
MATH 146C discussion Ryan Ta
University of California, Riverside Spring 2020

Solutions to suggested homework problems from
An Introduction to Partial Differential Equations by Yehuda Pinchover and Jacob Rubinstein

Suggested problems: Exercises 2.1, 2.2, 2.3, 2.4, 2.6, 2.7, 2.11, 2.12, 2.16, 2.21

Note: Almost all steps for solving an ordinary differential equation (for example, any material from MATH 046 at UC Riverside)
are omitted from my solutions for purposes of brevity.

2.1. Consider the Cauchy problem.

DG + DH = 1,
D(G, 0) = 5 (G).

(a) What are the projections of the characteristic curves on the (G, H) plane?

Solution. We employ the method of characteristics for first-order partial differential equations. We parameterize the
following variables:

G = G(C, B),
H = H(C, B),
D = D(G, H) = D(G(C, B), H(C, B)) = D(C, B).

Our characteristic equations are

mG

mC
= 1,

mH

mC
= 1,

mD

mC
= 1

with the initial conditions

G(0, B) = B,
H(0, B) = 0,
D(0, B) = D(G(0, B), H(0, B)) = D(B, 0) = 1.

Now, we have

3H

3G
=

mH

mC

mG
mC

=
1
1

= 1,

which implies
H = G + � ,

where � is a constant. �

(b) Solve the equation.

Solution. We can solve the characteristic equations and apply the initial conditions to obtain the characteristic curves

G(C, B) = C + B,
H(C, B) = C,
D(C, B) = C + 5 (B).

The first two characteristic curves G(C, B), H(C, B) imply

B = G − C,
C = H.



So our solution is

D(G, H) = D(C, B)
= C + 5 (B)
= C + 5 (G − C)

= H + 5 (G − H) ,

as desired. �

2.2. Solve the Cauchy problem

GDG + (G + H)DH = 1,
D(1, H) = H.

Is the solution defined everywhere?

Solution. Our characteristic equations are

mG

mC
= G,

mH

mC
= G + H,

mD

mC
= 1

with the initial conditions

G(0, B) = 1,
H(0, B) = B,
D(0, B) = D(G(0, B), H(0, B)) = D(1, B) = B.

The first characteristic equation with the first initial condition

mG

mC
= G,

G(0, B) = 1

implies the characteristic curve
G(C, B) = 4C .

Consequently, the second characteristic equation

mH

mC
= G + H

= 4C + H

is equivalent to the linear first-order differential equation

mH

mC
− H = 4C ,

which we can solve with the initial condition H(0, B) = B to obtain the characteristic curve

H(C, B) = 4C (C + B).

Finally, the third characteristic equation and the third initial condition

mD

mC
= 1,

D(0, B) = B

implies the characteristic curve
D(C, B) = C + B.

The first and second characteristic curves imply

4C = G,

C + B = H

4C
.



So our solution is

D(G, H) = D(C, B)
= C + B

=
H

4C

=
H

G
,

as desired. We see from our expression of D(G, H) that the solution is not defined on the line G = 0. �

2.3. Let ? ∈ R be fixed. Consider the partial differential equation

GDG + HDH = ?D.

for all G, H ∈ R.

(a) Find the characteristic curves for the equations.

Solution. Our characteristic equations are

mG

mC
= G,

mH

mC
= H,

mD

mC
= ?

with the initial conditions

G(0, B) = B,
H(0, B) = B,
D(0, B) = B.

We can solve the characteristic equations and apply the initial conditions to obtain the characteristic curves

G(C, B) = B4C ,
H(C, B) = B4C ,
D(C, B) = B4?C ,

as desired. �

(b) Let ? = 4. Find an explicit solution that satisfies D = 1 on the circle G2 + H2 = 1.

Solution. For a simple example, let

B = 1,
B = 0,
B = 1,

which satisfies

B2 + B2 = 12 + 02

= 1.

Then we have constructed the Cauchy problem

GDG + HDH = 4D,
D(1, 0) = 1.

Then the initial conditions for our characteristic equations from part (a) become

G(0, B) = 1,
H(0, B) = 0,
D(0, B) = D(G(0, B), H(0, B)) = D(1, 0) = 1,



and our characteristic curves from part (a) become

G(C, B) = 4C ,
H(C, B) = 0,

D(C, B) = 44C .

Therefore, we have

D(G, H) = D(C, B)
= 44C

= (4C )4

= (G(C, B))4

= G4 ,

which is one solution of the Cauchy problem. �

(c) Let ? = 2. Find two solutions that satisfy D(G, 0) = G2 for every G > 0.

Solution. We have the Cauchy problem

GDG + HDH = 2D,

D(G, 0) = G2.

Then the initial conditions for our characteristic equations from part (a) become

G(0, B) = B,
H(0, B) = 0,

D(0, B) = D(G(0, B), H(0, B)) = D(B, 0) = B2,

and our characteristic curves from part (a) become

G(C, B) = B4C ,
H(C, B) = 0,

D(C, B) = B242C .

Therefore, we have

D(G, H) = D(C, B)
= B242C

= (B4C )2

= (G(C, B))2

= G2 ,

which is one solution of the Cauchy problem. We also observe that

D(G, H) = G2 + H2

is another solution of the Cauchy problem because we have

GDG + HDH = G
m

mG
(G2 + H2) + H m

mH
(G2 + H2)

= G(2G) + H(2H)
= 2(G2 + H2)
= 2D

and

D(G, 0) = G2 + 02

= G2.

So we have found two solutions of the Cauchy problem. �



(d) Explain why the result in (c) does not contradict the existence-uniqueness theorem.

Solution. The existence-uniqueness theorem (page 36 of the textbook) basically states:

• If the transversality condition holds for all B ∈ (B0 − 2X, B0 + 2X), for X > 0, then there exists a unique solution of
the Cauchy problem in the neighborhood of (C, B) ∈ (−n, n) × (B0 − X, B0 + X), for n > 0.
• If there exists B ∈ (B0 − 2X, B0 + 2X) such that the transversality condition does not hold, then the Cauchy problem

has either no solution or infinitely many solutions.

Furthermore, the transversality condition of the Cauchy problem holds if we have

� |C=0 =

���� mmC G(0, B) m
mC
H(0, B)

m
mB
G(0, B) m

mB
H(0, B)

����
=
m

mC
G(0, B) m

mB
H(0, B) − m

mC
H(0, B) m

mB
G(0, B)

≠ 0.

But, for this problem, the Jacobian is

� |C=0 =

���� mmC G(0, B) m
mC
H(0, B)

m
mB
G(0, B) m

mB
H(0, B)

����
=

���� mmC G(C, B) |C=0
m
mC
H(C, B) |C=0

m
mB
G(C, B) |C=0

m
mB
H(C, B) |C=0

����
=

���� mmC (B4C ) |C=0
m
mC
(B4C ) |C=0

m
mB
(B4C ) |C=0

m
mB
(B4C ) |C=0

����
=

����B4C |C=0 B4C |C=0
4C |C=0 4C |C=0

����
=

����B40 B40

40 40

����
=

����B B

1 1

����
= B · 1 − 1 · B
= 0,

meaning that the transversality condition does not hold for this problem. So there does not exist only one solution of this
problem. The reason that part (c) does not contradict the existence-uniqueness theorem is that we found two solutions.
The existence-uniqueness theorem suggests that this Cauchy problem has in fact infinitely many solutions. �

2.4. Consider the equation
HDG − GDH = 0

for all H > 0. Check for each of the following initial conditions whether the Cauchy problem is solvable. If it is solvable, find
a solution. If it is not, explain why.

(a) D(G, 0) = G2.

Solution. We claim that the Cauchy problem

HDG − GDH = 0,

D(G, 0) = G2

has a solution. Our characteristic equations are

mG

mC
= H,

mH

mC
= −G,

mD

mC
= 0

with the initial conditions

G(0, B) = B,
H(0, B) = 0,

D(0, B) = D(G(0, B), H(0, B)) = D(B, 0) = B2.



First, we notice

m2G

mC2
=
m

mC

(
mG

mC

)
=
mH

mC

= −G,

which is equivalent to the second-order equation

m2G

mC2
+ G = 0,

from which we can solve in C to obtain

G(C, B) = �1 (B) cos(C) + �2 (B) sin(C),

where �1 (B), �2 (B) are both constant in C. Applying the initial conditions

G(0, B) = B,
mG

mC
(0, B) = H(0, B) = 0

gives �1 (B) = B and �2 (B) = 0, and so we get
G(C, B) = B cos(C).

Next, we notice

m2H

mC2
=
m

mC

(
mH

mC

)
=
m

mC
(−G)

= −mG
mC

= −H,

which is equivalent to the second-order equation

m2H

mC2
+ H = 0,

from which we can solve in C to obtain

H(C, B) = �3 (B) cos(C) + �4 (B) sin(C),

where �3 (B), �4 (B) are both constant in C. Applying the initial conditions

H(0, B) = 0,
mH

mC
(0, B) = −G(0, B) = −B

gives �3 (B) = 0 and �4 (B) = −B, and so we get

H(C, B) = −B sin(C).

Observe that we get

B2 = B2 (cos2 C + sin2 C)
= (B cos(C))2 + (−B sin(C))2

= (G(C, B))2 + (H(C, B))2

= G2 + H2.

Finally, the third characteristic equation and the third initial condition

mD

mC
= 0,

D(0, B) = B2



implies the characteristic curve
D(C, B) = B2.

Therefore, our solution is

D(G, H) = D(C, B)
= B2

= G2 + H2 ,

as desired. �

(b) D(G, 0) = G.

Proof. We claim that the Cauchy problem

HDG − GDH = 0,
D(G, 0) = G

does not have a solution on the entire (G, H) plane. Suppose instead that there exists a solution D(G, H) to this problem.
Then our characteristic equations are

mG

mC
= H,

mH

mC
= −G,

mD

mC
= 0

with the initial conditions

G(0, B) = B,
H(0, B) = 0,
D(0, B) = D(G(0, B), H(0, B)) = D(B, 0) = B.

We have already shown in part (a) that the first two characteristic curves are

G(C, B) = B cos(C),
H(C, B) = −B sin(C).

The third characteristic equation and third initial condition

mD

mC
= 0,

D(0, B) = B

implies the curve
D(C, B) = B.

Therefore, if the solution exists, our solution would be

D(G, H) = D(C, B)
= B

for all (G, H) ∈ R2. At the same time, according to the initial condition D(G, 0) = G, we found one point (−B, 0) ∈ R2 that
gives

D(−B, 0) = −B,

which contradicts D(G, H) = B for all (G, H) ∈ R2 if B ≠ 0. So we conclude that the solution on the entire (G, H) plane to
the Cauchy problem does not exist. �

(c) D(G, 0) = G, where G > 0.

Solution. We have already shown in parts (a) and (b) that the characteristic curves are

G(C, B) = B cos(C),
H(C, B) = −B sin(C),
D(C, B) = B.



We have also already shown in part (a)
B2 = G2 + H2,

which implies
B =

√
G2 + H2

on the domain G > 0. Therefore, our solution is

D(G, H) = D(C, B)
= B

=
√
G2 + H2 ,

as ddesired. �

2.6. Consider the Cauchy problem

GDG + (G2 + H)DH +
( H
G
− G

)
D = 1,

D(1, H) = 0.

(a) Solve the Cauchy problem for G > 0. Compute D(3, 6).

Solution. Our characteristic equations are

mG

mC
= G,

mH

mC
= G2 + H,

mD

mC
=

(
G − H

G

)
D + 1

with the initial conditions

G(0, B) = 1,
H(0, B) = B,
D(0, B) = D(G(0, B), H(0, B)) = D(1, B) = 0.

The first characteristic equation
mG

mC
= G

with the first initial condition G(0, B) = 1 implies the characteristic curve

G(C, B) = 4C .

The second characteristic equation

mH

mC
= G2 + H

= 42C + H

is equivalent to the first-order ordinary differential equation

mH

mC
− H = 42C ,

which we can solve and apply the initial condition H(0, B) = B to obtain the characteristic curve

H(C, B) = 42C + (B − 1)4C .

Finally, the third characteristic equation

mD

mC
=

(
G − H

G

)
D + 1

=

(
4C − 4

2C + (B − 1)4C
4C

)
D + 1

= (1 − B)D + 1



is equivalent to the first-order ordinary differential equation

mD

mC
+ (B − 1)D = 1,

which we can solve and apply the initial condition D(0, B) = 0 to obtain the characteristic curve

D(C, B) = 1
B − 1

(1 − 4−(B−1)C ).

The first two characteristic curves G(C, B), H(C, B) imply

4C = G,

B − 1 =
H − 42C

4C
=
H − G2

G
.

So our solution is

D(G, H) = D(C, B)

=
1

B − 1
(1 − (4C )−(B−1) )

=
G

H − G2 (1 − G
− H−G2

G ) .

Using this solution, we also compute

D(3, 6) = 3
6 − 32 (1 − 3−

6−32
3 )

=
3
−3
(1 − 3−

−3
3 )

= −(1 − 3)

= 2 ,

as desired. �

(b) Is the solution defined for the entire ray G > 0?

Answer. The “entire ray G > 0” means the line {(G, H) : R2 : G > 0, H = 0}. Although the solution D(G, H) is not defined
on the parabola H = G2, the parabola does not intersect the ray. Therefore, D(G, H) is defined on the entire ray G > 0. �

2.7. Solve the Cauchy problem

DG + DH = D2,

D(G, 0) = 1.

Solution. Our characteristic equations are

mG

mC
= 1,

mH

mC
= 1,

mD

mC
= D2

with the initial conditions

G(0, B) = B,
H(0, B) = 0,
D(0, B) = D(G(0, B), H(0, B)) = D(B, 0) = 1.

We can solve the characteristic equations and apply the initial conditions to obtain the characteristic curves

G(C, B) = C + B,
H(C, B) = C,

D(C, B) = 1
1 − C .



The first two characteristic curves G(C, B), H(C, B) imply

B = G − C,
C = H.

So our solution is

D(G, H) = D(C, B)

=
1

1 − C

=
1

1 − H ,

as desired. �

2.11. Solve the Cauchy problem

(H2 + D)DG + HDH = 0,

D

(
H2

2
, H

)
= 0

in the domain H > 0.

Solution. Our characteristic equations are

mG

mC
= H2 + D,

mH

mC
= H,

mD

mC
= 0

with the initial conditions

G(0, B) = (H(0, B))
2

2
=
B2

2
,

H(0, B) = B,

D(0, B) = D(G(0, B), H(0, B)) = D
(
B2

2
, B2

)
= 0.

We can solve the second and third characteristic equations and apply the initial conditions to obtain the characteristic curves

H(C, B) = B4C ,
D(C, B) = 0.

So our solution is

D(G, H) = D(C, B)

= 0 .

But we claim that this is not the only solution to the problem. To see this, we will check whether the transversality condition
holds for this problem. The Jacobian is

� |C=0 =

���� mmC G(0, B) m
mC
H(0, B)

m
mB
G(0, B) m

mB
H(0, B)

����
=

����� mmC ( B2

2 )
m
mC
(B2)

m
mB
( B2

2 )
m
mB
(B2)

�����
=

����0 0
B 2B

����
= 0 · (2B) − B · 0
= 0,

meaning that the transversality condition does not hold for this problem. This means that, according to the existence-
uniqueness theorem, this problem has either no solution or infinitely many solutions. But we have already established that
D(G, H) = 0 is a solution of the problem. So we conclude that this problem has infinitely many solutions. �



2.12. Solve the Cauchy problem

D2DG + DH = 0,

D(G, 0) =
√
G

in the ray G > 0. What is the domain of existence of the solution?

Solution. Our characteristic equations are

mG

mC
= D2,

mH

mC
= 1,

mD

mC
= 0

with the initial conditions

G(0, B) = B,
H(0, B) = 0,

D(0, B) = D(G(0, B), H(0, B)) = D(B, 0) =
√
B.

We can solve the second and third characteristic equations and apply the initial conditions to obtain the characteristic curves

H(C, B) = C,
D(C, B) =

√
B.

So the first characteristic equation becomes

mG

mC
= D2

=
(√
B
)2

= B,

which we can solve and apply the initial condition G(0, B) = B to obtain the first characteristic curve

G(C, B) = B(C + 1).

The first two characteristic curves G(C, B), H(C, B) imply

B =
G

C + 1
,

C = H.

So our solution is

D(G, H) = D(C, B)
=
√
B

=

√
G

C + 1

=

√
G

H + 1
,

as desired. �

2.16. Solve the Cauchy problem

GDG + HDH = −D,
D(cos(B), sin(B)) = 1

for all 0 ≤ B ≤ c. Is the solution defined everywhere?



Solution. Our characteristic equations are

mG

mC
= G,

mH

mC
= H,

mD

mC
= −D

with the initial conditions

G(0, B) = cos(B),
H(0, B) = sin(B),
D(0, B) = D(G(0, B), H(0, B)) = D(cos(B), sin(B)) = 1.

We can solve the characteristic equations and apply the initial conditions to obtain the characteristic curves

G(C, B) = 4C cos(B),
H(C, B) = 4C sin(B),
D(C, B) = 4−C .

The first two characteristic curves G(C, B), H(C, B) imply

G2 + H2 = (G(C, B))2 + (H(C, B))2

= (4C cos(B))2 + (4C sin(B))2

= 42C (cos2 B + sin2 B)
= 42C ,

which implies
4C =

√
G2 + H2

because 4C is always positive. So our solution is

D(G, H) = D(C, B)
= 4−C

=
1
4C

=
1√

G2 + H2
.

This solution is not defined everywhere because it is not defined on the point (0, 0). �

2.21. (a) Find a function D(G, H) that solves the Cauchy problem

GDG − HDH = D + GH,
D(G, G) = G2

for all 1 ≤ G ≤ 2.

Solution. Our characteristic equations are

mG

mC
= G,

mH

mC
= −H,

mD

mC
= D + GH

with the initial conditions

G(0, B) = B,
H(0, B) = G(0, B) = B,
D(0, B) = D(G(0, B), H(0, B)) = D(B, B) = B2.



We can solve the first two characteristic equations and apply the initial conditions to obtain the characteristic curves

G(C, B) = B4C ,
H(C, B) = B4−C .

The first two characteristic curves G(C, B), H(C, B) imply

GH = G(C, B)H(C, B)
= (B4C ) (B4−C )
= B2,

which implies
B =
√
GH

if we also impose H > 0. (Note that 1 ≤ G ≤ 2 clearly implies G > 0. So we also need H > 0 in order for
√
GH to stay a

real number.) We also obtain

4C =
G

B

=
G
√
GH
,

again as long as we maintain H > 0. Now, the third characteristic equation becomes

mD

mC
= D + GH

= D + B2,

which is equivalent to the first-order ordinary differential equation

mD

mC
− D = B2,

which we can solve this equation and apply the inital condition D(0, B) = B2 to obtain the third characteristic curve

D(C, B) = B2 (24C − 1).

So our solution is

D(G, H) = D(C, B)
= B2 (24C − 1)

= GH

(
2
G
√
GH
− 1

)
= 2G

√
GH − GH ,

as desired. �

(b) Check whether the transversality condition holds.

Solution. The Jacobian is

� |C=0 =

���� mmC G(0, B) m
mC
H(0, B)

m
mB
G(0, B) m

mB
H(0, B)

����
=

���� mmC G(C, B) |C=0
m
mC
H(C, B) |C=0

m
mB
G(C, B) |C=0

m
mB
H(C, B) |C=0

����
=

���� mmC (B4C ) |C=0
m
mC
(B4−C ) |C=0

m
mB
(B4C ) |C=0

m
mB
(B4−C ) |C=0

����
=

����B4C |C=0 −B4−C |C=0
4C |C=0 4−C |C=0

����
=

����B40 −B4−0

40 4−0

����
=

����B −B1 1

����
= B · 1 − 1 · (−B)
= 2B
≠ 0,



if B ≠ 0, meaning that the transversality condition holds for this problem if G = G(C, B) = B ≠ 0. Namely, the transversality
condition holds on 1 ≤ G ≤ 2. According to the existence-uniqueness theorem, the function

D(G, H) = 2G
√
GH − GH

is the unique solution of this problem on 1 ≤ G ≤ 2. �

(c) Draw the projections on the (G, H) plane of the initial curve and the characteristic curves emanating from the points
(1, 1, 1) and (2, 2, 4).

Solution. First, we need to compute a family of projections on the (G, H) plane of the characteristic curves of D(G, H). We
follow exactly the same procedure of Exercise 2.1, part (a). We recall from part (a) of this exercise that our characteristic
equations are

mG

mC
= G,

mH

mC
= −H,

mD

mC
= D + GH.

Now, we have

3H

3G
=

mH

mC

mG
mC

=
−H
G

= − H
G
,

which implies

H =
�

G
.

where � is a constant. The point (1, 1, 1) implies the initial condition H(1) = 1, and so

H =
1
G

is the projection of the characteristic curve that emanates from (1, 1, 1). Similarly, the point (2, 2, 4) implies the initial
condition H(2) = 2, and so

H =
4
G

is the projection of the characteristic curve that emanates from (2, 2, 4). Now, we will draw the projections on the (G, H)
plane of the initial curve and the characteristic curves emanating from the points (1, 1, 1) and (2, 2, 4).

−4 −2 2 4

−4

−2

2

4

(1,1)

(2,2)

G

5 (G)1
G
4
G

The blue graph above depicts the projections on the (G, H) plane of the initial curve of D(G, H). The red and green graphs
above depict the projections on the (G, H) plane of the characteristic curves of D(G, H) that emanate from the points
(1, 1, 1) and (2, 2, 4), respectively. �

(d) Is the solution you found in (a) well-defined in the entire plane?

Answer. No, the solution we found in (a) is not well-defined in the entire plane. On Quadrant II (G < 0 and H > 0) and
Quadrant IV (G > 0 and H < 0) of the (G, H) plane, the quantity

√
GH is a purely imaginary number. �


