MATH 146C discussion Ryan Ta
University of California, Riverside Spring 2020

Homework 8 solutions

Note: 1 am re-deriving here the eigenvalues and eigenfunctions in order to write a complete solution. But you do not need to do this
in your own solutions because the professor has already done this in your lecture notes.

1. Solve the problem
Uy — 4y, = sin(z) if0<x<1,t>0,
u(0,1) =u(1,1) =0 ift >0,

u(x,0) = 1+cos’(nx) if0<x<l.

Solution. First, we need to find all the eigenvalues and eigenfunctions of the homogeneous problem
ur —4uxx =0 ifO<x<1,t>0,
ux(0,1) =u,(1,1) =0 ifr > 0,
u(x,0) = 1 +cos’(nx) if0<x<L.
To do this, we can proceed as we did in the method of separation of variables by writing
u(x,t) = X(x)T(t).
Our partial derivatives are
ur(x,t) = X(x)T; (1),
tx (X, 1) = Xx ()T (1).

So the partial differential equation
U — 4y, =0
becomes
X(xX)Ti (1) = 4Xx ()T (1) — hX(x)T (1) = 0,

which we can algebraically rearrange to write
Xxx(x) _ Tt(t) _

X(x) 4T(t)
where A is a constant in both x and #. This produces the system of two ordinary differential equations
d*X
—+1X =0
A2
dr
— +4aT =0.
dt
This system is decoupled, which allows us to solve each one independently and obtain the general solutions
Cre V1 4 Cre= V-1 if 1 <0,
X(x)= C1x+C2 if/lZO,
C1 cos( VAx) + Cysin( VAx) if 1> 0,
T(t) = De™*Y

where C1, C,, D are constants. Now, the boundary conditions
uX(O7 t) = ux(l,t) = 0
are equivalent to

d
—X(OT(1) =0,

%X(I)T(t) =0,
which imply either 7'(¢) = 0 or %X(O) = %X(l) = 0. IfT(¢) = 0, then we would have
u(x,1) = X(x)T(¢)
=X(x)0
=0,
which would be a trivial solution. So we should assume

d d
2 x0) = Zx(1) =
dx ©) dx 1 =0,

which will impose constraints on the constants Cy, C», depending on A. This motivates us to break this down into cases.



e Case 1: Suppose A4 < 0. Then we have

X(x) = Cleﬁx +Cze’ﬁx,
X(0) =0,

which implies C; + C, = 0, or C; = —C;. So we have

X(x) = Cleﬁx +Cze_ﬁx
= Cleﬁx - Cle_ﬁx
— Cl(e\QX _ E—QX).

We notice ¢ V=1L — ¢~ V=1L # 0 unless A = 0. This means

X(x) = Cl(eﬁx +e‘ﬁx),
X(L)=0

implies C; = 0, and so we have
X(x) = Cl(eﬁx _ e_ﬁx)
=0(e VAx - )
=0,

which would mean u is a trivial solution. Therefore, the problem has no negative eigenvalues.

e Case 2: Suppose A = 0. Then we have

X(x) =Cix + (s,
d
—X(0) =0,
—X(0)
which implies
d
—X(x) =Cy,
dx (x) 1
d
—X(0) =0,
X0

which implies C| = 0, and so we have

X(x)=Cix+C,
=0x+ Cz
=(y,

which already satisfies %X (1) = 0. Therefore, if we let % = (C,D, then we have

uo(x, 1) = Xo(x)To(?)
= CgDe_’I'O
=)D

Ag

7,

which is a nontrivial solution.

e Case 3: Suppose 4 > 0. Then we have

X(x) = Cy cos( VAx) + C, sin( VAx),

d
—X(0)=0
dx ©) =0,

which implies
d
—-X(x) = VA(=Cy sin( VAx) + C; cos( VAx)),
X

d
—X(0) =
2-X(0) =0,



which implies C, = 0, and so we have

X (x) = C; cos( VAx) + C, sin( VAx)
= C) cos( VAx) + 0sin( Vix)
= C) cos( \//_lx).

Next, we have

X(x) = C; cos( Vax),

d
—X(1)=0
XM

which implies

iX(x) = —VAC; sin( Vix),
dx

d
—X(1)=0
XM

implies either C; = 0 or sin( VA1) = 0. But C; = 0 (with C; = 0) implies X (x) = 0 and that u(x, ) would be a trivial
solution. So we should assume VA = n, or equivalently the eigenvalues

A = A= (nm)?,

with the corresponding eigenfunctions

X, (x) = C1, cos(yA,x)
= Cy,, cos( v (nm)2x)

= C} , cos(nmx),
as desired.

From the three cases above, we see that the problem has the zero eigenvalue 4 = 0 and its corresponding eigenfunction
Xo(x) = Ca, as well as positive eigenvalues 1, = (nm)? and their corresponding eigenfunctions X, (x) = Cj, cos(nmx)
(or just X, (x) = cos(nmx); these two eigenfunctions are the same up to a scaling factor). We will now use the method of
eigenfunction expansion. Based on our eignefunction X,,(x) = cos(nmx), we can represent, for any fixed ¢, our solution as

u(x,t) = %To(l) + i T,.(t) cos(nnx),
n=1

where T, (¢) forn = 1,2, 3, ... are the time-dependent Fourier coefficients. Our derivatives are
(x,1) 9 1T (1) +iT (¢) cos(nmx)
u(x,t)=—|= nmx
t ot 2 0 4 n

= %To’(t) + ; T, (t) cos(nmx)

and

Ox?

Uyy(x,1) = 6_2 (%Té([) + iT,:(t) cos(nnx))
n=1

1., s 82
5To(t)) + ; T, (1) 5 cos(nmx)

=0+ Y —(nn)*T,(t) cos(nmx)
=1

n

—(nn)*T, (1) cos(nnx).

Ms

n=1

So the nonhomogeneous partial differential equation

Uy — 4y = sin(z)



becomes
1 (o] (9]
STo(0)+ 3 1) Cos(mrx)) —4 (Z —(n70) 2T,y (1) cos(nmx) | = sin(r),
n=1 n=1
or equivalently

l o0
ETé(t) + Z(T,: (t) + 4(n7)?T, (1)) cos(nmx) = sin(t) + 0 cos(nmx).
n=1
By the uniqueness of the Fourier series expansion, we can equate the terms of both sides of our above equation to obtain the
ordinary differential equations

%To’(t) —sin(z) =0,
T (1) + 4(nm)*T (1) = 0,
whose general solutions are, respectively,
To(t) = Ag — 2 cos(t)
Ta(t) = Ae ™

where Ag and A,, forn =1,2,3, ... are the Fourier coefficients. Therefore, our solution is

u(x, 1) = %To(t) + Z T,,(t) cos(nmx)
n=1

1 (o]
= E(AO —2cos(t)) + Z Ape 7 cos(nmx).
n=1

Now, we can use the given initial conditions to write

u(x,0) = 1 + cos?(nx)
1
=1+ 5(1 + cos(2mx))
3 1
==+= 2
> + > cos(2nx),

where in the last step above we have employed the double-angle trigonometric identity cos” = %(l +cos(20)). Also, att =0,
our solution becomes

Ag

B B
u(x,0) = 2 + Z A, cos(nmx)
n=1
Ag -2 =
= 02 + Aj cos(mx) + Ay cos(2mx) + Z A, cos(nmx).

n=3

Both our expressions of u(x, 0) yield

Ao -2

(9]
3 1
+ Aj cos(mx) + Ay cos(2mx) + Z A, cos(nnx) = 3 + 3 cos(2mx).
n=3
By the uniqueness of the Fourier series expansion, we can equate the terms of both sides of our above equation to obtain the
Fourier coefficients

Ap =35,
1
Ay = E,
A,=0
forn =1 and forn = 3,4,5,.... Therefore, our formal solution is

1 (o]
u(x,t) = E(AO —2cos(1)) + Z A,,e_4("”)2t cos(nmx)

n=1

1 (o)
= 5(AO —2c0s(f)) + Aje 1™ cos(nx) + Age 4™ cos(2mx) + Z Ape 4% cos(nx)

n=3

1 1 -
= E(5 —2cos(t)) + 0e 4(1m)* cos(mx) + 5674(271)% cos(27x) + Z Qe~*(nm)’t cos(nmx)

n=3

1
= 5(e_16”2t cos(2mx) +5) — cos(t) |,

as desired. O



