
MATH 146C discussion Ryan Ta
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Solutions to suggested homework problems from
An Introduction to Partial Differential Equations by Yehuda Pinchover and Jacob Rubinstein

Suggested problems: Exercises 1.1, 1.2, 1.4, 1.7

1.1. Show that each of the following equations has a solution of the form D(G, H) = 5 (0G + 1H) for a proper choice of constants
0, 1. Find the constants for each example.

(a) DG + 3DH = 0

Solution. Given D(G, H) = 5 (0G + 1H), we obtain the first partial derivatives

DG (G, H) =
m

mG
5 (0G + 1H)

= 5 ′(0G + 1H) m
mG
(0G + 1H)

= 0 5 ′(0G + 1H)

and

DH (G, H) =
m

mH
5 (0G + 1H)

= 5 ′(0G + 1H) m
mH
(0G + 1H)

= 1 5 ′(0G + 1H).

So we have

DG + 3DH = 0 5 ′(0G + 1H) + 31 5 ′(0G + 1H)
= (0 + 31)1 5 ′(0G + 1H)
= 0

provided we set 0 +31 = 0. In other words, D(G, H) = 5 (0G + 1H) is a solution of DG +3DH = 0 if we choose the constants
0, 1 that satisfy 0 + 31 = 0. �

(b) 3DG − 7DH = 0

Solution. Given D(G, H) = 5 (0G + 1H), we obtain the first partial derivatives

DG (G, H) = 0 5 ′(0G + 1H),
DH (G, H) = 1 5 ′(0G + 1H).

So we have

3DG − 7DH = 30 5 ′(0G + 1H) − 71 5 ′(0G + 1H)
= (30 − 71) 5 ′(0G + 1H)
= 0

provided we set 30 − 71 = 0. In other words, D(G, H) = 5 (0G + 1H) is a solution of 3DG − 7DH = 0 if we choose the
constants 0, 1 that satisfy 30 − 71 = 0. �

(c) 2DG + cDH = 0

Solution. Given D(G, H) = 5 (0G + 1H), we obtain the first partial derivatives

DG (G, H) = 0 5 ′(0G + 1H),
DH (G, H) = 1 5 ′(0G + 1H).

So we have

2DG + cDH = 20 5 ′(0G + 1H) + c1 5 ′(0G + 1H)
= (20 + c1) 5 ′(0G + 1H)
= 0

provided we set 20 + c1 = 0. In other words, D(G, H) = 5 (0G + 1H) is a solution of 2DG + cDH = 0 if we choose the
constants 0, 1 that satisfy 20 + c1 = 0. �



1.2. Show that each of the following equations has a solution of the form D(G, H) = 4UG+VH . Find the constants U, V for each
example.

(a) DG + 3DH + D = 0

Solution. Given D(G, H) = 4UG+VH , we obtain the first partial derivatives

DG (G, H) =
m

mG
(4UG+VH)

= 4UG+VH
m

mG
(UG + VH)

= U4UG+VH

and

DH (G, H) =
m

mH
(4UG+VH)

= 4UG+VH
m

mH
(UG + VH)

= V4UG+VH .

So we have

0 = DG + 3DH + D
= (U4UG+VH) + 3(V4UG+VH) + 4UG+VH

= (U + 3V + 1)4UG+VH ,

provided we set U + 3V + 1 = 0. In other words, D(G, H) = 4UG+VH is a solution of DG + 3DH + D = 0 if we choose the
constants U, V that satisfy U + 3V + 1 = 0. �

(b) DGG + DHH = 54G−2H

Solution. Given D(G, H) = 4UG+VH , we obtain the first partial derivatives

DG (G, H) = U4UG+VH ,
DH (G, H) = V4UG+VH .

So we have

54G−2H = DG + 3DH + D
= (U4UG+VH) + 3(V4UG+VH) + 4UG+VH

= (U + 3V + 1)4UG+VH ,

which implies U = 1 and V = −2. In other words, D(G, H) = 4G−2H is a solution of DGG + DHH = 54G−2H . �

(c) DGGGG + DHHHH + 2DGGHH = 0

Solution. Given D(G, H) = 4UG+VH , we obtain the first partial derivatives

DGGGG (G, H) = U44UG+VH ,

DHHHH (G, H) = V44UG+VH ,

DGGHH (G, H) = U2V24UG+VH .

So we have

0 = DGGGG + DHHHH + 2DGGHH

= U44UG+VH + V44UG+VH + 2U2V24UG+VH

= (U4 + V4 + 2U2V2)4UG+VH

= ((U2)2 + 2U2V2 + (V2)2)4UG+VH

= (U2 + V2)24UG+VH ,

which implies U = 0 and V = 0. In other words, D(G, H) = 40G+0H = 1 is a solution of DGGGG + DHHHH + 2DGGHH = 0. �

1.4. Let D(G, H) = ℎ(
√
G2 + H2) be a solution of the minimal surface equation

(1 + D2
H)DGG − 2DGDHDGH + (1 + D2

G)DHH = 0. (1.40)



(a) Show that ℎ(A) satisfies the ordinary differential equation

Aℎ′′ + ℎ′(1 + (ℎ′(A))2) = 0.

Proof. As seen already in your lecture, we take the partial derivatives with respect to G of the known equation A2 = G2+H2

to obtain

2AAG =
m

mG
(A2)

=
m

mG
(G2 + H2)

= 2G + 0
= 2G,

which implies
AG =

G

A
,

and we repeat this process with respect to H of the known equation A2 = G2 + H2 to obtain

2AAH =
m

mH
(A2)

=
m

mH
(G2 + H2)

= 0 + 2H
= 2H,

which implies
AH =

H

A
.

So our first partial derivatives are

DG (G, H) =
m

mG
(ℎ(A))

= ℎ′(A)AG
= ℎ′(A) G

A

and

DH (G, H) =
m

mH
(ℎ(A))

= ℎ′(A)AH
= ℎ′(A) H

A
.

Our second partial derivatives are

DGG (G, H) =
m

mG

(
ℎ′(A) G

A

)
=
m

mG
(ℎ′(A)) G

A
+ ℎ′(A) m

mG

( G
A

)
= (ℎ′′(A)AG)

G

A
+ ℎ′(A)

(
1
A
− G

A2 AG

)
=

(
ℎ′′(A) G

A

) G
A
+ ℎ′(A)

(
1
A
− G

A2

G

A

)
= ℎ′′(A) G

2

A2 + ℎ
′(A) 1

A
− ℎ′(A) G

2

A3

and

DHH (G, H) =
m

mH

(
ℎ′(A) H

A

)
=
m

mH
(ℎ′(A)) H

A
+ ℎ′(A) m

mH

( H
A

)
= (ℎ′′(A)AH)

H

A
+ ℎ′(A)

(
1
A
− H

A2 AH

)
=

(
ℎ′′(A) H

A

) H
A
+ ℎ′(A)

(
1
A
− H

A2

H

A

)
= ℎ′′(A) H

2

A2 + ℎ
′(A) 1

A
− ℎ′(A) H

2

A3 ,



and our mixed second partial derivative is

DGH (G, H) =
m

mH

(
ℎ′(A) G

A

)
=
m

mH
(ℎ′(A)) G

A
+ ℎ′(A) m

mH

( G
A

)
= (ℎ′′(A)AH)

G

A
+ ℎ′(A)

(
− G
A2 AH

)
=

(
ℎ′′(A) H

A

) G
A
+ ℎ′(A)

(
− G
A2

H

A

)
= ℎ′′(A) GH

A2 − ℎ
′(A) GH

A3 .

So we have

(1 + D2
H)DGG =

(
1 +

(
ℎ′(A) H

A

)2
) (
ℎ′′(A) G

2

A2 + ℎ
′(A) 1

A
− ℎ′(A) G

2

A3

)
=

(
1 + (ℎ′(A))2 H

2

A2

) (
ℎ′′(A) G

2

A2 + ℎ
′(A) 1

A
− ℎ′(A) G

2

A3

)
= ℎ′′(A) G

2

A2 + ℎ
′(A) 1

A
− ℎ′(A) G

2

A3

+ (ℎ′(A))2ℎ′′(A) G
2H2

A4 + (ℎ
′(A))3 H

2

A3 − (ℎ
′(A))3 G

2H2

A5

and

(1 + D2
G)DHH =

(
1 +

(
ℎ′(A) G

A

)2
) (
ℎ′′(A) H

2

A2 + ℎ
′(A) 1

A
− ℎ′(A) H

2

A3

)
=

(
1 + (ℎ′(A))2 G

2

A2

) (
ℎ′′(A) H

2

A2 + ℎ
′(A) 1

A
− ℎ′(A) H

2

A3

)
= ℎ′′(A) H

2

A2 + ℎ
′(A) 1

A
− ℎ′(A) H

2

A3

+ (ℎ′(A))2ℎ′′(A) G
2H2

A4 + (ℎ
′(A))3 G

2

A3 − (ℎ
′(A))3 G

2H2

A5 ,

as well as

−2DGDHDGH = −2
(
ℎ′(A) G

A

) (
ℎ′(A) H

A

) (
ℎ′′(A) GH

A2 − ℎ
′(A) GH

A3

)
= −2(ℎ′(A))2 GH

A2

(
ℎ′′(A) GH

A2 − ℎ
′(A) GH

A3

)
= −2(ℎ′(A))2ℎ′′(A) G

2H2

A4 + 2(ℎ′(A))3 G
2H2

A5 .

Therefore, we have

0 = (1 + D2
H)DGG − 2DGDHDGH + (1 + D2

G)DHH

= ℎ′′(A) G
2

A2 + ℎ
′(A) 1

A
− ℎ′(A) G

2

A3 +���
���

���
(ℎ′(A))2ℎ′′(A) G

2H2

A4 + (ℎ
′(A))3 H

2

A3 −
�
��

�
��

(ℎ′(A))3 G
2H2

A5

−
���

���
���

2(ℎ′(A))2ℎ′′(A) G
2H2

A4 +���
���

�
2(ℎ′(A))3 G

2H2

A5

+ ℎ′′(A) H
2

A2 + ℎ
′(A) 1

A
− ℎ′(A) H

2

A3 +���
��

���
�

(ℎ′(A))2ℎ′′(A) G
2H2

A4 + (ℎ
′(A))3 G

2

A3 −
��

��
��

(ℎ′(A))3 G
2H2

A5

= ℎ′′(A) G
2 + H2

A2 + 2ℎ′(A) 1
A
− ℎ′(A) G

2 + H2

A3 + (ℎ′(A))3 G
2 + H2

A3

= ℎ′′(A) A
2

A2 + 2ℎ′(A) 1
A
− ℎ′(A) A

2

A3 + (ℎ
′(A))3 A

2

A3

= ℎ′′(A) + 2ℎ′(A) 1
A
− ℎ′(A) 1

A
+ (ℎ′(A))3 1

A

= ℎ′′(A) + ℎ′(A) 1
A
+ (ℎ′(A))3 1

A

= ℎ′′(A) + 1
A
ℎ′(A) (1 + (ℎ′(A))2).

Finally, we can multiply both sides by A to conclude

Aℎ′′(A) + ℎ′(A) (1 + (ℎ′(A))2) = 0,

as desired. �



(b) What is the general solution to the equation of part (a)?

Solution. Given the ordinary differential equation

Aℎ′′(A) + ℎ′(A) (1 + (ℎ′(A))2) = 0

from part (a), we can let 9 (A) = ℎ′(A) to rewrite the equation as

A 9 ′(A) + 9 (A) (1 + ( 9 (A))2) = 0,

which is a separable first-order differential equation and is equivalent to

9 ′(A)
(1 + 9 (A))2

= −1
A
.

By integrating both sides with respect to A , writing∫
9 ′(A)

(1 + 9 (A))2
3A =

∫
−1
A
3A,

we obtain
tan−1 ( 9 (A)) = − ln(A) + �1,

or equivalently
ℎ′(A) = 9 (A) = tan(�1 − ln(A)),

where �1 is an arbitrary constant. So the general solution is

ℎ(A) =
∫ A

0
tan(�1 − ln(B))3B ,

where we have represented this expression using the differential version of the Fundamental Theorem of Calculus. �

1.7. (a) Consider the equation DGG + 2DGH + DHH = 0. Write the equation in the coordinates B = G, C = G − H.

Solution. Define the new variables B := G and C := G − H, which implies the first partial derivatives

BG = (G)G = 1,
BH = (G)H = 0,
CG = (G − H)G = 1,
CH = (G − H)H = −1.

Also set E(B, C) := D(G(B, C), H(B, C)) = D(G, H). Then, by the multivariable chain rule, we obtain the first partial derivatives

DG = EBBG + DC CG
= EB · 1 + EC · 1
= EB + EC

and

DH = EBBH + EC CH
= EB · 0 + EC · (−1)
= −EC ,

as well as the second partial derivatives

DGG = (EB + EC )G
= (EB)G + (EC )G
= (EBBBG + EBC CG) + (EBC BG + ECC CG)
= EBB · 1 + EBC · 1 + EBC · 1 + ECC · 1
= EBB + 2EBC + ECC

and

DGH = (EB + EC )H
= (EB)H + (EC )H
= (EBBBH + EBC CH) + (EBC BH + ECC CH)
= EBB · 0 + EBC · (−1) + EBC · 0 + ECC · (−1)
= −EBC − ECC



and

DHH = (−EC )H
= −(EC )H
= −(EBC BH + ECC CH)
= −(EBC · 0 + ECC · (−1))
= ECC

So we have

0 = DGG + 2DGH + DHH
= (EBB + 2EBC + ECC ) + 2(−EBC − ECC ) + ECC
= EBB +��2EBC +��ECC −��2EBC −��2ECC +��ECC
= EBB .

So we have transformed the partial differential equation DGG + 2DGH + DHH = 0 into

EBB = 0,

as desired. �

(b) Find the general solution of the equation.

Solution. Recall from part (a) the new variables B := G and C := G − H. The partial differential equation

EBB = 0

has the general solution

E(B, C) =
∫ (∫

EBB 3B)
)
3B

=

∫ (∫
0 3B)

)
3B

=

∫
5 (B)3B

= C 5 (B) + 6(C).

where 5 (B) is an arbitrary function of B and 6(C) is an aribtrary function of C. Therefore, we have

D(G, H) = D(G(B, C), H(B, C))
= E(B, C)
= C 5 (B) + 6(C)

= (G − H) 5 (G − H) + 6(G − H) ,

as desired. �

(c) Consider the equation DGG − 2DGH + 5DHH = 0. Write it in the coordinates B = G + H, C = 2G.

Solution. Define the new variables B := G + H and C := 2G, which implies the first partial derivatives

BG = (G + H)G = 1,
BH = (G + H)H = 1,
CG = (2G)G = 2,
CH = (2G)H = 0.

Also set E(B, C) := D(G(B, C), H(B, C)) = D(G, H). Then, by the multivariable chain rule, we obtain the first partial derivatives

DG = EBBG + DC CG
= EB · 1 + EC · 2
= EB + 2EC

and

DH = EBBH + EC CH
= EB · 1 + EC · 0
= EB ,



as well as the second partial derivatives

DGG = (EB + 2EC )G
= (EB)G + 2(EC )G
= (EBBBG + EBC CG) + 2(EBC BG + ECC CG)
= EBB · 1 + EBC · 2 + 2EBC · 1 + 2ECC · 2
= EBB + 4EBC + 4ECC

and

DGH = (EB + 2EC )H
= (EB)H + 2(EC )H
= (EBBBH + EBC CH) + 2(EBC BH + ECC CH)
= EBB · 1 + EBC · 0 + 2EBC · 1 + ECC · 0
= EBB + 2EBC

and

DHH = (EB)H
= EBBBH + EBC CH
= EBB · 1 + EBC · 0
= EBB

So we have

0 = DGG − 2DGH + 5DHH
= (EBB + 4EBC + 4ECC ) − 2(EBB + 2EBC ) + 5EBB
= EBB +��4EBC + 4ECC − 2EBB −��4EBC + 5EBB
= 4EBB + 4ECC
= 4(EBB + ECC ).

So we have transformed the partial differential equation DGG − 2DGH + 5DHH = 0 into

EBB + ECC = 0,

as desired. �


