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Homework 8 solutions

Note: I am re-deriving here the eigenvalues and eigenfunctions in order to write a complete solution. But you do not need to do this
in your own solutions because the professor has already done this in your lecture notes.

1. Solve the problem

DC − 4DGG = sin(C) if 0 < G < 1, C > 0,
DG (0, C) = DG (1, C) = 0 if C ≥ 0,

D(G, 0) = 1 + cos2 (cG) if 0 ≤ G ≤ 1.

Solution. First, we need to find all the eigenvalues and eigenfunctions of the homogeneous problem

DC − 4DGG = 0 if 0 < G < 1, C > 0,
DG (0, C) = DG (1, C) = 0 if C ≥ 0,

D(G, 0) = 1 + cos2 (cG) if 0 ≤ G ≤ 1.

To do this, we can proceed as we did in the method of separation of variables by writing

D(G, C) = - (G)) (C).

Our partial derivatives are

DC (G, C) = - (G))C (C),
DGG (G, C) = -GG (C)) (C).

So the partial differential equation
DC − 4DGG = 0

becomes
- (G))C (C) − 4-GG (G)) (C) − ℎ- (G)) (C) = 0,

which we can algebraically rearrange to write
-GG (G)
- (G) =

)C (C)
4) (C) = −_,

where _ is a constant in both G and C. This produces the system of two ordinary differential equations

32-

3G2 + _- = 0

3)

3C
+ 4_) = 0.

This system is decoupled, which allows us to solve each one independently and obtain the general solutions

- (G) =


�14

√
−_G + �24

−
√
−_G if _ < 0,

�1G + �2 if _ = 0,
�1 cos(

√
_G) + �2 sin(

√
_G) if _ > 0,

) (C) = �4−4_C

where �1, �2, � are constants. Now, the boundary conditions

DG (0, C) = DG (1, C) = 0

are equivalent to

3

3G
- (0)) (C) = 0,

3

3G
- (1)) (C) = 0,

which imply either ) (C) = 0 or 3
3G
- (0) = 3

3G
- (1) = 0. If ) (C) = 0, then we would have

D(G, C) = - (G)) (C)
= - (G)0
= 0,

which would be a trivial solution. So we should assume
3

3G
- (0) = 3

3G
- (1) = 0,

which will impose constraints on the constants �1, �2, depending on _. This motivates us to break this down into cases.



• Case 1: Suppose _ < 0. Then we have

- (G) = �14
√
−_G + �24

−
√
−_G ,

- (0) = 0,

which implies �1 + �2 = 0, or �2 = −�1. So we have

- (G) = �14
√
−_G + �24

−
√
−_G

= �14
√
−_G − �14

−
√
−_G

= �1 (4
√
−_G − 4−

√
−_G).

We notice 4
√
−_! − 4−

√
−_! ≠ 0 unless _ = 0. This means

- (G) = �1 (4
√
−_G + 4−

√
−_G),

- (!) = 0

implies �1 = 0, and so we have

- (G) = �1 (4
√
−_G − 4−

√
−_G)

= 0(4
√
−_G + 4−

√
−_G)

= 0,

which would mean D is a trivial solution. Therefore, the problem has no negative eigenvalues.

• Case 2: Suppose _ = 0. Then we have

- (G) = �1G + �2,

3

3G
- (0) = 0,

which implies

3

3G
- (G) = �1,

3

3G
- (0) = 0,

which implies �1 = 0, and so we have

- (G) = �1G + �2

= 0G + �2

= �2,

which already satisfies 3
3G
- (1) = 0. Therefore, if we let �0

2 = �2�, then we have

D0 (G, C) = -0 (G))0 (C)
= �2�4

−_·0

= �2�

=
�0

2
,

which is a nontrivial solution.

• Case 3: Suppose _ > 0. Then we have

- (G) = �1 cos(
√
_G) + �2 sin(

√
_G),

3

3G
- (0) = 0,

which implies

3

3G
- (G) =

√
_(−�1 sin(

√
_G) + �2 cos(

√
_G)),

3

3G
- (0) = 0,



which implies �2 = 0, and so we have

- (G) = �1 cos(
√
_G) + �2 sin(

√
_G)

= �1 cos(
√
_G) + 0 sin(

√
_G)

= �1 cos(
√
_G).

Next, we have

- (G) = �1 cos(
√
_G),

3

3G
- (1) = 0

which implies

3

3G
- (G) = −

√
_�1 sin(

√
_G),

3

3G
- (1) = 0

implies either �1 = 0 or sin(
√
_) = 0. But �2 = 0 (with �1 = 0) implies - (G) = 0 and that D(G, C) would be a trivial

solution. So we should assume
√
_ = =c, or equivalently the eigenvalues

_= = _ = (=c)2,

with the corresponding eigenfunctions

-= (G) = �1,= cos(
√
_=G)

= �1,= cos(
√
(=c)2G)

= �1,= cos(=cG),

as desired.

From the three cases above, we see that the problem has the zero eigenvalue _ = 0 and its corresponding eigenfunction
-0 (G) = �2, as well as positive eigenvalues _= = (=c)2 and their corresponding eigenfunctions -= (G) = �1,= cos(=cG)
(or just -= (G) = cos(=cG); these two eigenfunctions are the same up to a scaling factor). We will now use the method of
eigenfunction expansion. Based on our eignefunction -= (G) = cos(=cG), we can represent, for any fixed C, our solution as

D(G, C) = 1
2
)0 (C) +

∞∑
==1

)= (C) cos(=cG),

where )= (C) for = = 1, 2, 3, . . . are the time-dependent Fourier coefficients. Our derivatives are

DC (G, C) =
m

mC

(
1
2
)0 (C) +

∞∑
==1

)= (C) cos(=cG)
)

=
1
2
) ′0 (C) +

∞∑
==1

) ′= (C) cos(=cG)

and

DGG (G, C) =
m2

mG2

(
1
2
) ′0 (C) +

∞∑
==1

) ′= (C) cos(=cG)
)

=
m2

mG2

(
1
2
) ′0 (C)

)
+
∞∑
==1

)= (C)
m2

mG2 cos(=cG)

= 0 +
∞∑
==1

−(=c)2)= (C) cos(=cG)

=

∞∑
==1

−(=c)2)= (C) cos(=cG).

So the nonhomogeneous partial differential equation

DC − 4DGG = sin(C)



becomes (
1
2
) ′0 (C) +

∞∑
==1

) ′= (C) cos(=cG)
)
− 4

( ∞∑
==1

−(=c)2)= (C) cos(=cG)
)
= sin(C),

or equivalently
1
2
) ′0 (C) +

∞∑
==1

() ′= (C) + 4(=c)2)= (C)) cos(=cG) = sin(C) + 0 cos(=cG).

By the uniqueness of the Fourier series expansion, we can equate the terms of both sides of our above equation to obtain the
ordinary differential equations

1
2
) ′0 (C) − sin(C) = 0,

) ′= (C) + 4(=c)2)= (C) = 0,

whose general solutions are, respectively,

)0 (C) = �0 − 2 cos(C)

)= (C) = �=4−4(=c)2C ,

where �0 and �= for = = 1, 2, 3, . . . are the Fourier coefficients. Therefore, our solution is

D(G, C) = 1
2
)0 (C) +

∞∑
==1

)= (C) cos(=cG)

=
1
2
(�0 − 2 cos(C)) +

∞∑
==1

�=4
−4(=c)2C cos(=cG).

Now, we can use the given initial conditions to write

D(G, 0) = 1 + cos2 (cG)

= 1 + 1
2
(1 + cos(2cG))

=
3
2
+ 1

2
cos(2cG),

where in the last step above we have employed the double-angle trigonometric identity cos2 \ = 1
2 (1+cos(2\)). Also, at C = 0,

our solution becomes

D(G, 0) = �0 − 2
2
+
∞∑
==1

�= cos(=cG)

=
�0 − 2

2
+ �1 cos(cG) + �2 cos(2cG) +

∞∑
==3

�= cos(=cG).

Both our expressions of D(G, 0) yield

�0 − 2
2
+ �1 cos(cG) + �2 cos(2cG) +

∞∑
==3

�= cos(=cG) = 3
2
+ 1

2
cos(2cG).

By the uniqueness of the Fourier series expansion, we can equate the terms of both sides of our above equation to obtain the
Fourier coefficients

�0 = 5,

�2 =
1
2
,

�= = 0

for = = 1 and for = = 3, 4, 5, . . .. Therefore, our formal solution is

D(G, C) = 1
2
(�0 − 2 cos(C)) +

∞∑
==1

�=4
−4(=c)2C cos(=cG)

=
1
2
(�0 − 2 cos(C)) + �14

−4(1c)2C cos(cG) + �24
−4(2c)2C cos(2cG) +

∞∑
==3

�=4
−4(=c)2C cos(=cG)

=
1
2
(5 − 2 cos(C)) + 04−4(1c)2C cos(cG) + 1

2
4−4(2c)2C cos(2cG) +

∞∑
==3

04−4(=c)2C cos(=cG)

=
1
2
(4−16c2C cos(2cG) + 5) − cos(C) ,

as desired. �


