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Solutions to assigned homework problems from Differential Geometry of Curves and Surfaces by Manfredo Perdigdo do Carmo

Assignment 6 — pages 151-153: 2,3,4,5,6,8ab

3-2.2.

3-2.3.

Show that if a surface is tangent to a plane along a curve, then the points of this curve are either parabolic or planar.

Proof. Let S be a surface and P be a plane that is tangent to it on the curve «a(¢) for all # € I, where [ is an interval that
contains 0 in this problem. To say that a surface is tangent to a plane along a curve is really saying that S and P intersect each
other only at points on a(z). Let p = a(0) be some point on the curve. We observe that all the normal vectors N(a(t)) must be
parallel; in other words, if 71, € I are arbitrary values, then N(a(t1)), N(a(t)) point in the same direction. This implies that
we have N'(¢) = 0. But we have also dN()(’(t)) = N'(t) (c.f. do Carmo, page 145). So altogether we have

AN (@' (1)) = N'(1)
=0.
As a(t) is a parametrized curve, we must have a’(¢) # 0; otherwise, if @’(¢) = 0, then a(¢) would be constant for all 7 € I and

therefore not a parameterized curve. So we must have a’(¢) = 0 for all ¢ € I; in particular, we have a’(0) # 0. Also at ¢t = 0,
since again a/(0) = p and we established already dN,(;)(a’(¢)) = 0, we have in particular

dN,,(a’(0)) = 0.

It follows then (from linear algebra) that the kernel of dN,, is nontrivial, which in turn implies (also from linear algebra)
that dN,, is not injective as a map; in the language of matrices, dN,, is not an invertible matrix, which means we must have
det dN,, = 0. Therefore, if we also have dN,, = 0, then p is a planar point. Otherwise, if we have instead dN,, # 0, then p is a
parabolic point. O

Let C c S be aregular curve on a surface S with Gaussian curvature K > 0. Show that the curvature k of C at p satisfies
k = min{|ki], |k2[},

where k; and k; are the principal curvatures of S at p.

Proof. The normal curvature k,, is given by Euler’s formula (c.f. do Carmo, page 145)
kn(0) = k4 cos? @ + ky sin® 6.

Also, according to Definition 3 on page 141 of do Carmo, the definition of the normal curvature is k,, = k cos 6. Finally, we
need to recall that, since curvature is positive (i.e. £ > 0), we have |k| = k. We also need to use the known fact of | cos 8| < 1.
Since K > 0 by hypothesis and K = k;k», it follows that the principal curvatures ki, k; must be either both positive or both
negative; if one were negative and the other were positive, then K = k;k, < 0, which would contradict our hypothesis. So
ki, ky having the same sign means in particular that we will never have to deal with, e.g. +k; cos? 6 F k; sin® 6 (notice the
upside-down “F”), which would not allow the desired inequality k > min{|k;|, |k2|} to follow from it. Therefore, we have

k= k|
> |k cos 8|
= |knl
= +k,
= +(k cos’ 6 + ky sin” 0)
= iklcoszei ko sin” @
|k1| cos? 6 + |ky| sin” @
> min{|k|, |k2|} cos® 8 + min{|k|, |kz|} sin® 6
= min{|k1], |k2|}(cos? 6 + sin® 6)
= min{|ki |, [k2[},

as desired. O

3-2.4. Assume that a surface S has the property that |k;| < 1, |ka| < 1 everywhere. Is it true that the curvature k of a curve on S also

satisfies |k| < 1?



3-2.5.

3-2.6.

Proof. We have the Gaussian curvature (c.f. do Carmo, page 146)
K = kiks.

We will prove that the claim in the problem statement is not true. Let S be a plane. Then on S we have k; = k; = 0, which
satisfies |[k;| = 0 < 1 and |k;| = 0 < 1. If we consider a circle with radius r < 1, then this circle is a (closed) curve on S that

has curvature k = } > 1, which does not satisfy |k| < 1. O

Show that the mean curvature H at p € § is given by

1 T
H=— / kn(6) d6,
0

b4
where k,(0) is the normal curvature at p along a diretion making an angle 6 with fixed direction.
Proof. The normal curvature k,, is given by Euler’s formula (c.f. do Carmo, page 145)
kn(0) = ky cos? @ + ky sin® 6.
We also recall that the mean curvature is given by (c.f. do Carmo, page 146)

_k1+k2

H
2

So we have

/ k,,(e)de:/ ki cos® @ + ko sin”> 0 dO
0 0
o1+ 20 1- 20
:/ ky cos( )+k2 cos( )dQ
0

2 2

ky ™ ky ™
= — 1 + cos(20)do + — 1 — cos(20) d6
2 0 2 0
k 1 Tk 1 §
= 71 (9 + 3 sin(ZH)) . + 72 (0 -3 sin(20)) .
1 1 1 1
= % ((n + 3 sin(27r)) - (O + 3 sin(2(0)))) + % ((ﬂ -3 sin(27r)) - (O -3 sin(Z(O))))
Kk . ki
= 3 T 3 T
_ 7Tk] + kz
T2
=nH,
which implies algebraically
1 V3
H = —/ kn(0) do
T Jo
as desired. O

Show that the sum of the normal curvatures for any pair of orthogonal directions at a point p € § is constant.

Proof. Once again, according to Definition 4 (c.f. do Carmo, page 144), then the normal curvature k, is given by Euler’s
formula (c.f. do Carmo, page 145)
kn(0) = k; cos? @ + ky sin® 6.

Since 6 is an angle that corresponds to some direction on S at p, it follows for instance that 6 + 7 is an angle that corresponds
to a direction on S at p that is perpendicular to the original direction determined by 6. If v is a directional vector that is
perpendicular to n, then The normal curvature for this perpendicular direction is

ko (6) = Ky, (9 + %)

T . T
=k cos? (9 + 5) + ky sin® (9 + 5)

=t foos (0 2)) + ks s [0+ Z))
=k (cos () cos (%) — sin (6) sin (g))z + ko (sin () cos (%) + cos (0) sin (g))z
= ki((cos 8)(0) — (sin 6)(1))* + kx((sin §)(0) + (cos H)(1))

=k sin® 6 + ko cos? 0.



Therefore, the sum of the normal curvatures for any pair of orthogonal directions is given by

k() + ky(6) = (ki cos® 6 + ky sin 0) + (k; sin® 6 + ky cos® 6)
= ki(cos® @ + sin® 0) + ka(sin” 0 + cos’ 6)
= kl + kz,

which does not depend on 6 and is therefore constant. O
3-2.8. Describe the region of the unit sphere covered by the image of the Gauss map of the following surfaces:

a. Paraboloid of revolution z = x* + y.

Proof. Consider the parametrization x : R> — R3 given by x(u, v) = (i, v, u> + v?). Then the partial derivatives are

ox 0
X, (u,v) = S = %(M’ vu? + v2)
_(9 9 9 2
- (614(“)’ au(v)a al/t(u +v ))
=(1,0,2u)
and
X, (1, v) = % = %(u, v, u? +v?)
_(2 9 d 52
a (6\/ (W) 6V(V)’ (311(” v ))
=(0,1,2v).
Then we obtain the cross product
i j k
X, (u,v) X x,(u,v) =1 0 2u
0 1 2v
_ 0 2w, (1 2u,+1 0k
o o 2 o 1

= ((0)(2v) = (1)2u))i — ((1)(2v) = (0)(2u))j + ((1)(0) — (0)(1))k
=(—2u)i+ (-2v)j+ (Dk
= (-2u,-2v, 1)

and its associated magnitude

1% (10, v) X Xy (11, V)] = V(=20)% + (=2v)2 + (1)2
= Vdu? + 42 + 1.

Thus, according to Definition 1 of Section 3-2 (c.f. page 136 of do Carmo), the normal vector N : S — 52, where
S ¢ R3 is a surface and S? := {(x,y,z) € R? | x? + y? + z% = 1} is the unit sphere centered at the origin, is given by

X, (1, v) X X, (11, v)
X (4, v) X %y, (4, V)|
(—2u, —2v, 1)
Vdu? + 402 + 1
2u 2v 1
ViZ+ 0241 Va2 + 87 +1 Va2 + a2+ 1)

At this point, we make two critical observations here. Our first observation is that the z-coordinate of our normal vector

N—call this N,—is positive; indeed, this is because we have N, := \/ﬁﬁ > 0 for all (, v) € R%. This implies that
u vV

the image of N must be contained in the upper hemisphere H* := {(x,y,z) € R? | x> + y?> + z> = 1,z > 0} ¢ S%. Our

N(u,v) =

second observation is that the first two coordinates Ny := _\/422—11T and N, := _V#T of N are arbitrary real
us+4v-+ u-+av-+

numbers depending on (u, v) € R?; the significance of this fact is that we can conclude that the image of N is not part of
H™ (that is, properly contained in some strict subset of H*), but rather the image of N is actually equal to H* itself. O

b. Hyperboloid of revolution x> + y> — z% = 1.

Note: For part b, I presented two solutions here. The reader is recommended to only follow Solution 1 because Solution
2 is long, difficult, and redundant.

Solution 1: Gradient of a function



Proof. Define f(x,y, z) := x> +y? —z% — 1. Then the partial derivatives are fy(x,y, z) = 2x, f,(x,¥,2) = 2y, £;(x, %, 2) =
—2z, and so we obtain the gradient

VI(x,y,2) = (flxy, 2, (x5, 2), (%, 9, 2))
= (2x,2y,-22)

and its associated magnitude

IVf(x 3, 2) = V@x) + 2y)? + (-22)?
=2x2+ )2+ 22,
So the unit normal vector at (1, 1, —2) is

_ Ve y.2)
[Vf(x,,2)l
(2x,2y,-2z)

2 x2+y2+z2

N(x,y,2)

x y z
Va2 +y2+22 a2+ 422 a2+t 22

Meanwhile, we also observe that, on the hyperboloid of revolution x4+ y2 — 72 =1, we have 722 = x2 + y2 -1, or

equivalently z = + \/m . So we can consider the third coordinate of N(x, y, z), which we write

Ne(x3,2) 1= e

X<+ y-+z
gy

_\/x2+y2+(x2+y2—1)
S e |

V202 +y) -1
x2+y2-1

2(x2+y2) - 1"

=7

So we just found out that the third coordinate N, is not be a well-defined function since the ¥ sign in the expression of
N, signifies that N, takes on two simultaneous values. Our only workaround for this is that we can split N, into two
components

x2+y2-1
NI(X,9,2) i= A| >———5——
z(%3:2) 2(x2+y2) -1
and
x2+y2-1
N (x,y,2) i= —|—————,
2 (%3,2) 2(x2+y1) -1

both of which are functions (whereas N, itself is not). We must invoke polar coordinates by writing % = u® +v? for some

r2-1
2r2-1°
here is that, on the hyperboloid of revolution described by the equation x> + y* — z2 = 1, we have

r > 0; this allows us to rewrite our z-coordinate of N* as a function of r only: N, = An important observation

r2=x2+y2

(x2+y2_z2)+z2
=1+7
> 1,

which means in particular that we can worry about the z-coordinate N (r) = ¥ ,/2’;{_11 only for all values r > 0 that
satisfy 7> > 1, or equivalently for all » > 1. Now, we will observe the behavior of N, as a function of r on the interval

[1, o0). First, note that, at » = 1, we have
/ (1)?2-1
NI(1) = [——
= (D) 2(1)2 -1

=0.



Next, we observe that N (r) is increasing for all » € [1, c0). The reason is that, for all r, 7 € [1, co) satisfying r < 7, then
we have r2 < 72 (since » > 1 and 7 > 1), and so

(r* = DR - 1) =272 - r? =2/ + 1
<2 - -2r + 1

= (P -1’ -1,

which algebraically implies 2’:2__11 < ;:{_11, and so
r2—1
NI (r) = A/ ——
<= \3p Ty
. [P
V221
= N, (7)

This completes the proof that N (r) is increasing. Finally, we have the limit

2-1
lim N (r) = lim y/ ———
Fooo < (r) r—oo 272 -1
1-L
= lim -
r—o0 2 — =
_[1-=0
~V2-0
1
A
We will work with the z-coordinate N, := —, /% of the normal vector N~. We must invoke polar coordinates

by writing 7> = u? + v? for some r > 0; this allows us to rewrite our z-coordinate of N~ as a function of r only:

N, = {:2—__11 An important observation here is that, on the hyperboloid of revolution described by the equation

x> +y? —z2 =1, we have

r? = u? +v?

=Py’
=2 +y -+ 2
=1+z

> 1,

which means in particular that we can worry about the z-coordinate N (r) = 1/2’:2‘_11 only for all values r > 0 that

satisfy r> > 1, or equivalently for all » > 1. Now, we will observe the behavior of N7 as a function of r on the interval

[1, c0). First, note that, at r = 1, we have
_ f (1?2 -1
N(1)= - ————
=) 2(1)2 -1

=0.

Next, we observe that N (r) is decreasing for all r € [1, co). The reason is that, for all r, 7 € [1, co) satisfying r < 7, then
we have 2 < 72 (since r > 1 and 7 > 1), and so

(=D - 1) =277 = r* = 27" + 1
<2 - - 2r 4 1

= (@ -1’ -1,

which algebraically implies r:[l > L 22__11,and SO

2721 < oF
rz—1
NI(r) = - ==
2 () 2r2 -1
21
22— 1

= N (7),



or N, (r) = N7 (7). This completes the proof that N (r) is decreasing. Finally, we have the limit

rz—1
lim N, (r) =1 -\ —
Jim N () ,:H;( \/2,,2_1)

= - lim -
r—00 _
r2
3 1-0
- N2-0
1
5
Hence, for all r > 1, we have 0 > N/ (r) > —7 Since we also already said much earlier 0 < N/ (r) < 7, we can
combine N*, N~ together to conclude that — % < Ny(r) < 75, or equivalently |N,(r)| < 7, for all » > 1. Hence, the
image of the unit normal vector N in S? is contained in the equatorial belt T := {(x, y, z) €S|z < \E}' Meanwhile,
. . . y .
as in part a, we also observe that the first two coordinates Ny := —ﬁ and N, \/ﬁ of N are arbitrary

real numbers depending on (x, y) € R?; the significance of this fact is that we can conclude that the image of N is not
part of T (that is, properly contained in some strict subset of T'), but rather the image of N is actually equal to T itself. O

Solution 2: Parametrization, as done in part a

Proof. Solving for z from x? + y> — z2 = 1, we get two functions z = ++/x2 + y2 — 1, which allow us to consider
their corresponding parametrizations x*,x~ : R? » R3 given by x*(u,v) := (u,v, Vu2 +v2—1) and x (u,v) :=
(u, v, — Yu? + vZ — 1). Let us work with the first parametrization x* first. The partial derivatives of x* are

X (u,v) = = _u v, VuZ +v2-1)

a_

(ai 30 e+ D)

Vuz +v2 -1 1)

and

X5 (u,v) = ox = —(u,v, Vul +v2-1)

av

Eai >—<JT>)

)

Then we obtain the cross product

ij K
xHu,v) xxtu,v)=|1 0 —MZsz—l
v
0 1 Vu?+v2-1
0 —r— 1] ===
= Vu 2+v2 1 l—’ Vu?+v2-1 j+ 1 O‘k
1 — 0 1
2+v u+v2-1

((O)( R )‘“)(vuzfﬁ))i

a— Ik 1)(0) = (0)(1))k
( ( V2t 1) ()(m))””) (0)(1))

. v .
(_ Vu2+v2—1)l+(_ Vu2+v2—1)J+(1)k

( u V 1)
\/u2+v2—1’ ‘/u2+v2—1’



and its associated magnitude

+
w2 +v2 -1 u2+v2—1 w2 +v2 -1

wr +v2+ W2 +v2-1)
ur+v: -1
2W? +v) -1
u?+v2 -1

2 2
v
X (1, v) X X7 (u, v)|—\/ ) +(——) +(1)?
u2+v2 1 Vu? +v2 -1
2
v
+1
\/ +v2—1 22— 1
\/ v2 u? +v2 -1

Thus, according to Definition 1 of Section 3-2 (c.f. page 136 of do Carmo), the normal vector N* : § — §2, where
S ¢ R3 is a surface and S? := {(x,y,7) € R3 | x? + y? + 7% = 1} is a sphere, is given by

X (1, v) X X5 (u, v)
Ix; (, v) X X5 (1, V)|

N*t(u,v) =

(- u - v 1)
_ ViZev2-1" Vul+2-1
[2(u2+v2)-1
u?+v2-1
_ u _ v —
( Vi +v2-1’ Vb2+v2—l’1) u? +v2 -1
2(u+v2)-1 Vu? +v2 -1

u2+v2-1

(=u, —v, Yu? +v%2 -1)

| u B v [ u?+v2 -1
\/2(u2+v2)—1’ \/2(u2+v2)—1’ 2 +v2) =1

Much like in part a, we will work with the z-coordinate N;f = /% of the normal vector N*. We must invoke

polar coordinates by writing 7> = u? +v? for some r > 0; this allows us to rewrite our z-coordinate of N* as a function of

ronly: N = /55— . Animportant observation here is that, on the hyperboloid of revolution described by the equation

X+yr-72 = l,wehave

r-= u2 +'V2

=24y

(2 +yr -+

=1+7°
> 1,
which means in particular that we can worry about the z-coordinate N} (r) = 2’:2111 only for all values r > 0O that

satisfy 72> > 1, or equivalently for all » > 1. Now, we will observe the behavior of N; as a function of r on the interval

[1, o). First, note that, at » = 1, we have
f (12 -1
NFf(l) = | ——
(1) 2(1)2 -1

=0.

Next, we observe that NZJr (r) is increasing for all r € [1, 00). The reason is that, for all r, 7 € [1, o) satisfying r < 7, then
we have r2 < 72 (since r > 1 and 7 > 1), and so

(r* = DR - 1) =272 - r? =2/ + 1
<2 - -2+ 1

= (P -1 -1,



which algebraically implies 5 11 < ;2 7 and so

r2—1
N;(’")Z 721
-1
272 -1
= N; ()

This completes the proof that —N_ (r) is decreasing. Finally, we have the limit

r2—1
hm N = lim
()= }lm N5y
1-L
= lim -
r—o0 2 — >
_/1-=0
- V2-0
1
A
Hence, for all » > 1, we have 0 < N (r) < \er This means that the image of N* must be contained in T* := {(x, y, z) €
S2 |0 <z< «/LE}' Meanwhile, as in part a, we also observe that the first two coordinates N; := —\/ﬁ and
Ny = _\/2(u2v—+ﬁ of N* are arbitrary real numbers depending on (u, v) € R?; the significance of this fact is that we

can conclude that the image of N* is not part of T* (that is, properly contained in some strict subset of T), but rather
the image of N is actually equal to T itself.

At this point, our work with x* is all done; we will now work with the other parametrization x~. The partial derivatives
of x™ are

=—(uv—\/ 24v2-1)

x,(u,v) = 6_

(')i ( Vu? +v2 - ))

- (7w
(o 1)

X, (u,v) = = (u v,—Vu?z +vZ-1)

a_

(ai S0 gD

and

V2 +v2 -1 1) '
Then we obtain the cross product
i j k
- - -1 0 ——=—=
X, (1, v) X X, (u,v) = Vi 21
01 - 2v 2
u*+v-—1
0 veEe L Ve O'k
1 ——y -— 0 1
Vu?+v2-1 VuZ+v2-1

o ol e
(()( uz+v2 -1 M u? +v2 -1 '
(0= -0 = e wo- 0o
‘ i d j+(Dk
(‘/u2+v2—1)1+(\/u2+v2—1)J+()

( u v 1)
ViZ v v -1 N2 +v2-1




and its associated magnitude

2

N _ _ u g v 1)2
Ix;, (u,v) XX, (u,v)| = (m) +(m) +(1)

2

+1

+
w2+v2—-1 u?+v2-1

u? v
2 y2 u? +v2 -1

u
+ +
\/u2+v2—1 w2 +v2-1 u2+v2-1

w> +v2+ 2 +v2-1)
u?+v2-1
2W? +v2) -1

w+v2-1"°

Thus, according to Definition 1 of Section 3-2 (c.f. page 136 of do Carmo), the normal vector N~ : § — §2, where
S ¢ R3 is a surface and S? := {(x,y,7) € R3 | x? + y? + 7% = 1} is a sphere, is given by

x, (u, v) X X, (u, v)

N~ (u,v) = X (1, v) X X (1, v)]

( u , v 1)
_ V221" Vu2+v2-1
2(u?+v2)-1
V u2+v2-1
u v
( Vul+v2-1" Vul+v2-1’ D u? +v2 -1
\/2<u2+v2)—1 Vu? +v2 -1

uz+v2-1

_ (u, v, Vu? +v2-1)

B u v / u? +v2 -1
\/2(u2+v2)—1’ \/2(u2+v2)—1’ 22 +vH) -1

However, the negative signs appear on the first two coordinates in N~, unlike in N* which has a negative sign only in
the third coordinate. In other words, N~ is an inward-pointing vector (whereas N7 is not), but this means that —N~ is an
outward-pointing vector, and we will work this —N~ instead for the rest of this. To this end, we can write the expression
of —-N~ as

u % w2 +v2 -1

N (,v) = | - - -
() V202 +v3) =1 A2 +v2) -1 2 +v?) -1

Much like in part a, we will work with the z-coordinate —N; := — ,/% of the normal vector —N~. We must

invoke polar coordinates by writing > = u? + v> for some r > 0; this allows us to rewrite our z-coordinate of N* as a

function of r only: —N; = 2’:2__11. An important observation here is that, on the hyperboloid of revolution described

by the equation x> + y*> — z> = 1, we have

r? = u? +v?
C x4y

=2+ y -+ 2

=1+2
> 1,
which means in particular that we can worry about the z-coordinate —N_ (r) = 2’:2‘_11 only for all values » > 0 that

satisfy r> > 1, or equivalently for all » > 1. Now, we will observe the behavior of N7 as a function of r on the interval

[1, c0). First, note that, at r = 1, we have
_ / (1?2 -1
-N; (1) = — | ———
() 2(1)2 -1

=0.

Next, we observe that —N_ (r) is decreasing for all r € [1, c0). The reason is that, for all r,7 € [1, o) satisfying r < 7,



then we have r2 < 72 (since r > 1 and 7 > 1), and so
=22 -1) =2, -r> =2/ +1
<2 - - 2r7 + 1

= (P -1 -1,

2 0
r—L > 7= andso
’

221 = 271
_ r2—1
N =32
[7 -1
< -
271

= N; (7,

which algebraically implies

or =N (r) = =N (7). This completes the proof that —N_ (r) is decreasing. Finally, we have the limit

lim (-N_ () = — lim 4/ -l
im(-N_(r))=-1 —
r—00 < r—o0 2r2 -1

1
2

= — lim ;
r—oo 2 — r_2
3 1-0
- N2-0
1
N
Hence, forallr > 1, we have 0 > N (r) > —%. This means that the image of N* must be contained in 7~ := {(x, y,2) €
$210>z> \/LE} Meanwhile, as in part a, we also observe that the first two coordinates —N := —\/ﬁ and
Ny = ———2Y— of —N~ are arbitrary real numbers depending on (u, v) € R?; the significance of this fact is that we

V2(u?+v?)-1

can conclude that the image of —N~ is not part of T* (that is, properly contained in some strict subset of 77), but rather
the image of N is actually equal to T~ itself.

Finally, we will now consider our two parametrizations x* simultaneously. We just established in our last paragraph that
X~ is a parametrization that induces the unit normal vector —N~ whose image is T~ c S2. Likewise, we also already
established in two paragraphs above that x* is a parametrization that induces the unit normal vector N* whose image is
T* c §%. Combining these two results, we conclude that the two parametrizations x* simultaneously establish the unit
normal vectors +N*, whose combined image in $Zis T* UT™ = {(x,y,z) € S? | _\/Li <z< %} O



