Solutions to assigned homework problems from Differential Geometry of Curves and Surfaces by Manfredo Perdigão do Carmo
Assignment 6 - pages 151-153: 2,3,4,5,6,8ab
3-2.2. Show that if a surface is tangent to a plane along a curve, then the points of this curve are either parabolic or planar.

Proof. Let $S$ be a surface and $P$ be a plane that is tangent to it on the curve $\alpha(t)$ for all $t \in I$, where $I$ is an interval that contains 0 in this problem. To say that a surface is tangent to a plane along a curve is really saying that $S$ and $P$ intersect each other only at points on $\alpha(t)$. Let $p=\alpha(0)$ be some point on the curve. We observe that all the normal vectors $N(\alpha(t))$ must be parallel; in other words, if $t_{1}, t_{2} \in I$ are arbitrary values, then $N\left(\alpha\left(t_{1}\right)\right), N\left(\alpha\left(t_{2}\right)\right)$ point in the same direction. This implies that we have $N^{\prime}(t)=0$. But we have also $d N_{\alpha(t)}\left(\alpha^{\prime}(t)\right)=N^{\prime}(t)$ (c.f. do Carmo, page 145). So altogether we have

$$
\begin{aligned}
d N_{\alpha(t)}\left(\alpha^{\prime}(t)\right) & =N^{\prime}(t) \\
& =0 .
\end{aligned}
$$

As $\alpha(t)$ is a parametrized curve, we must have $\alpha^{\prime}(t) \neq 0$; otherwise, if $\alpha^{\prime}(t)=0$, then $\alpha(t)$ would be constant for all $t \in I$ and therefore not a parameterized curve. So we must have $\alpha^{\prime}(t)=0$ for all $t \in I$; in particular, we have $\alpha^{\prime}(0) \neq 0$. Also at $t=0$, since again $\alpha(0)=p$ and we established already $d N_{\alpha(t)}\left(\alpha^{\prime}(t)\right)=0$, we have in particular

$$
d N_{p}\left(\alpha^{\prime}(0)\right)=0 .
$$

It follows then (from linear algebra) that the kernel of $d N_{p}$ is nontrivial, which in turn implies (also from linear algebra) that $d N_{p}$ is not injective as a map; in the language of matrices, $d N_{p}$ is not an invertible matrix, which means we must have $\operatorname{det} d N_{p}=0$. Therefore, if we also have $d N_{p}=0$, then $p$ is a planar point. Otherwise, if we have instead $d N_{p} \neq 0$, then $p$ is a parabolic point.

3-2.3. Let $C \subset S$ be a regular curve on a surface $S$ with Gaussian curvature $K>0$. Show that the curvature $k$ of $C$ at $p$ satisfies

$$
k \geq \min \left\{\left|k_{1}\right|,\left|k_{2}\right|\right\},
$$

where $k_{1}$ and $k_{2}$ are the principal curvatures of $S$ at $p$.

Proof. The normal curvature $k_{n}$ is given by Euler's formula (c.f. do Carmo, page 145)

$$
k_{n}(\theta)=k_{1} \cos ^{2} \theta+k_{2} \sin ^{2} \theta
$$

Also, according to Definition 3 on page 141 of do Carmo, the definition of the normal curvature is $k_{n}=k \cos \theta$. Finally, we need to recall that, since curvature is positive (i.e. $k>0$ ), we have $|k|=k$. We also need to use the known fact of $|\cos \theta| \leq 1$. Since $K>0$ by hypothesis and $K=k_{1} k_{2}$, it follows that the principal curvatures $k_{1}, k_{2}$ must be either both positive or both negative; if one were negative and the other were positive, then $K=k_{1} k_{2}<0$, which would contradict our hypothesis. So $k_{1}, k_{2}$ having the same sign means in particular that we will never have to deal with, e.g. $\pm k_{1} \cos ^{2} \theta \mp k_{2} \sin ^{2} \theta$ (notice the upside-down " $\mp$ "), which would not allow the desired inequality $k \geq \min \left\{\left|k_{1}\right|,\left|k_{2}\right|\right\}$ to follow from it. Therefore, we have

$$
\begin{aligned}
k & =|k| \\
& \geq|k \cos \theta| \\
& =\left|k_{n}\right| \\
& = \pm k_{n} \\
& = \pm\left(k_{1} \cos ^{2} \theta+k_{2} \sin ^{2} \theta\right) \\
& = \pm k_{1} \cos ^{2} \theta \pm k_{2} \sin ^{2} \theta \\
& =\left|k_{1}\right| \cos ^{2} \theta+\left|k_{2}\right| \sin ^{2} \theta \\
& \geq \min \left\{\left|k_{1}\right|,\left|k_{2}\right|\right\} \cos ^{2} \theta+\min \left\{\left|k_{1}\right|,\left|k_{2}\right|\right\} \sin ^{2} \theta \\
& =\min \left\{\left|k_{1}\right|,\left|k_{2}\right|\right\}\left(\cos ^{2} \theta+\sin ^{2} \theta\right) \\
& =\min \left\{\left|k_{1}\right|,\left|k_{2}\right|\right\},
\end{aligned}
$$

as desired.

3-2.4. Assume that a surface $S$ has the property that $\left|k_{1}\right| \leq 1,\left|k_{2}\right| \leq 1$ everywhere. Is it true that the curvature $k$ of a curve on $S$ also satisfies $|k| \leq 1$ ?

Proof. We have the Gaussian curvature (c.f. do Carmo, page 146)

$$
K=k_{1} k_{2}
$$

We will prove that the claim in the problem statement is not true. Let $S$ be a plane. Then on $S$ we have $k_{1}=k_{2}=0$, which satisfies $\left|k_{1}\right|=0 \leq 1$ and $\left|k_{2}\right|=0 \leq 1$. If we consider a circle with radius $r<1$, then this circle is a (closed) curve on $S$ that has curvature $k=\frac{1}{r}>1$, which does not satisfy $|k| \leq 1$.

3-2.5. Show that the mean curvature $H$ at $p \in S$ is given by

$$
H=\frac{1}{\pi} \int_{0}^{\pi} k_{n}(\theta) d \theta
$$

where $k_{n}(\theta)$ is the normal curvature at $p$ along a diretion making an angle $\theta$ with fixed direction.
Proof. The normal curvature $k_{n}$ is given by Euler's formula (c.f. do Carmo, page 145)

$$
k_{n}(\theta)=k_{1} \cos ^{2} \theta+k_{2} \sin ^{2} \theta
$$

We also recall that the mean curvature is given by (c.f. do Carmo, page 146)

$$
H=\frac{k_{1}+k_{2}}{2}
$$

So we have

$$
\begin{aligned}
\int_{0}^{\pi} k_{n}(\theta) d \theta & =\int_{0}^{\pi} k_{1} \cos ^{2} \theta+k_{2} \sin ^{2} \theta d \theta \\
& =\int_{0}^{\pi} k_{1} \frac{1+\cos (2 \theta)}{2}+k_{2} \frac{1-\cos (2 \theta)}{2} d \theta \\
& =\frac{k_{1}}{2} \int_{0}^{\pi} 1+\cos (2 \theta) d \theta+\frac{k_{2}}{2} \int_{0}^{\pi} 1-\cos (2 \theta) d \theta \\
& =\left.\frac{k_{1}}{2}\left(\theta+\frac{1}{2} \sin (2 \theta)\right)\right|_{0} ^{\pi}+\left.\frac{k_{2}}{2}\left(\theta-\frac{1}{2} \sin (2 \theta)\right)\right|_{0} ^{\pi} \\
& =\frac{k_{1}}{2}\left(\left(\pi+\frac{1}{2} \sin (2 \pi)\right)-\left(0+\frac{1}{2} \sin (2(0))\right)\right)+\frac{k_{2}}{2}\left(\left(\pi-\frac{1}{2} \sin (2 \pi)\right)-\left(0-\frac{1}{2} \sin (2(0))\right)\right) \\
& =\frac{k_{1}}{2} \pi+\frac{k_{1}}{2} \pi \\
& =\pi \frac{k_{1}+k_{2}}{2} \\
& =\pi H
\end{aligned}
$$

which implies algebraically

$$
H=\frac{1}{\pi} \int_{0}^{\pi} k_{n}(\theta) d \theta
$$

as desired.
3-2.6. Show that the sum of the normal curvatures for any pair of orthogonal directions at a point $p \in S$ is constant.
Proof. Once again, according to Definition 4 (c.f. do Carmo, page 144), then the normal curvature $k_{n}$ is given by Euler's formula (c.f. do Carmo, page 145)

$$
k_{n}(\theta)=k_{1} \cos ^{2} \theta+k_{2} \sin ^{2} \theta
$$

Since $\theta$ is an angle that corresponds to some direction on $S$ at $p$, it follows for instance that $\theta+\frac{\pi}{2}$ is an angle that corresponds to a direction on $S$ at $p$ that is perpendicular to the original direction determined by $\theta$. If $v$ is a directional vector that is perpendicular to $n$, then The normal curvature for this perpendicular direction is

$$
\begin{aligned}
k_{v}(\theta) & =k_{n}\left(\theta+\frac{\pi}{2}\right) \\
& =k_{1} \cos ^{2}\left(\theta+\frac{\pi}{2}\right)+k_{2} \sin ^{2}\left(\theta+\frac{\pi}{2}\right) \\
& =k_{1}\left(\cos \left(\theta+\frac{\pi}{2}\right)\right)^{2}+k_{2}\left(\sin \left(\theta+\frac{\pi}{2}\right)\right)^{2} \\
& =k_{1}\left(\cos (\theta) \cos \left(\frac{\pi}{2}\right)-\sin (\theta) \sin \left(\frac{\pi}{2}\right)\right)^{2}+k_{2}\left(\sin (\theta) \cos \left(\frac{\pi}{2}\right)+\cos (\theta) \sin \left(\frac{\pi}{2}\right)\right)^{2} \\
& =k_{1}((\cos \theta)(0)-(\sin \theta)(1))^{2}+k_{2}((\sin \theta)(0)+(\cos \theta)(1))^{2} \\
& =k_{1} \sin ^{2} \theta+k_{2} \cos ^{2} \theta .
\end{aligned}
$$

Therefore, the sum of the normal curvatures for any pair of orthogonal directions is given by

$$
\begin{aligned}
k_{n}(\theta)+k_{v}(\theta) & =\left(k_{1} \cos ^{2} \theta+k_{2} \sin ^{2} \theta\right)+\left(k_{1} \sin ^{2} \theta+k_{2} \cos ^{2} \theta\right) \\
& =k_{1}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)+k_{2}\left(\sin ^{2} \theta+\cos ^{2} \theta\right) \\
& =k_{1}+k_{2},
\end{aligned}
$$

which does not depend on $\theta$ and is therefore constant.
3-2.8. Describe the region of the unit sphere covered by the image of the Gauss map of the following surfaces:
a. Paraboloid of revolution $z=x^{2}+y^{2}$.

Proof. Consider the parametrization $\mathbf{x}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ given by $\mathbf{x}(u, v)=\left(u, v, u^{2}+v^{2}\right)$. Then the partial derivatives are

$$
\begin{aligned}
\mathbf{x}_{u}(u, v) & =\frac{\partial \mathbf{x}}{\partial u}=\frac{\partial}{\partial u}\left(u, v, u^{2}+v^{2}\right) \\
& =\left(\frac{\partial}{\partial u}(u), \frac{\partial}{\partial u}(v), \frac{\partial}{\partial u}\left(u^{2}+v^{2}\right)\right) \\
& =(1,0,2 u)
\end{aligned}
$$

and

$$
\begin{aligned}
\mathbf{x}_{v}(u, v) & =\frac{\partial \mathbf{x}}{\partial v}=\frac{\partial}{\partial v}\left(u, v, u^{2}+v^{2}\right) \\
& =\left(\frac{\partial}{\partial v}(u), \frac{\partial}{\partial v}(v), \frac{\partial}{\partial v}\left(u^{2}+v^{2}\right)\right) \\
& =(0,1,2 v) .
\end{aligned}
$$

Then we obtain the cross product

$$
\begin{aligned}
\mathbf{x}_{u}(u, v) \times \mathbf{x}_{v}(u, v) & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 0 & 2 u \\
0 & 1 & 2 v
\end{array}\right| \\
& =\left|\begin{array}{ll}
0 & 2 u \\
1 & 2 v
\end{array}\right| \mathbf{i}-\left|\begin{array}{ll}
1 & 2 u \\
0 & 2 v
\end{array}\right| \mathbf{j}+\left|\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right| \mathbf{k} \\
& =((0)(2 v)-(1)(2 u)) \mathbf{i}-((1)(2 v)-(0)(2 u)) \mathbf{j}+((1)(0)-(0)(1)) \mathbf{k} \\
& =(-2 u) \mathbf{i}+(-2 v) \mathbf{j}+(1) \mathbf{k} \\
& =(-2 u,-2 v, 1)
\end{aligned}
$$

and its associated magnitude

$$
\begin{aligned}
\left|\mathbf{x}_{u}(u, v) \times \mathbf{x}_{v}(u, v)\right| & =\sqrt{(-2 u)^{2}+(-2 v)^{2}+(1)^{2}} \\
& =\sqrt{4 u^{2}+4 v^{2}+1}
\end{aligned}
$$

Thus, according to Definition 1 of Section 3-2 (c.f. page 136 of do Carmo), the normal vector $N: S \rightarrow S^{2}$, where $S \subset \mathbb{R}^{3}$ is a surface and $S^{2}:=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2}=1\right\}$ is the unit sphere centered at the origin, is given by

$$
\begin{aligned}
N(u, v) & =\frac{\mathbf{x}_{u}(u, v) \times \mathbf{x}_{v}(u, v)}{\left|\mathbf{x}_{u}(u, v) \times \mathbf{x}_{v}(u, v)\right|} \\
& =\frac{(-2 u,-2 v, 1)}{\sqrt{4 u^{2}+4 v^{2}+1}} \\
& =\left(-\frac{2 u}{\sqrt{4 u^{2}+4 v^{2}+1}},-\frac{2 v}{\sqrt{4 u^{2}+4 v^{2}+1}}, \frac{1}{\sqrt{4 u^{2}+4 v^{2}+1}}\right) .
\end{aligned}
$$

At this point, we make two critical observations here. Our first observation is that the $z$-coordinate of our normal vector $N$-call this $N_{z}$-is positive; indeed, this is because we have $N_{z}:=\frac{1}{\sqrt{4 u^{2}+4 v^{2}+1}}>0$ for all $(u, v) \in \mathbb{R}^{2}$. This implies that the image of $N$ must be contained in the upper hemisphere $H^{+}:=\left\{(x, y, z) \in \mathbb{R}^{2} \mid x^{2}+y^{2}+z^{2}=1, z>0\right\} \subset S^{2}$. Our second observation is that the first two coordinates $N_{x}:=-\frac{2 u}{\sqrt{4 u^{2}+4 v^{2}+1}}$ and $N_{y}:=-\frac{2 v}{\sqrt{4 u^{2}+4 v^{2}+1}}$ of $N$ are arbitrary real numbers depending on $(u, v) \in \mathbb{R}^{2}$; the significance of this fact is that we can conclude that the image of $N$ is not part of $H^{+}$(that is, properly contained in some strict subset of $H^{+}$), but rather the image of $N$ is actually equal to $H^{+}$itself.
b. Hyperboloid of revolution $x^{2}+y^{2}-z^{2}=1$.

Note: For part b, I presented two solutions here. The reader is recommended to only follow Solution 1 because Solution 2 is long, difficult, and redundant.
Solution 1: Gradient of a function

Proof. Define $f(x, y, z):=x^{2}+y^{2}-z^{2}-1$. Then the partial derivatives are $f_{x}(x, y, z)=2 x, f_{y}(x, y, z)=2 y, f_{z}(x, y, z)=$ $-2 z$, and so we obtain the gradient

$$
\begin{aligned}
\nabla f(x, y, z) & =\left(f_{x}(x, y, z), f_{y}(x, y, z), f_{z}(x, y, z)\right) \\
& =(2 x, 2 y,-2 z)
\end{aligned}
$$

and its associated magnitude

$$
\begin{aligned}
|\nabla f(x, y, z)| & =\sqrt{(2 x)^{2}+(2 y)^{2}+(-2 z)^{2}} \\
& =\sqrt{4 x^{2}+4 y^{2}+4 z^{2}} \\
& =\sqrt{4\left(x^{2}+y^{2}+z^{2}\right)} \\
& =2 \sqrt{x^{2}+y^{2}+z^{2}}
\end{aligned}
$$

So the unit normal vector at $(1,1,-2)$ is

$$
\begin{aligned}
N(x, y, z) & =\frac{\nabla f(x, y, z)}{|\nabla f(x, y, z)|} \\
& =\frac{(2 x, 2 y,-2 z)}{2 \sqrt{x^{2}+y^{2}+z^{2}}} \\
& =\left(\frac{x}{\sqrt{x^{2}+y^{2}+z^{2}}}, \frac{y}{\sqrt{x^{2}+y^{2}+z^{2}}},-\frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}}\right) .
\end{aligned}
$$

Meanwhile, we also observe that, on the hyperboloid of revolution $x^{2}+y^{2}-z^{2}=1$, we have $z^{2}=x^{2}+y^{2}-1$, or equivalently $z= \pm \sqrt{x^{2}+y^{2}-1}$. So we can consider the third coordinate of $N(x, y, z)$, which we write

$$
\begin{aligned}
N_{z}(x, y, z) & :=-\frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}} \\
& =-\frac{ \pm \sqrt{x^{2}+y^{2}-1}}{\sqrt{x^{2}+y^{2}+\left(x^{2}+y^{2}-1\right)}} \\
& =\frac{\mp \sqrt{x^{2}+y^{2}-1}}{\sqrt{2\left(x^{2}+y^{2}-1\right.}} \\
& =\mp \sqrt{\frac{x^{2}+y^{2}-1}{2\left(x^{2}+y^{2}\right)-1}} .
\end{aligned}
$$

So we just found out that the third coordinate $N_{z}$ is not be a well-defined function since the $\mp$ sign in the expression of $N_{z}$ signifies that $N_{z}$ takes on two simultaneous values. Our only workaround for this is that we can split $N_{z}$ into two components

$$
N_{z}^{+}(x, y, z):=\sqrt{\frac{x^{2}+y^{2}-1}{2\left(x^{2}+y^{2}\right)-1}}
$$

and

$$
N_{z}^{-}(x, y, z):=-\sqrt{\frac{x^{2}+y^{2}-1}{2\left(x^{2}+y^{2}\right)-1}}
$$

both of which are functions (whereas $N_{z}$ itself is not). We must invoke polar coordinates by writing $r^{2}=u^{2}+v^{2}$ for some $r>0$; this allows us to rewrite our $z$-coordinate of $N^{+}$as a function of $r$ only: $N_{z}=\sqrt{\frac{r^{2}-1}{2 r^{2}-1}}$. An important observation here is that, on the hyperboloid of revolution described by the equation $x^{2}+y^{2}-z^{2}=1$, we have

$$
\begin{aligned}
r^{2} & =x^{2}+y^{2} \\
& =\left(x^{2}+y^{2}-z^{2}\right)+z^{2} \\
& =1+z^{2} \\
& \geq 1,
\end{aligned}
$$

which means in particular that we can worry about the $z$-coordinate $N_{z}^{+}(r)=\mp \sqrt{\frac{r^{2}-1}{2 r^{2}-1}}$ only for all values $r>0$ that satisfy $r^{2} \geq 1$, or equivalently for all $r \geq 1$. Now, we will observe the behavior of $N_{z}$ as a function of $r$ on the interval $[1, \infty)$. First, note that, at $r=1$, we have

$$
\begin{aligned}
N_{z}^{+}(1) & =\sqrt{\frac{(1)^{2}-1}{2(1)^{2}-1}} \\
& =0 .
\end{aligned}
$$

Next, we observe that $N_{z}^{+}(r)$ is increasing for all $r \in[1, \infty)$. The reason is that, for all $r, \tilde{r} \in[1, \infty)$ satisfying $r \leq \tilde{r}$, then we have $r^{2} \leq \tilde{r}^{2}$ (since $r \geq 1$ and $\tilde{r} \geq 1$ ), and so

$$
\begin{aligned}
\left(r^{2}-1\right)\left(2 \tilde{r}^{2}-1\right) & =2 r^{2} \tilde{r}^{2}-r^{2}-2 \tilde{r}^{2}+1 \\
& \leq 2 r^{2} \tilde{r}^{2}-\tilde{r}^{2}-2 r^{2}+1 \\
& =\left(\tilde{r}^{2}-1\right)\left(2 r^{2}-1\right),
\end{aligned}
$$

which algebraically implies $\frac{r^{2}-1}{2 r^{2}-1} \leq \frac{\tilde{r}^{2}-1}{2 \tilde{r}^{2}-1}$, and so

$$
\begin{aligned}
N_{z}^{+}(r) & =\sqrt{\frac{r^{2}-1}{2 r^{2}-1}} \\
& \leq \sqrt{\frac{\tilde{r}^{2}-1}{2 \tilde{r}^{2}-1}} \\
& =N_{z}^{+}(\tilde{r})
\end{aligned}
$$

This completes the proof that $N_{z}^{+}(r)$ is increasing. Finally, we have the limit

$$
\begin{aligned}
\lim _{r \rightarrow \infty} N_{z}^{+}(r) & =\lim _{r \rightarrow \infty} \sqrt{\frac{r^{2}-1}{2 r^{2}-1}} \\
& =\lim _{r \rightarrow \infty} \sqrt{\frac{1-\frac{1}{r^{2}}}{2-\frac{1}{r^{2}}}} \\
& =\sqrt{\frac{1-0}{2-0}} \\
& =\frac{1}{\sqrt{2}} .
\end{aligned}
$$

We will work with the $z$-coordinate $N_{z}^{-}:=-\sqrt{\frac{u^{2}+v^{2}-1}{2\left(u^{2}+v^{2}\right)-1}}$ of the normal vector $N^{-}$. We must invoke polar coordinates by writing $r^{2}=u^{2}+v^{2}$ for some $r>0$; this allows us to rewrite our $z$-coordinate of $N^{-}$as a function of $r$ only: $N_{z}^{-}=\sqrt{\frac{r^{2}-1}{2 r^{2}-1}}$. An important observation here is that, on the hyperboloid of revolution described by the equation $x^{2}+y^{2}-z^{2}=1$, we have

$$
\begin{aligned}
r^{2} & =u^{2}+v^{2} \\
& =x^{2}+y^{2} \\
& =\left(x^{2}+y^{2}-z^{2}\right)+z^{2} \\
& =1+z^{2} \\
& \geq 1,
\end{aligned}
$$

which means in particular that we can worry about the $z$-coordinate $N_{z}^{-}(r)=\sqrt{\frac{r^{2}-1}{2 r^{2}-1}}$ only for all values $r>0$ that satisfy $r^{2} \geq 1$, or equivalently for all $r \geq 1$. Now, we will observe the behavior of $N_{z}^{+}$as a function of $r$ on the interval $[1, \infty)$. First, note that, at $r=1$, we have

$$
\begin{aligned}
N_{z}^{-}(1) & =-\sqrt{\frac{(1)^{2}-1}{2(1)^{2}-1}} \\
& =0 .
\end{aligned}
$$

Next, we observe that $N_{z}^{-}(r)$ is decreasing for all $r \in[1, \infty)$. The reason is that, for all $r, \tilde{r} \in[1, \infty)$ satisfying $r \leq \tilde{r}$, then we have $r^{2} \leq \tilde{r}^{2}$ (since $r \geq 1$ and $\tilde{r} \geq 1$ ), and so

$$
\begin{aligned}
\left(r^{2}-1\right)\left(2 \tilde{r}^{2}-1\right) & =2 r^{2} \tilde{r}^{2}-r^{2}-2 \tilde{r}^{2}+1 \\
& \leq 2 r^{2} \tilde{r}^{2}-\tilde{r}^{2}-2 r^{2}+1 \\
& =\left(\tilde{r}^{2}-1\right)\left(2 r^{2}-1\right),
\end{aligned}
$$

which algebraically implies $\frac{r^{2}-1}{2 r^{2}-1} \geq \frac{\tilde{r}^{2}-1}{2 \tilde{r}^{2}-1}$, and so

$$
\begin{aligned}
N_{z}^{-}(r) & =-\sqrt{\frac{r^{2}-1}{2 r^{2}-1}} \\
& \leq-\sqrt{\frac{\tilde{r}^{2}-1}{2 \tilde{r}^{2}-1}} \\
& =N_{z}^{-}(\tilde{r})
\end{aligned}
$$

or $N_{z}^{-}(r) \geq N_{z}^{-}(\tilde{r})$. This completes the proof that $N_{z}^{-}(r)$ is decreasing. Finally, we have the limit

$$
\begin{aligned}
\lim _{r \rightarrow \infty} N_{z}^{-}(r) & =\lim _{r \rightarrow \infty}\left(-\sqrt{\frac{r^{2}-1}{2 r^{2}-1}}\right) \\
& =-\lim _{r \rightarrow \infty} \sqrt{\frac{1-\frac{1}{r^{2}}}{2-\frac{1}{r^{2}}}} \\
& =-\sqrt{\frac{1-0}{2-0}} \\
& =-\frac{1}{\sqrt{2}} .
\end{aligned}
$$

Hence, for all $r \geq 1$, we have $0 \geq N_{z}^{-}(r)>-\frac{1}{\sqrt{2}}$. Since we also already said much earlier $0 \leq N_{z}^{+}(r)<\frac{1}{\sqrt{2}}$, we can combine $N^{+}, N^{-}$together to conclude that $-\frac{1}{\sqrt{2}}<N_{z}(r)<\frac{1}{\sqrt{2}}$, or equivalently $\left|N_{z}(r)\right|<\frac{1}{\sqrt{2}}$, for all $r \geq 1$. Hence, the image of the unit normal vector $N$ in $S^{2}$ is contained in the equatorial belt $T:=\left\{(x, y, z) \in S^{2}| | z \left\lvert\,<\frac{1}{\sqrt{2}}\right.\right\}$. Meanwhile, as in part a, we also observe that the first two coordinates $N_{x}:=-\frac{x}{\sqrt{x^{2}+y^{2}+z^{2}}}$ and $N_{y}:=-\frac{y}{\sqrt{x^{2}+y^{2}+z^{2}}}$ of $N$ are arbitrary real numbers depending on $(x, y) \in \mathbb{R}^{2}$; the significance of this fact is that we can conclude that the image of $N$ is not part of $T$ (that is, properly contained in some strict subset of $T$ ), but rather the image of $N$ is actually equal to $T$ itself.

Solution 2: Parametrization, as done in part a
Proof. Solving for $z$ from $x^{2}+y^{2}-z^{2}=1$, we get two functions $z= \pm \sqrt{x^{2}+y^{2}-1}$, which allow us to consider their corresponding parametrizations $\mathbf{x}^{+}, \mathbf{x}^{-}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ given by $\mathbf{x}^{+}(u, v):=\left(u, v, \sqrt{u^{2}+v^{2}-1}\right)$ and $\mathbf{x}^{-}(u, v):=$ $\left(u, v,-\sqrt{u^{2}+v^{2}-1}\right)$. Let us work with the first parametrization $\mathbf{x}^{+}$first. The partial derivatives of $\mathbf{x}^{+}$are

$$
\begin{aligned}
\mathbf{x}_{u}^{+}(u, v) & =\frac{\partial \mathbf{x}}{\partial u}=\frac{\partial}{\partial u}\left(u, v, \sqrt{u^{2}+v^{2}-1}\right) \\
& =\left(\frac{\partial}{\partial u}(u), \frac{\partial}{\partial u}(v), \frac{\partial}{\partial u}\left(\sqrt{u^{2}+v^{2}-1}\right)\right) \\
& =\left(1,0, \frac{u}{\sqrt{u^{2}+v^{2}-1}}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\mathbf{x}_{v}^{+}(u, v) & =\frac{\partial \mathbf{x}}{\partial v}=\frac{\partial}{\partial v}\left(u, v, \sqrt{u^{2}+v^{2}-1}\right) \\
& =\left(\frac{\partial}{\partial v}(u), \frac{\partial}{\partial v}(v), \frac{\partial}{\partial v}\left(\sqrt{u^{2}+v^{2}-1}\right)\right) \\
& =\left(1,0, \frac{v}{\sqrt{u^{2}+v^{2}-1}}\right) .
\end{aligned}
$$

Then we obtain the cross product

$$
\begin{aligned}
\mathbf{x}_{u}^{+}(u, v) \times \mathbf{x}_{v}^{+}(u, v)= & \left|\begin{array}{lll}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 0 & \frac{u}{\sqrt{u^{2}+v^{2}-1}} \\
0 & 1 & \frac{v}{\sqrt{u^{2}+v^{2}-1}}
\end{array}\right| \\
= & \left|\begin{array}{ll}
0 & \frac{v}{\sqrt{u^{2}+v^{2}-1}} \\
1 & \frac{v}{\sqrt{u^{2}+v^{2}-1}}
\end{array}\right| \mathbf{i}-\left|\begin{array}{ll}
1 & \frac{v}{\sqrt{u^{2}+v^{2}-1}} \\
0 & \frac{v}{u^{2}+v^{2}-1}
\end{array} \mathbf{j}+\left|\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right| \mathbf{k}\right. \\
= & \left((0)\left(\frac{v}{\sqrt{u^{2}+v^{2}-1}}\right)-(1)\left(\frac{u}{\sqrt{u^{2}+v^{2}-1}}\right)\right) \mathbf{i} \\
& -\left((1)\left(\frac{v}{\sqrt{u^{2}+v^{2}-1}}\right)-(0)\left(\frac{u}{\sqrt{u^{2}+v^{2}-1}}\right)\right) \mathbf{j}+((1)(0)-(0)(1)) \mathbf{k} \\
= & \left(-\frac{u}{\sqrt{u^{2}+v^{2}-1}}\right) \mathbf{i}+\left(-\frac{v}{\sqrt{u^{2}+v^{2}-1}}\right) \mathbf{j}+(1) \mathbf{k} \\
= & \left(-\frac{u}{\sqrt{u^{2}+v^{2}-1}},-\frac{v}{\sqrt{u^{2}+v^{2}-1}}, 1\right)
\end{aligned}
$$

and its associated magnitude

$$
\begin{aligned}
\left|\mathbf{x}_{u}^{+}(u, v) \times \mathbf{x}_{v}^{+}(u, v)\right| & =\sqrt{\left(-\frac{u}{\sqrt{u^{2}+v^{2}-1}}\right)^{2}+\left(-\frac{v}{\sqrt{u^{2}+v^{2}-1}}\right)^{2}+(1)^{2}} \\
& =\sqrt{\frac{u^{2}}{u^{2}+v^{2}-1}+\frac{v^{2}}{u^{2}+v^{2}-1}+1} \\
& =\sqrt{\frac{u^{2}}{u^{2}+v^{2}-1}+\frac{v^{2}}{u^{2}+v^{2}-1}+\frac{u^{2}+v^{2}-1}{u^{2}+v^{2}-1}} \\
& =\sqrt{\frac{u^{2}+v^{2}+\left(u^{2}+v^{2}-1\right)}{u^{2}+v^{2}-1}} \\
& =\sqrt{\frac{2\left(u^{2}+v^{2}\right)-1}{u^{2}+v^{2}-1}} .
\end{aligned}
$$

Thus, according to Definition 1 of Section 3-2 (c.f. page 136 of do Carmo), the normal vector $N^{+}: S \rightarrow S^{2}$, where $S \subset \mathbb{R}^{3}$ is a surface and $S^{2}:=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2}=1\right\}$ is a sphere, is given by

$$
\begin{aligned}
N^{+}(u, v) & =\frac{\mathbf{x}_{u}^{+}(u, v) \times \mathbf{x}_{v}^{+}(u, v)}{\left|\mathbf{x}_{u}^{+}(u, v) \times \mathbf{x}_{v}^{+}(u, v)\right|} \\
& =\frac{\left(-\frac{u}{\sqrt{u^{2}+v^{2}-1}},-\frac{v}{\sqrt{u^{2}+v^{2}-1}}, 1\right)}{\sqrt{\frac{2\left(u^{2}+v^{2}\right)-1}{u^{2}+v^{2}-1}}} \\
& =\frac{\left(-\frac{u}{\sqrt{u^{2}+v^{2}-1}},-\frac{v}{\sqrt{u^{2}+v^{2}-1}}, 1\right)}{\sqrt{\frac{2\left(u^{2}+v^{2}\right)-1}{u^{2}+v^{2}-1}}} \frac{\sqrt{u^{2}+v^{2}-1}}{\sqrt{u^{2}+v^{2}-1}} \\
& =\frac{\left(-u,-v, \sqrt{u^{2}+v^{2}-1}\right)}{\sqrt{2\left(u^{2}+v^{2}\right)-1}} \\
& =\left(-\frac{u}{\sqrt{2\left(u^{2}+v^{2}\right)-1}},-\frac{v}{\sqrt{2\left(u^{2}+v^{2}\right)-1}}, \sqrt{\frac{u^{2}+v^{2}-1}{2\left(u^{2}+v^{2}\right)-1}}\right)
\end{aligned}
$$

Much like in part a, we will work with the $z$-coordinate $N_{z}^{+}:=\sqrt{\frac{u^{2}+v^{2}-1}{2\left(u^{2}+v^{2}\right)-1}}$ of the normal vector $N^{+}$. We must invoke polar coordinates by writing $r^{2}=u^{2}+v^{2}$ for some $r>0$; this allows us to rewrite our $z$-coordinate of $N^{+}$as a function of $r$ only: $N_{z}^{+}=\sqrt{\frac{r^{2}-1}{2 r^{2}-1}}$. An important observation here is that, on the hyperboloid of revolution described by the equation $x^{2}+y^{2}-z^{2}=1$, we have

$$
\begin{aligned}
r^{2} & =u^{2}+v^{2} \\
& =x^{2}+y^{2} \\
& =\left(x^{2}+y^{2}-z^{2}\right)+z^{2} \\
& =1+z^{2} \\
& \geq 1,
\end{aligned}
$$

which means in particular that we can worry about the $z$-coordinate $N_{z}^{+}(r)=\sqrt{\frac{r^{2}-1}{2 r^{2}-1}}$ only for all values $r>0$ that satisfy $r^{2} \geq 1$, or equivalently for all $r \geq 1$. Now, we will observe the behavior of $N_{z}^{+}$as a function of $r$ on the interval $[1, \infty)$. First, note that, at $r=1$, we have

$$
\begin{aligned}
N_{z}^{+}(1) & =\sqrt{\frac{(1)^{2}-1}{2(1)^{2}-1}} \\
& =0 .
\end{aligned}
$$

Next, we observe that $N_{z}^{+}(r)$ is increasing for all $r \in[1, \infty)$. The reason is that, for all $r, \tilde{r} \in[1, \infty)$ satisfying $r \leq \tilde{r}$, then we have $r^{2} \leq \tilde{r}^{2}$ (since $r \geq 1$ and $\tilde{r} \geq 1$ ), and so

$$
\begin{aligned}
\left(r^{2}-1\right)\left(2 \tilde{r}^{2}-1\right) & =2 r^{2} \tilde{r}^{2}-r^{2}-2 \tilde{r}^{2}+1 \\
& \leq 2 r^{2} \tilde{r}^{2}-\tilde{r}^{2}-2 r^{2}+1 \\
& =\left(\tilde{r}^{2}-1\right)\left(2 r^{2}-1\right),
\end{aligned}
$$

which algebraically implies $\frac{r^{2}-1}{2 r^{2}-1} \leq \frac{\tilde{r}^{2}-1}{2 \tilde{r}^{2}-1}$, and so

$$
\begin{aligned}
N_{z}^{+}(r) & =\sqrt{\frac{r^{2}-1}{2 r^{2}-1}} \\
& \leq \sqrt{\frac{\tilde{r}^{2}-1}{2 \tilde{r}^{2}-1}} \\
& =N_{z}^{+}(\tilde{r})
\end{aligned}
$$

This completes the proof that $-N_{z}^{-}(r)$ is decreasing. Finally, we have the limit

$$
\begin{aligned}
\lim _{r \rightarrow \infty} N_{z}^{+}(r) & =\lim _{r \rightarrow \infty} \sqrt{\frac{r^{2}-1}{2 r^{2}-1}} \\
& =\lim _{r \rightarrow \infty} \sqrt{\frac{1-\frac{1}{r^{2}}}{2-\frac{1}{r^{2}}}} \\
& =\sqrt{\frac{1-0}{2-0}} \\
& =\frac{1}{\sqrt{2}} .
\end{aligned}
$$

Hence, for all $r \geq 1$, we have $0 \leq N_{z}^{+}(r)<\frac{1}{\sqrt{2}}$. This means that the image of $N^{+}$must be contained in $T^{+}:=\{(x, y, z) \in$ $\left.S^{2} \left\lvert\, 0 \leq z<\frac{1}{\sqrt{2}}\right.\right\}$. Meanwhile, as in part a, we also observe that the first two coordinates $N_{x}^{+}:=-\frac{u}{\sqrt{2\left(u^{2}+v^{2}\right)-1}}$ and $N_{y}^{+}:=-\frac{v}{\sqrt{2\left(u^{2}+v^{2}\right)-1}}$ of $N^{+}$are arbitrary real numbers depending on $(u, v) \in \mathbb{R}^{2}$; the significance of this fact is that we can conclude that the image of $N^{+}$is not part of $T^{+}$(that is, properly contained in some strict subset of $T^{+}$), but rather the image of $N$ is actually equal to $T^{+}$itself.
At this point, our work with $\mathbf{x}^{+}$is all done; we will now work with the other parametrization $\mathbf{x}^{-}$. The partial derivatives of $\mathbf{x}^{-}$are

$$
\begin{aligned}
\mathbf{x}_{u}^{-}(u, v) & =\frac{\partial \mathbf{x}}{\partial u}=\frac{\partial}{\partial u}\left(u, v,-\sqrt{u^{2}+v^{2}-1}\right) \\
& =\left(\frac{\partial}{\partial u}(u), \frac{\partial}{\partial u}(v), \frac{\partial}{\partial u}\left(-\sqrt{u^{2}+v^{2}-1}\right)\right) \\
& =\left(1,0,-\frac{u}{\sqrt{u^{2}+v^{2}-1}}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\mathbf{x}_{v}^{-}(u, v) & =\frac{\partial \mathbf{x}}{\partial v}=\frac{\partial}{\partial v}\left(u, v,-\sqrt{u^{2}+v^{2}-1}\right) \\
& =\left(\frac{\partial}{\partial v}(u), \frac{\partial}{\partial v}(v), \frac{\partial}{\partial v}\left(-\sqrt{u^{2}+v^{2}-1}\right)\right) \\
& =\left(1,0,-\frac{v}{\sqrt{u^{2}+v^{2}-1}}\right) .
\end{aligned}
$$

Then we obtain the cross product

$$
\left.\left.\begin{array}{rl}
\mathbf{x}_{u}^{-}(u, v) \times \mathbf{x}_{v}^{-}(u, v)= & \left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 0 & -\frac{u}{\sqrt{u^{2}+v^{2}-1}} \\
0 & 1 & -\frac{\sqrt{u^{2}+v^{2}-1}}{}
\end{array}\right| \\
= & \left|\begin{array}{ll}
0 & -\frac{v}{\sqrt{u^{2}+v^{2}-1}} \\
1 & -\frac{v}{\sqrt{u^{2}+v^{2}-1}}
\end{array}\right| \mathbf{i}-\left|\begin{array}{cc}
1 & -\frac{v}{\sqrt{u^{2}+v^{2}-1}}
\end{array}\right| \mathbf{j}+\left|\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right| \mathbf{k} \\
= & \left(( 0 ) \left(\left.-\frac{v}{\sqrt{u^{2}+v^{2}-1}} \right\rvert\,\right.\right. \\
\sqrt{u^{2}+v^{2}-1}
\end{array}\right)-(1)\left(-\frac{u}{\sqrt{u^{2}+v^{2}-1}}\right)\right) \mathbf{i} .
$$

and its associated magnitude

$$
\begin{aligned}
\left|\mathbf{x}_{u}^{-}(u, v) \times \mathbf{x}_{v}^{-}(u, v)\right| & =\sqrt{\left(\frac{u}{\sqrt{u^{2}+v^{2}-1}}\right)^{2}+\left(\frac{v}{\sqrt{u^{2}+v^{2}-1}}\right)^{2}+(1)^{2}} \\
& =\sqrt{\frac{u^{2}}{u^{2}+v^{2}-1}+\frac{v^{2}}{u^{2}+v^{2}-1}+1} \\
& =\sqrt{\frac{u^{2}}{u^{2}+v^{2}-1}+\frac{v^{2}}{u^{2}+v^{2}-1}+\frac{u^{2}+v^{2}-1}{u^{2}+v^{2}-1}} \\
& =\sqrt{\frac{u^{2}+v^{2}+\left(u^{2}+v^{2}-1\right)}{u^{2}+v^{2}-1}} \\
& =\sqrt{\frac{2\left(u^{2}+v^{2}\right)-1}{u^{2}+v^{2}-1}} .
\end{aligned}
$$

Thus, according to Definition 1 of Section 3-2 (c.f. page 136 of do Carmo), the normal vector $N^{-}: S \rightarrow S^{2}$, where $S \subset \mathbb{R}^{3}$ is a surface and $S^{2}:=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2}=1\right\}$ is a sphere, is given by

$$
\begin{aligned}
N^{-}(u, v) & =\frac{\mathbf{x}_{u}^{-}(u, v) \times \mathbf{x}_{v}^{-}(u, v)}{\left|\mathbf{x}_{u}^{-}(u, v) \times \mathbf{x}_{v}^{-}(u, v)\right|} \\
& =\frac{\left(\frac{u}{\sqrt{u^{2}+v^{2}-1}}, \frac{v}{\sqrt{u^{2}+v^{2}-1}}, 1\right)}{\sqrt{\frac{2\left(u^{2}+v^{2}\right)-1}{u^{2}+v^{2}-1}}} \\
& =\frac{\left(\frac{u}{\sqrt{u^{2}+v^{2}-1}}, \frac{v}{\sqrt{u^{2}+v^{2}-1}}, 1\right)}{\sqrt{\frac{2\left(u^{2}+v^{2}\right)-1}{u^{2}+v^{2}-1}}} \frac{\sqrt{u^{2}+v^{2}-1}}{\sqrt{u^{2}+v^{2}-1}} \\
& =\frac{\left(u, v, \sqrt{u^{2}+v^{2}-1}\right.}{\sqrt{2\left(u^{2}+v^{2}\right)-1}} \\
& =\left(\frac{u}{\sqrt{2\left(u^{2}+v^{2}\right)-1}}, \frac{v}{\sqrt{2\left(u^{2}+v^{2}\right)-1}}, \sqrt{\frac{u^{2}+v^{2}-1}{2\left(u^{2}+v^{2}\right)-1}}\right) .
\end{aligned}
$$

However, the negative signs appear on the first two coordinates in $N^{-}$, unlike in $N^{+}$which has a negative sign only in the third coordinate. In other words, $N^{-}$is an inward-pointing vector (whereas $N^{+}$is not), but this means that $-N^{-}$is an outward-pointing vector, and we will work this $-N^{-}$instead for the rest of this. To this end, we can write the expression of $-N^{-}$as

$$
-N^{-}(u, v)=\left(-\frac{u}{\sqrt{2\left(u^{2}+v^{2}\right)-1}},-\frac{v}{\sqrt{2\left(u^{2}+v^{2}\right)-1}},-\sqrt{\frac{u^{2}+v^{2}-1}{2\left(u^{2}+v^{2}\right)-1}}\right) .
$$

Much like in part a, we will work with the $z$-coordinate $-N_{z}^{-}:=-\sqrt{\frac{u^{2}+v^{2}-1}{2\left(u^{2}+v^{2}\right)-1}}$ of the normal vector $-N^{-}$. We must invoke polar coordinates by writing $r^{2}=u^{2}+v^{2}$ for some $r>0$; this allows us to rewrite our $z$-coordinate of $N^{+}$as a function of $r$ only: $-N_{z}^{-}=\sqrt{\frac{r^{2}-1}{2 r^{2}-1}}$. An important observation here is that, on the hyperboloid of revolution described by the equation $x^{2}+y^{2}-z^{2}=1$, we have

$$
\begin{aligned}
r^{2} & =u^{2}+v^{2} \\
& =x^{2}+y^{2} \\
& =\left(x^{2}+y^{2}-z^{2}\right)+z^{2} \\
& =1+z^{2} \\
& \geq 1,
\end{aligned}
$$

which means in particular that we can worry about the $z$-coordinate $-N_{z}^{-}(r)=\sqrt{\frac{r^{2}-1}{2 r^{2}-1}}$ only for all values $r>0$ that satisfy $r^{2} \geq 1$, or equivalently for all $r \geq 1$. Now, we will observe the behavior of $N_{z}^{+}$as a function of $r$ on the interval $[1, \infty)$. First, note that, at $r=1$, we have

$$
\begin{aligned}
-N_{z}^{-}(1) & =-\sqrt{\frac{(1)^{2}-1}{2(1)^{2}-1}} \\
& =0 .
\end{aligned}
$$

Next, we observe that $-N_{z}^{-}(r)$ is decreasing for all $r \in[1, \infty)$. The reason is that, for all $r, \tilde{r} \in[1, \infty)$ satisfying $r \leq \tilde{r}$,
then we have $r^{2} \leq \tilde{r}^{2}$ (since $r \geq 1$ and $\tilde{r} \geq 1$ ), and so

$$
\begin{aligned}
\left(r^{2}-1\right)\left(2 \tilde{r}^{2}-1\right) & =2 r^{2} \tilde{r}^{2}-r^{2}-2 \tilde{r}^{2}+1 \\
& \leq 2 r^{2} \tilde{r}^{2}-\tilde{r}^{2}-2 r^{2}+1 \\
& =\left(\tilde{r}^{2}-1\right)\left(2 r^{2}-1\right),
\end{aligned}
$$

which algebraically implies $\frac{r^{2}-1}{2 r^{2}-1} \geq \frac{\tilde{r}^{2}-1}{2 \tilde{r}^{2}-1}$, and so

$$
\begin{aligned}
N_{z}^{-}(r) & =\sqrt{\frac{r^{2}-1}{2 r^{2}-1}} \\
& \leq \sqrt{\frac{\tilde{r}^{2}-1}{2 \tilde{r}^{2}-1}} \\
& =N_{z}^{-}(\tilde{r}),
\end{aligned}
$$

or $-N_{z}^{-}(r) \geq-N_{z}^{-}(\tilde{r})$. This completes the proof that $-N_{z}^{-}(r)$ is decreasing. Finally, we have the limit

$$
\begin{aligned}
\lim _{r \rightarrow \infty}\left(-N_{z}^{-}(r)\right) & =-\lim _{r \rightarrow \infty} \sqrt{\frac{r^{2}-1}{2 r^{2}-1}} \\
& =-\lim _{r \rightarrow \infty} \sqrt{\frac{1-\frac{1}{r^{2}}}{2-\frac{1}{r^{2}}}} \\
& =-\sqrt{\frac{1-0}{2-0}} \\
& =-\frac{1}{\sqrt{2}} .
\end{aligned}
$$

Hence, for all $r \geq 1$, we have $0 \geq N_{z}^{-}(r)>-\frac{1}{\sqrt{2}}$. This means that the image of $N^{+}$must be contained in $T^{-}:=\{(x, y, z) \in$ $\left.S^{2} \left\lvert\, 0 \geq z>\frac{1}{\sqrt{2}}\right.\right\}$. Meanwhile, as in part a, we also observe that the first two coordinates $-N_{x}^{-}:=-\frac{u}{\sqrt{2\left(u^{2}+v^{2}\right)-1}}$ and $-N_{y}^{-}:=-\frac{v}{\sqrt{2\left(u^{2}+v^{2}\right)-1}}$ of $-N^{-}$are arbitrary real numbers depending on $(u, v) \in \mathbb{R}^{2}$; the significance of this fact is that we can conclude that the image of $-N^{-}$is not part of $T^{+}$(that is, properly contained in some strict subset of $T^{-}$), but rather the image of $N$ is actually equal to $T^{-}$itself.
Finally, we will now consider our two parametrizations $\mathbf{x}^{ \pm}$simultaneously. We just established in our last paragraph that $\mathbf{x}^{-}$is a parametrization that induces the unit normal vector $-N^{-}$whose image is $T^{-} \subset S^{2}$. Likewise, we also already established in two paragraphs above that $\mathbf{x}^{+}$is a parametrization that induces the unit normal vector $N^{+}$whose image is $T^{+} \subset S^{2}$. Combining these two results, we conclude that the two parametrizations $\mathbf{x}^{ \pm}$simultaneously establish the unit normal vectors $\pm N^{ \pm}$, whose combined image in $S^{2}$ is $T^{+} \cup T^{-}=\left\{(x, y, z) \in S^{2} \left\lvert\,-\frac{1}{\sqrt{2}}<z<\frac{1}{\sqrt{2}}\right.\right\}$.

