39,4,2 Lecture18 Wednesday, June 3, 2020 9:24 AM Objective: wave Eq. in IR³ (general case) (I) Wave Eq. in R3 $(\chi) \begin{cases} \mathcal{U}_{tt} = \mathcal{C} \Delta \mathcal{U}, \quad \chi = (\chi_1, \chi_2, \chi_3) \\ \mathcal{E} R^3 \\ \mathcal{U}(\mathcal{R}, 0) = f(\mathcal{R}), \quad \chi \in \mathbb{R}^3 \\ \mathcal{U}(\mathcal{R}, 0) = g(\mathcal{R}), \quad \chi \in \mathbb{R}^3 \end{cases}$ Claim: It is enough to solve a problem with f=0 Thm If $SH_{tt} = C^{2} \Delta U$ (PDE) (X), $H(Z^{2}, 0) = D$ $H(Z^{2}, 0) = G(Z)$ (IC) $H(Z^{2}, 0) = G(Z)$ then V=Ut solves $\begin{cases} V_{tt} = C^2 \Delta V \\ V(\chi p) = f(\chi) \\ V_t(\chi p) = 0 \end{cases}$ Proof: V=Ut take = on PDE of U $U_{ttt} = C^2 \stackrel{?}{\Rightarrow} (\Delta U)$ $(\mathcal{U}_{t})_{t+1} = C^2 \bigtriangleup (\mathcal{U}_{t})$ $\Rightarrow V_{tt} = C^2 \Delta V$ $V(\vec{X}, 0) = \mathcal{U}_{t}(\vec{X}, 0) = \mathcal{U}(\vec{X})$ $V_{t}(\vec{X}_{0}) = U_{t+t}(\vec{X}_{0})$ $(PDE) C^2 \Delta u(Z, 0)$ $= C^2 \bigtriangleup(0) = O$ RK: If Ug(Z,t) is solution of (x), then. 2 Uf is a solution $\begin{array}{c} f \\ (\mathcal{X})_{2} \end{array} \\ \begin{array}{c} \mathcal{U}_{\mathcal{H}} = \mathcal{C}^{2} \Delta \mathcal{U} \\ \mathcal{U}_{\mathcal{H}} = \mathcal{U}^{2} \mathcal{U} \\ \mathcal{U} = \mathcal{U} \\ \mathcal{U$ For(X), we get $\mathcal{U}(\mathcal{Z},t) = \mathcal{U}_q(\mathcal{R},t) + \frac{\partial}{\partial t}(\mathcal{U}_f)$ RKZ: D'Alembert's formula IN I-D (a be put in above form (II) Darboux Eg Given a smooth function $h(\mathbb{Z})$ in \mathbb{R}^3 [e.g., $h(\mathbb{Z}) = h(\mathbb{Z}, t)$ The spherical mean of radius a around X? $M_h(a, \overline{X}) = \frac{1}{4\pi a^2} \int_{\overline{X}} \frac{h(\overline{X})}{h(\overline{X})} = \frac{1}{$ $\overline{Z} - \overline{X} = \alpha \overline{\Pi}$ $h(\overline{X}+a\eta)ds_{\eta}$ 4777 dsq R-R/=Q 13y continuity $(im M_{h}(a, \mathbb{R}) = h(\mathbb{R})$ $\lim M_{\mathcal{H}}(\alpha, \overline{\chi}) = \mathcal{H}(\overline{\chi})$ Thm: (Parboux Eq) Mh (a, R) Satisfies $\left(\frac{\partial^2}{\partial a^2} + \frac{2\partial}{\partial a}\right)M_h = \Delta_X M_h$ Proof By def & Guass's $\frac{\partial}{\partial m_{h}} = \frac{1}{a^{2}} \frac{\partial}{\partial x} \int_{0}^{0} \frac{M_{h}(r, R)}{r^{2}} \frac{1}{dr}$ L'Exercise, see the solution of Ex9,7] $\frac{\partial}{\partial a^2} M_h = \frac{\partial}{\partial a} \left[\frac{1}{a^2} \Delta \chi \int_A^{Q} M_h(t, \vec{X}) t^2 dt \right]$ $= \frac{-2}{n^3} O_X \int_0^{\pi} M_h(t, \vec{x}) t^2 dt$ $+ \frac{1}{\alpha^2} \Delta_X \left(M_h(\alpha, \mathcal{R}) \alpha^2 \right)$ $= \frac{-2}{\alpha^3}, \quad \alpha^2 \cdot \frac{\partial}{\partial \alpha} M_h + \Delta \chi(M_h)$ $= \frac{-2}{\alpha} \frac{\partial}{\partial \alpha} M_h + \Delta \chi(M_h).$ $\Rightarrow \frac{\partial^2}{\partial q^2} M_h + \frac{2}{G} \frac{\partial}{\partial q} M_h$ $= \Delta_{\chi}(M_{h})$. (TI) (an acal cal Han of M.

where Mg is even extension of Mg RK: $\int_{a-c+}^{ct-a} SMg(s) ds = 0$ Since S Mg (S) is odd function $\int_{A-ct}^{A+ct} = \int_{a-ct}^{ct-a} + \int_{ct-a}^{a+ct}$ $= \int_{a-ct}^{ct-a} + \int_{ct-a}^{ct+a}$ $(1) = \frac{1}{2ac} \int_{ct-a}^{ct+a} \sum_{s, \tilde{x}, \tilde{x}, \tilde{x}} ds$ $M_{H} = \frac{1}{2ac} \int_{ct-a}^{ct+a} \sum_{s, \tilde{x}, \tilde{x},$ (IV) General solution of y $U(\mathcal{R},t) = \lim_{x \to \infty} M_u(\alpha, \mathcal{R}, t)$ $= \frac{1}{2\alpha c} ct \widetilde{M}_{g}(ct, R) \cdot 2a$ $\frac{1}{(t-20)} = t M_g(ct, X).$ RK: This is Ug(Z,t) $\Rightarrow U_f = t M_f(ct, R)$ Summary.' For (X). with f & g $U(\vec{X},t) = t Mg(ct,\vec{X})$ $+ \frac{\partial}{\partial t} \left[t M_{f}(ct, \vec{X}) \right]$ $= \frac{1}{4\pi c^{2} t} \int_{\overline{3}} \frac{g(\overline{3}) ds}{|\overline{3} - \overline{X}| = ct}$ $+\frac{\partial}{\partial t}\left[\frac{1}{4\pi c^{2}t}\int_{R-x}^{\infty}f(x)ds\right]$ Physics: $U \neq D$