MATH 138A discussion Ryan Ta
University of California, Riverside Winter 2019

Midterm solutions

1. Determine the curvature and torsion of the helix a(s) = (3 cos(z), 3 sin(5),4(3)) for all s € R.

Proof. Given a(s) = (3cos(3),3sin(3), 43 ), we obtain its first derivative
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and its second derivative
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Since s € R is the arc length parameter, according to the definition on page 16 of do Carmo, we obtain the curvature
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Now, we will find the torsion. Recall from page 17 of do Carmo that, since k(s) = % # 0, we have a’'(s) = k(s)n(s), which

implies n(s) = (ié‘)) . (Alternatively, one can find this from one of the Frenet formulas ¢" = kn and identify #(s) = @’(s) to get
a”(s) = k(s)n(s).) So we obtain the normal vector
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Using this normal vector, we get the binormal vector

b(s) = t(s) x n(s)
a’(s) X n(s)
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along with its derivative
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So, from b’(s) = 7(s)n(s) (c.f. do Carmo, page 18), we obtain the torsion

(s) = b'(s) - n(s)
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as desired. O

. Let a(s) be a unit speed curve lying on the plane with curvature k(s) = ¢, where ¢ > 0 is a constant. Prove that a(s) is part of
a circle of radius %

Proof. Let n(s) be a unit normal vector to a(s) and define
1
B(s) == a(s) + @n(s).
Since k(s) = ¢, we really have
1
B(s) = a(s) + En(s)
Now, since a(s) is a plane curve, we have zero torsion (i.e. 7 = 0), and so one of the Frenet formulas gives us
n'(s) = —k(s)t(s) — 7(s)b(s)
= —ct(s) — (0)b(s)
= —ct(s)

= —ca’'(s).



So we get the derivative
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Therefore, 3(s) is a constant vector; in other words, 3(s) = p for some fixed point p € R%. Hence, we get
1
p = B(s) = als) + —nfs),
or

o(s) = p = ~n(s),

as well as its associated magnitude
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This establishes that a(s) is a circle of radius % that is centered at p. O
. Determine the unit normal and the equation of the tangent plane of the surface 2x> + y*> + z = 1 at the point p = (1,1, -2).

Proof. Define f(x,y,z) := 2x> + y* + z. Then the partial derivatives are fy(x,y,z) = 4x, f,(x,,2) = 2y, fo(x,y,2) = 1. In
particular, at the point (1, 1, —2), we obtain the gradient
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and its associated magnitude
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So the unit normal at (1, 1, -2) is
Vf(la 1a _2)
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Now, we recall that the equation of the tangent plane at some point (x, yo, z0) € R? is given by
Sx(x0, Yo, 20)(x = x0) + fy(x0, ¥0, 20)(¥ = yo) + fz(x0, Y0, 20)(z — 20) = 0.
Applying the point p = (1, 1, —2) and our partial derivatives at that point, we get
4x-1D+2(y-1D+1(z+2)=0,

or equivalently
4x + 2y +z =4,

which is the equation of the tangent plane of 2x> + y2 + z = l at (1, 1, =2). o



