Lectures
$$\xi_{2,1}(-\xi_{2,3})$$

University with 2000 First-order PDE
(method of characteristics
(1) Review
• Ealer model for fluid flow.
Mass onservation
 $P_{t} + \nabla \cdot (P_{t}^{2}) = 0$
• general: consider concentration C
 $C_{t} + \nabla \cdot (P_{t}^{2}) = 0$
• general: consider concentration C
 $C_{t} + \nabla \cdot (P_{t}^{2}) = 0$
• general: consider concentration C
 $C_{t} + \nabla \cdot (P_{t}^{2}) = 0$
• general: consider concentration (Eq)
 $f_{t} = C(Z, t)$
 (II) (st order PDE
• General form.
 $F(x_{1}, x_{2}, \dots, x_{n})$ unknown.
• we focus on $n=2$
 $U = U(x, y)$
densitient (ξ_{1} , $y \in D \subset \mathbb{R}^{2}$
 $F(X_{1}, Y, U, U_{K}, U_{Y}) = 0$
The graph of U
 $is a surface$
 $in R^{3}$
(II) Quasilinear Equation
• $Q(x, y, u) U_{K} + b(x, y, u) U_{Y} = C(x, y, u)$
• linear:
 $U = U(x, y) U_{Y} = C(x, y, u)$

 $\alpha(x, y) h_x + b(x, y) h_y - c_1(x, y)$ +Co(X,Y)·U · Example: $\mathcal{U}_{X} = C_{0} \mathcal{U} + C_{1} (X, Y)$ $\alpha = 1, b = 0, C, is wristant$ [RK: review OPE] $I = e^{C \cdot X} \int_{0}^{X} e^{C \cdot X} C_{1}(\xi, Y)$ $U(x, Y) = e^{C \cdot X} \int_{0}^{X} e^{C \cdot X} C_{1}(\xi, Y)$ dz (* +) Initial condition Case (: N(0, Y) = 7By (# #) : $\mu(0, Y) = e^{0} \left[0 + C(Y) \right]$ $= \gamma$ $\Rightarrow C(y) = y$ So $M(x, y) = e^{Cox} \left[\int_{0}^{x} e^{C^{2}} G(x, y) dx \right]$ Unique solution. + Y] case(X, 0) = X, we consider C1 = 0. $\mathcal{U}(\mathbf{X},\mathbf{0}) = \mathcal{C}^{\mathbf{G} \times \mathbf{0}} + \mathbf{0} + \mathbf{0}$ $= C\Theta \cdot e^{C_0 \times}$ $\Rightarrow C(0) e^{C_0 X} = X \text{ for all } X$ Contra dition No solution! RK; if $\mu(x,o) = e^{Lox}$ and G=0or many solutions! [Exercise] (IV) method of characteristics. $\alpha(x, y, n)$ $N_x + b(x, y, n)$ $M_y = C(x, y, n)$ (\star) Perivation parameter t. /+=|/ X = X(t), Y = Y(t) $\mathcal{U} = \mathcal{U}(X(t), y(t))$ Set $\chi_t = \alpha$, $J_t = b$ Chain rule: $U_t = U_X X_t + U_Y J_t$ $= a u_x + b u_y$ $\Rightarrow characteristic equations$ $(CE: <math>X_{t} = a(x, y, y)$ $Y_{t} = b(x, y, y)$ $U_{t} = c(x, y, y)$ It is autonomous system. K[< I]KK2: geometric integretation T $a U_X + b U_y = C$ $\Rightarrow a u_x + b u_y - c = 0$ $(a, b, c) \cdot (u_{x}, u_{y}, -1) = 0$ n= (Ux, Uy, -1) is normal vetor $\overline{T} = (X_{t}, Y_{t}, U_{t}) = (a, b, c)$ ĊE > 7 In T is orthogonal to R Initial andition. L(Ł) $\mathcal{N}(X, o) = \widehat{f}(X)$ or N(0, y) = g(y)- ((5) or More general. X = X(t,s), Y = Y(t,s), U = U(t,s)at t=0. ((5) 1C: $\begin{cases} \chi(0,s) = \chi_{o}(s) \\ \Im(0,s) = \Im_{o}(s) \\ \Pi(0,s) = \Pi_{o}(s) \end{cases}$ Summary -V. System: CE + IC \sqrt{a} solution: (X(t,s), Y(t,s), U(t,s))• convert $\mathcal{U} = \mathcal{U}(X, Y)$. $(t,s) \iff (x,y)$? convertible if $\overline{J} = \begin{vmatrix} X_t & Y_t \\ X_s & Y_s \end{vmatrix} \neq 0$ Unique solution. (V) Example $U_X + M_Y = 2$ $\mathcal{U}(X, 0) = \mathcal{C}^{X}$ $\mathcal{U}(X, 0) = \mathcal{C}^{X}$ $\mathcal{U}(S, 0) = \mathcal{C}^{S}$ solution: step 1: $CE \begin{cases} \dot{X}_{t} = A = 1 \\ \dot{Y}_{t} = b = 1 \\ H_{t} = C = 2 \end{cases} (3)$ $IC : \begin{cases} X(0,s) = S & (assume)(4) \\ Y(0,s) = 0 & (5) \\ U(0,s) = U \\ X = X(0,s) & Y = Y(0,s) \end{cases}$ $= U \Big|_{x=s, y=0}$ $= e^{s} \qquad (6)$ step 2: (1) $\Rightarrow X(t,s) = \int_0^t 1 dt + f_i(s)$ $= t + f_{(s)}$ $\text{MSR}(4) \implies X(o,s) \stackrel{\text{\tiny lef}}{=} f_{1}(s) \stackrel{\text{\tiny lef}}{=} c$ $X(t,s) \equiv t + s$ $(2)(5) \rightarrow Y = [t \mid dt + Y(0, s)]$ = t + 0= + $(3) (6) = \mathcal{U}(t,s) = \int_{n}^{t} 2 dt + \mathcal{U}(0,s)$ $= 2t + e^{2}$ So X = t+S, Y = t, $u = 2t+e^{S}$ step3: convert $(s,t) \iff (x,y)$ t=Y, s=x-t=x-y \Rightarrow $u = 2y + e^{x-y}$ Unique solution To do list. @ HW#3 @ Exercise.