Midterm solutions

1. Determine the curvature and torsion of the helix $\alpha(s) = (3\cos(\frac{s}{5}), 3\sin(\frac{s}{5}), 4(\frac{s}{5}))$ for all $s \in \mathbb{R}$.

Proof. Given $\alpha(s) = (3\cos(\frac{s}{5}), 3\sin(\frac{s}{5}), 4\frac{s}{5})$, we obtain its first derivative

$$\alpha'(s) = \frac{d\alpha}{ds} = \frac{d}{ds} \left(3\cos\left(\frac{s}{5}\right), 3\sin\left(\frac{s}{5}\right), 4\frac{s}{5} \right)$$
$$= \left(\frac{d}{ds} \left(3\cos\left(\frac{s}{5}\right) \right), \frac{d}{ds} \left(3\sin\left(\frac{s}{5}\right) \right), \frac{d}{ds} \left(4\frac{s}{5} \right) \right)$$
$$= \left(-\frac{3}{5}\sin\left(\frac{s}{5}\right), \frac{3}{5}\cos\left(\frac{s}{5}\right), \frac{4}{5} \right)$$

and its second derivative

$$\alpha''(s) = \frac{d\alpha'}{ds} = \frac{d}{ds} \left(-\frac{3}{5} \sin\left(\frac{s}{5}\right), \frac{3}{5} \cos\left(\frac{s}{5}\right), \frac{4}{5} \right)$$
$$= \left(\frac{d}{ds} \left(-\frac{3}{5} \sin\left(\frac{s}{5}\right) \right), \frac{d}{ds} \left(\frac{3}{5} \cos\left(\frac{s}{5}\right) \right), \frac{d}{ds} \left(\frac{4}{5} \right) \right)$$
$$= \left(-\frac{3}{25} \cos\left(\frac{s}{5}\right), -\frac{3}{25} \sin\left(\frac{s}{5}\right), 0 \right).$$

Since $s \in \mathbb{R}$ is the arc length parameter, according to the definition on page 16 of do Carmo, we obtain the curvature

$$k(s) = |\alpha''(s)|$$

$$= \sqrt{\left(-\frac{3}{25}\cos\left(\frac{s}{5}\right)\right)^2 + \left(-\frac{3}{25}\sin\left(\frac{s}{5}\right)\right)^2 + (0)^2}$$

$$= \sqrt{\left(\frac{3}{25}\right)^2 \left(\cos^2\left(\frac{s}{5}\right) + \sin^2\left(\frac{s}{5}\right)\right)}$$

$$= \frac{3}{25}.$$

Now, we will find the torsion. Recall from page 17 of do Carmo that, since $k(s) = \frac{3}{25} \neq 0$, we have $\alpha''(s) = k(s)n(s)$, which implies $n(s) = \frac{\alpha''(s)}{k(s)}$. (Alternatively, one can find this from one of the Frenet formulas t' = kn and identify $t(s) = \alpha'(s)$ to get $\alpha''(s) = k(s)n(s)$.) So we obtain the normal vector

$$n(s) = \frac{\alpha''(s)}{k(s)} = \frac{\alpha''(s)}{\frac{3}{25}} = \frac{25}{3}\alpha''(s)$$
$$= \frac{25}{3} \left(-\frac{3}{25}\cos\left(\frac{s}{5}\right), -\frac{3}{25}\sin\left(\frac{s}{5}\right), 0 \right)$$
$$= \left(-\cos\left(\frac{s}{5}\right), -\sin\left(\frac{s}{5}\right), 0 \right).$$

Using this normal vector, we get the binormal vector

$$b(s) = t(s) \times n(s)$$

$$= \alpha'(s) \times n(s)$$

$$= \left(-\frac{3}{5}\sin\left(\frac{s}{5}\right), \frac{3}{5}\cos\left(\frac{s}{5}\right), \frac{4}{5}\right) \times \left(-\cos\left(\frac{s}{5}\right), -\sin\left(\frac{s}{5}\right), 0\right)$$

$$= \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -\frac{3}{5}\sin\left(\frac{s}{5}\right) & \frac{3}{5}\cos\left(\frac{s}{5}\right) & \frac{4}{5} \\ -\cos\left(\frac{s}{5}\right) & -\sin\left(\frac{s}{5}\right) & 0 \end{vmatrix}$$

$$= \begin{vmatrix} \frac{3}{5}\cos\left(\frac{s}{5}\right) & \frac{4}{5} \\ -\sin\left(\frac{s}{5}\right) & 0 \end{vmatrix} \mathbf{i} - \begin{vmatrix} -\frac{3}{5}\sin\left(\frac{s}{5}\right) & \frac{4}{5} \\ -\cos\left(\frac{s}{5}\right) & -\sin\left(\frac{s}{5}\right) \end{vmatrix} \mathbf{j}$$

$$= \left(\left(\frac{3}{5}\cos\left(\frac{s}{5}\right)\right)\left(0\right) - \left(-\sin\left(\frac{s}{5}\right)\right)\left(\frac{4}{5}\right)\right)\mathbf{i} - \left(\left(-\frac{3}{5}\sin\left(\frac{s}{5}\right)\right)\left(0\right) - \left(-\cos\left(\frac{s}{5}\right)\right)\left(\frac{4}{5}\right)\right)\mathbf{j}$$

$$+ \left(\left(-\frac{3}{5}\sin\left(\frac{s}{5}\right)\right)\left(-\sin\left(\frac{s}{5}\right)\right) - \left(-\cos\left(\frac{s}{5}\right)\right)\left(\frac{3}{5}\cos\left(\frac{s}{5}\right)\right)\right)\mathbf{k}$$

$$= \frac{4}{5}\sin\left(\frac{s}{5}\right)\mathbf{i} - \frac{4}{5}\cos\left(\frac{s}{5}\right)\mathbf{j} + \frac{3}{5}\left(\sin^2\left(\frac{s}{5}\right) + \cos^2\left(\frac{s}{5}\right)\right)\mathbf{k}$$

$$= \frac{4}{5}\sin\left(\frac{s}{5}\right)\mathbf{i} - \frac{4}{5}\cos\left(\frac{s}{5}\right)\mathbf{j} + \frac{3}{5}\mathbf{k}$$

$$= \left(\frac{4}{5}\sin\left(\frac{s}{5}\right), -\frac{4}{5}\cos\left(\frac{s}{5}\right), \frac{3}{5}\right),$$

along with its derivative

$$b'(s) = \frac{db}{ds} = \frac{d}{ds} \left(\frac{4}{5} \sin\left(\frac{s}{5}\right), -\frac{4}{5} \cos\left(\frac{s}{5}\right), \frac{3}{5}\right)$$

$$= \frac{d}{ds} \left(\frac{4}{5} \sin\left(\frac{s}{5}\right), -\frac{4}{5} \cos\left(\frac{s}{5}\right), \frac{3}{5}\right)$$

$$= \left(\frac{d}{ds} \left(\frac{4}{5} \sin\left(\frac{s}{5}\right)\right), \frac{d}{ds} \left(-\frac{4}{5} \cos\left(\frac{s}{5}\right)\right), \frac{d}{ds} \left(\frac{3}{5}\right)\right)$$

$$= \left(\frac{4}{25} \cos\left(\frac{s}{5}\right), -\frac{4}{25} \sin\left(\frac{s}{5}\right), 0\right).$$

So, from $b'(s) = \tau(s)n(s)$ (c.f. do Carmo, page 18), we obtain the torsion

$$\tau(s) = b'(s) \cdot n(s)$$

$$= \left(\frac{4}{25}\cos\left(\frac{s}{5}\right), -\frac{4}{25}\sin\left(\frac{s}{5}\right), 0\right) \cdot \left(-\cos\left(\frac{s}{5}\right), -\sin\left(\frac{s}{5}\right), 0\right)$$

$$= \left(\frac{4}{25}\cos\left(\frac{s}{5}\right)\right) \left(-\cos\left(\frac{s}{5}\right)\right) + \left(-\frac{4}{25}\sin\left(\frac{s}{5}\right)\right) \left(-\sin\left(\frac{s}{5}\right)\right) + (0)(0)$$

$$= -\frac{4}{25} \left(\cos^2\left(\frac{s}{5}\right) + \sin^2\left(\frac{s}{5}\right)\right)$$

$$= -\frac{4}{25},$$

as desired.

2. Let $\alpha(s)$ be a unit speed curve lying on the plane with curvature k(s) = c, where c > 0 is a constant. Prove that $\alpha(s)$ is part of a circle of radius $\frac{1}{c}$.

Proof. Let n(s) be a unit normal vector to $\alpha(s)$ and define

$$\beta(s) := \alpha(s) + \frac{1}{k(s)}n(s).$$

Since k(s) = c, we really have

$$\beta(s) = \alpha(s) + \frac{1}{c}n(s)$$

Now, since $\alpha(s)$ is a plane curve, we have zero torsion (i.e. $\tau = 0$), and so one of the Frenet formulas gives us

$$n'(s) = -k(s)t(s) - \tau(s)b(s)$$

$$= -ct(s) - (0)b(s)$$

$$= -ct(s)$$

$$= -c\alpha'(s).$$

So we get the derivative

$$\beta'(s) = \frac{d\beta}{ds} = \frac{d}{ds} \left(\alpha(s) + \frac{1}{c} n(s) \right)$$

$$= \alpha'(s) + \frac{1}{c} n'(s)$$

$$= \alpha'(s) + \frac{1}{c} (-c\alpha'(s))$$

$$= \alpha'(s) - \alpha'(s)$$

$$= 0.$$

Therefore, $\beta(s)$ is a constant vector; in other words, $\beta(s) = p$ for some fixed point $p \in \mathbb{R}^2$. Hence, we get

$$p = \beta(s) = \alpha(s) + \frac{1}{c}n(s),$$

or

$$\alpha(s) - p = -\frac{1}{c}n(s),$$

as well as its associated magnitude

$$|\alpha(s) - p| = \left| -\frac{1}{c} n(s) \right|$$
$$= \frac{1}{c} |n(s)|$$
$$= \frac{1}{c}.$$

This establishes that $\alpha(s)$ is a circle of radius $\frac{1}{c}$ that is centered at p.

3. Determine the unit normal and the equation of the tangent plane of the surface $2x^2 + y^2 + z = 1$ at the point p = (1, 1, -2).

Proof. Define $f(x, y, z) := 2x^2 + y^2 + z$. Then the partial derivatives are $f_x(x, y, z) = 4x$, $f_y(x, y, z) = 2y$, $f_z(x, y, z) = 1$. In particular, at the point (1, 1, -2), we obtain the gradient

$$\nabla f(1, 1, -2) = (f_x(1, 1, -2), f_y(1, 1, -2), f_z(1, 1, -2))$$

$$= (4(1), 2(1), 1)$$

$$= (4, 2, 1)$$

and its associated magnitude

$$|\nabla f(1, 1, -2)| = \sqrt{(4)^2 + (2)^2 + (1)^2}$$
$$= \sqrt{16 + 4 + 1}$$
$$= \sqrt{21}.$$

So the unit normal at (1, 1, -2) is

$$N(1, 1, -2) = \frac{\nabla f(1, 1, -2)}{|\nabla f(1, 1, -2)|}$$
$$= \frac{(4, 2, 1)}{\sqrt{21}}$$
$$= \left(\frac{4}{\sqrt{21}}, \frac{2}{\sqrt{21}}, \frac{1}{\sqrt{21}}\right).$$

Now, we recall that the equation of the tangent plane at some point $(x_0, y_0, z_0) \in \mathbb{R}^3$ is given by

$$f_x(x_0, y_0, z_0)(x - x_0) + f_y(x_0, y_0, z_0)(y - y_0) + f_z(x_0, y_0, z_0)(z - z_0) = 0.$$

Applying the point p = (1, 1, -2) and our partial derivatives at that point, we get

$$4(x-1) + 2(y-1) + 1(z+2) = 0$$
,

or equivalently

$$4x + 2y + z = 4,$$

which is the equation of the tangent plane of $2x^2 + y^2 + z = 1$ at (1, 1, -2).