − z2 = 1 at the points (x, y, 0) and show that they are all parallel to the z-axis.

Proof. Let f (x, y, z) = x2 + y2 − z2. Then fx(x, y, z) = 2x, fy(x, y, z) = 2y, fz(x, y, z) = −2z; in particular, at the point
(x0, y0, 0), we have fx(x0, y0, 0) = 2x0, fy(x0, y0, 0) = 2y0, fz(x0, y0, 0) = 0. So the tangent equation at the point (x0, y0, 0) is

fx(x0, y0, 0)(x − x0) + fy(x0, y0, 0)(y − y0) + fz(x0, y0, 0)(z − 0) = 0,

or equivalently,

∇ f (x0, y0, 0) · (x − x0, y − y0, z − z0) = ( fx(x0, y0, 0), fy(x0, y0, 0), fz(x0, y0, 0)) · (x − x0, y − y0, z − z0)

= fx(x0, y0, 0)(x − x0) + fy(x0, y0, 0)(y − y0) + fz(x0, y0, 0)(z − z0)

= 2x0(x − x0) + 2y0(y − y0) − 0(z − 0)
= 0,

which signifies that ∇ f (x0, y0, 0) is perpendicular to the tangent plane. Now, we consider the vectors (0, 0,±1) in the z-axis.
Then we also have

∇ f (x0, y0, 0) · (0, 0,±1) = ( fx(x0, y0, 0), fy(x0, y0, 0), fz(x0, y0, 0)) · (0, 0,±1)
= fx(x0, y0, 0)(0) + fy(x0, y0, 0)(0) + fz(x0, y0, 0)(±1)
= (2x0)(0) + (2y0)(0) + (0)(±1)
= 0,

which signifies that ∇ f (x0, y0, 0) is also perpendicular to the z-axis. Therefore, the tangent plane and the z-axis are parallel.
Since we argued this for the point (x0, y0, 0), we can extend our argument to arbitrary points of the form (x, y, 0), as desired. �

2-4.3. Show that the equation of the tangent plane of a surface which is the graph of a differentiable function z = f (x, y), at the point
p0 = (x0, y0), is given by

z = f (x0, y0) + fx(x0, y0)(x − x0) + fy(x0, y0)(y − y0).

Recall the definition of the differential df of a function f : R2 → R and show that the tangent plane is the graph of the
differential dfp .



Proof. Define g(x, y, z) := f (x, y) − z. Then we are describing the set of all points (x, y, z) satisfying g(x, y, z) = 0 (that
is, satisfying z = f (x, y)). We obtain the partial derivatives gx(x, y, z) = fx(x, y), gy(x, y, z) = fy(x, y), gz(x, y, z) = −1.
According to Exercise 2-4.1, the equation of the tangent plane (applied to g(x, y, z)) is

gx(x0, y0, z0)(x − x0) + gy(x0, y0, z0)(y − y0) + gz(x0, y0, z0)(z − z0) = 0,

or equivalently
fx(x0, y0)(x − x0) + fy(x0, y0)(y − y0) − 1(z − f (x0, y0)) = 0.

Solving for z, we arrive at
z = f (x0, y0)(x − x0) + fx(x0, y0)(x − x0) + fy(x0, y0)(y − y0),

as desired. �

2-4.4. Show that the tangent planes of a surface given by z = x f ( yx ), x , 0, where f is a differentiable function, all pass through the
origin (0, 0, 0).
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The tangent equation in Exercise 2-4.3 gives us

z(x, y) = f (x0, y0) + fx(x0, y0)(x − x0) + fy(x0, y0)(y − y0)
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In particular, our equation of the tangent plane satisfies
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which implies that the tangent plane goes through the point (0, 0, 0) (that is, the origin). �

2-4.11. Show that the normals to a parametrized surface given by

x(u, v) = ( f (u) cos v, f (u) sin v, g(u)),

f (u) , 0, g′ , 0, all pass through the z-axis.



Proof. Given x(u, v) = ( f (u) cos v, f (u) sin v, g(u)), we obtain the derivatives
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So we obtain the cross product

xu(u, v) × xv(u, v) =
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According to the definition on page 87 of do Carmo, we obtain the unit normal vector
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Since the problem assumed that f (u) , 0 and g′ , 0, it follows that |xu × xv | > 0, which means N cannot possibly be
undefined. The line that contains N is given by

α(t) = x(u, v) + tN

= ( f (u) cos v, f (u) sin v, g(u)) + t
(− f (u)g′(u) cos v,− f (u)g′(u) sin v, f (u) f ′(u))

| f (u)|
√
(g′(u))2 + ( f ′(u))2

for all t ∈ R. However, this expression of α(t) is quickly getting complicated. So we should consider a slight workaround.
To this end, it is important to observe that, if the line described by α(t) contains N , the same line also contains the vector
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describe the same line as
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= (1 − tg′(u)) f (u) cos v, (1 − tg′(u)) f (u) sin v, g(u) + t f (u) f ′(u)),



which is a much easier expression to work with. Now, to prove that this line passes through the z-axis, we need to find some
t0 ∈ R such that β(t0) = (0, 0, k) for some k ∈ R. To satisfy this condition, we must set the first and second coordinates of
β(t0) equal to zero; that is, we must set

(1 − t0g′(u)) f (u) cos v = 0
(1 − t0g′(u)) f (u) sin v = 0,

from which we will solve for t0. To this end, we can multiply both sides of the first equation by cos v and both sides of the
second equation by sin v so that our system of equations becomes

(1 − t0g′(u)) f (u) cos2 v = 0

(1 − t0g′(u)) f (u) sin2 v = 0.

So we can add up the two equations to obtain (1 − t0g′(u)) f (u) = 0. Since f (u) , 0, we can divide both sides of our latest
equation by f (u) to obtain 1 − t0g′(u) = 0, and so t0 = 1

g′(u) . Hence, we have β(t0) = (0, 0, g(u) + t0 f (u) f ′(u)), which means
that the line β(t) crosses the z-axis at t = t0. �

2-4.15. Show that if all normals to a connected surface pass through a fixed point, the surface is contained in a sphere.

Proof. Notice that this question is a three-dimensional analog of Exercise 1-5.4; the proof for Exercise 2-4.15 will be copied
verbatim from Exercise 1-5.4 except for minor adjustments. Let p = (x0, y0, z0) be a fixed point and n(s) a unit normal vector
of the parametrized surface α(s) = (x(u(s), v(s)), y(u(s), v(s)), z(u(s), v(s))); that is, α′(s) · n(s) = 0. Since n(s) passes through
p, we have α(s) − p = λn(s) for some scalar λ ∈ R. So we have
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Hence, |α(s) − p|2 is constant, which means |α(s) − p| is constant. In other words, for all s ∈ I the distance between α(s) and
p is the same, which implies that the surface parametrized by α(s) is contained in a sphere of center p. �




