MATH 146C discussion Ryan Ta
University of California, Riverside Spring 2020

Solutions to suggested homework problems from
An Introduction to Partial Differential Equations by Yehuda Pinchover and Jacob Rubinstein

Suggested problems: Exercises 5.1, 5.3(a), 5.4(a), 5.5, 5.6,5.7,5.8, 5.9, 5.10(a), 5.15

Note: Almost all steps for solving an ordinary differential equation (for example, any material from MATH 046 at UC Riverside)
are omitted from my solutions for purposes of brevity.

5.1. Using the method of separation of variables, find a formal solution of the problem

Uy = 17uyy,

u(0,t) =u(n,t) =0,

forallO0 <x <mandr > 0.

Solution. We employ the method of separation of variables for homogeneous partial differential equations. We want to find a
solution of the form
u(x,t) = X(x)T(¢).

Our partial derivatives are
Uz (-xv t) = X(-x)Tt (t)’
uxx(xv t) = Xx (X)T(t)
So the partial differential equation
Uy = 17Uy

becomes
X ()T () = 17 Xxx ()T (1),

which we can algebraically rearrange to write
Xxx (x) _ T, (1) __
X(x) 177 (t) ’
where A is a constant in both x and 7. This produces the system of two ordinary differential equations

d*x
—+1X =0,
dx?

ar
— + 17AT = 0.
dt

This system is decoupled, which allows us to solve each one independently and obtain the general solutions

Cre V4% 4 Cye~ V1x if 1 <0,
X()C): Cix+Cy if1=0,

Ci cos( VAx) + Cysin( VAx) if 1> 0,
T(t) — De—]7/lt

where Cy, C», D are constants. Now, the boundary conditions
u(0,t) =u(m,t) =0
are equivalent to

X(0)T(r) =0,
X(0)T (1) =0,

which imply either 7'() = 0 or X(0) = X () = 0. If T(¢) = 0, then we would have

u(x,t) = X(x)T(¢)
=X(x)0
= 0,

which would be a trivial solution. But we are really interested in finding a nontrivial solution. So we should assume
X(0)=X(m) =0,

which will impose constraints on the constants Cy, C», depending on A. This motivates us to break this down into cases.



e Case 1: Suppose A < 0. Then
X(x) = Cleﬁx + Cze’ﬁx,
X(0)=0
implies C; = —C}, and so we have
X(x) = Cleﬁx + Cze’ﬁx
— Cleﬁx _Cle_ﬁx
— Cl(e\mx _ e—\QX).

Now, if 1 < 0, then e V=dr _ p=V-dx # 0. This means
X(x) = Cy(eV 1 — e V7,
X(n)=0
implies C; = 0, and so we have
X(x) = Cl(e\/jx _ e*\/jx)
— O(e\/jx _ e—ﬁX)
=0.
Therefore, we have
u(x,t) = X(x)T(¢)

=0T (1)
= O,

which is a trivial solution.

e Case 2: Suppose A = 0. Then

X(x) =Cix+ (s,
X(0)=0

implies C; = 0, and so we have
X(x)=Cix+C,

= C]X +0
=C1x.

Next,

X(x) =Cyx,
X(r)=0

implies C; = 0, and so we have

X(x)=Cix
=0-x
=0.

Therefore, we have

u(x,t) = X(x)T(¢)
=0T(¢)
= 0’

which is a trivial solution.

e (Case 3: Suppose 4 > 0. Then

X(x) = Cy cos( VAx) + C; sin( VaAx),
X(0)=0



implies C; = 0, and so we have

X(x) = C; cos( VAx) + Cy sin( VaAx)
=0 cos( VAx) + Cy sin( VAx)
= Gy sin( Vix).
Next,
X (x) = Cysin( Vax),
X(n)=0
implies sin( VAx) = 0, which in turn implies YAr = nr, or equivalently
Ap=A=n?
and so we have

X, (x) = Cy psin(y/A,x)
= Cy_ sin( \/r?x)
= Cp,, sin(nx)
and
Tn(t) = Dnein/]"[
— Dne*”"z’
forn=1,2,3,.... Therefore, if we write B, = C» ,D,,, then we have
un(x,1) = Xn ()T, (1)
= (Ca,n sin(nx) (D™ ™)
= Cz,nD,,e_”"Zt sin(nx)
= Bpe™ 7" sin(nx),
forn=1,2,3,.... This is a nontrivial solution, as desired.

We recall that an addition of solutions is again a solution. So that means, as we have established already that each u,,(x, 1) is
a nontrivial solution forn =1, 2, 3, .. ., it follows that

[

u(x,t) = Z uy(x,1)

n=1

w
2 .
Z Bne " sin(nx)

n=1

is also a solution of the problem. Finally, we need to explicitly find B,, that satisfies the initial condition

0 if0<x
2 iff<x

f(x) =u(x,0) = {
Indeed, we have the Fourier coefficient

B,

2 (7 .
;/0 f(x) sin(nx) dx

o
2

;(/0 0sin(nx) dx+/£”2sin(nx) dx)

2

2 (0 +/ 2 sin(nx) dx)
/s z
2

4 n
— / sin(nx) dx
Vi e



Therefore, our solution is

u(x,t) = > Bpe 7" sin(nx)

Ms

3
]
—_

% (cos (%) - (—l)n)) el sin(nx)

5o () - o) s
n=1

N
]
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Ngk
—_——
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as desired.

5.3. (a) Using the method of separation of variables, find a formal solution of a vibrating string with fixed ends:

u,t—czuxxzo if0O<x<L,t>0,

u(0,t) =u(L,t) =0 ifr >0,
u(x,0) = f(x) ifO<x<L,
u(x,0)=g(x) if0O<x<L.

Solution. We want to find a solution of the form
u(x,t) = Xx)T(1).
Our partial derivatives are

ure (x, 1) = X (x)T3, (1),
Uyx(x,1) = Xox ()T (2).

So the partial differential equation

U — czuxx =0

becomes
X(x)T; (1) - CZXXX(X)T(I) =0,

which we can algebraically rearrange to write

Xx (x) _ Ty (1) _

X(x) 2@

where A is a constant in both x and ¢. This produces the system of two ordinary differential equations

d*x
F +4X =0
X
a*T
W + /lCZT =0.

This system is decoupled, which allows us to solve each one independently and obtain the general solutions

Cre VA% + Cye~ V-Ax if 1 <0,
X(x)=9Cix+C, if 1 =0,

Ci cos( VAx) + Co sin( VAx)  if A1 > 0,

DV A 4 Dy VoA if1<0,
T(t) = Dit+ D, if1=0,

D cos( \/Ft) + D sin( \//Ft) if 4 >0,
where Cy, C,, D1, D, are constants. Now, the boundary conditions
u(0,1) =u(L,1) =0
are equivalent to

X(0)T(t) = 0,
X(L)T () =0,



which imply either T'(¢) = 0 or X(0) = X(L) = 0. If T(¢) = 0, then we would have
u(x,t) = X(x)T(r)
=X(x)0
=0,
which would be a trivial solution. But we are really interested in finding a nontrivial solution. So we should assume
X(0)=X(L)=0,

which will impose constraints on the constants C, C,, depending on A. This motivates us to break this down into cases.
e Case 1: Suppose 4 < 0. Then

X(x) = Cleﬁx + Cze_ﬁ",
X(0)=0
implies C, = —C}, and so we have
X(x) = Cleﬁx +Cge_ﬁx
= Cre VA — eV
_ Cl(eﬁx _ e—ﬁx).

Now, if A < 0, then e V1L — ¢~ V=1L £ (. This means
X(x) =C(e V-ax _ e \/QX)’
X(L)=0
implies C; = 0, and so we have
X(x) = Cy(e VI —emV7I)
— O(e\/jx _ e*\/j)C)
=0.
Therefore, we have

u(x,t) = X(x)T(¢t)

=0T (1)
=0,
which is a trivial solution.
e Case 2: Suppose 4 = 0. Then
X(x) =Cix + (s,
X(0)=0

implies C; = 0, and so we have

X(x)=Cix+C,
= Clx +0
= Clx.

Next,
X(x) = Cix,
X(L)=0
implies C; = 0, and so we have
X(x) =Cix
=0-x
=0.
Therefore, we have
u(x,t) = X(x)T(¢t)
=0T(1)
=0,

which is a trivial solution.



e Case 3: Suppose A > 0. Then

X(x) = Cy cos( VAx) + C, sin( VAx),
X(0)=0

implies C; = 0, and so we have
X (x) = C; cos( \//_lx) + G, sin( Vax)

= 0cos( VAx) + C; sin( VAx)
= C; sin( \/Zx).

Next,

X (x) = G, sin( Vx),
X(r)=0

implies sin( VAL) = 0, which in turn implies VAL = nz, or equivalently

nmw\2
tn=2= ()

and so we have

Xn (X) = C2,n Sin( \/ZX)

. (nT
= (C,,, Sin (fx)
and
T, (t) = Dy ncos( VA, c%t) + Dy sin( YA, c2t)
=D w/(m)Q 2t| 4+ Dy i si (M)z 2¢
=Dy cos T c 2.n SiN 7 C
cnm . [cnm
=Dy, cos (Tt) + D>, sin (Tt)
forn=1,2,3,.... Therefore, if we write A, = C3 ,D1 , and B, = C2,,D> », then we have
un(xv t) = Xn(x)Tn(t)
= (C2,n sin (%x)) (Dl,n cos (%t) + D3 sin (%t))
(23] (s (421 o in (7
= Sin 2 X 2,n?1,n COS I 2.nlJ2 pn SIN 2
= sin (%x) (An cos (%t) + B, sin (%t))
forn=1,2,3,.... This is a nontrivial solution, as desired.

We recall that an addition of solutions is again a solution. So that means, as we have established already that each

u,(x,1) is a nontrivial solution forn = 1,2, 3, .. ., it follows that
M(X, t) = Z un(x, t)
n=1

= Z sin (Ex) (An cos (ﬂt) + B, sin (ﬂt)) A
L L L

n=1

where
2 L
A, = Z/o f(x)cos (%x) dx,

7 L
B, = Z/o g(x) sin(%x) dx

forn =1,2,3,... are the Fourier coefficients, is also a solution of the problem. |



5.4. (a) Find a formal solution of the problem

Usr —Uxx =0 if0<x<mt>0,
u(0,t) =u(m,t) =0 ifr > 0,
u(x,0) =sin’(x) if0<x<m,
uy(x,0) =sin(2x) if0<x < 7.
Solution. This problem is exactly the same as that of Exercise 5.2 with
c=1,
L=mn,
f(x) = sin’ (x),
g(x) = sin(2x).

So we can take the u(x, t) from our solution to Exercise 5.2 and substitute ¢ = 1 and L = 7 into it to write

u(x,t) = Z sin (%x) (An cos (%t) + B, sin (%t))

n=1
= Z sin (Ex) (An cos ((l)mrt) + B,, sin ((l)n”t))
p— T m T

= Z sin(nx) (A, cos(nt) + By sin(nt)).
n=1

And its partial derivative with respect to 7 is

ur(x,t) = % (i sin(nx) (A, cos(nt) + By, sin(nt)))

n=1

- 9 9
= sin(nx) (A,,— cos(nt) + B, — sin(nt))
; ot ot
= Z sin(nx) (A, (-nsin(nt)) + B, (n cos(nt)))
n=1

= i nsin(nx)(—A, sin(nt) + B, cos(nt)).

n=1

Now, we can use the given initial conditions to write
u(x,0) = sin’(x)

3 1
=1 sin(x) — 3 sin(3x),

where in the last step above we have employed the triple-angle trigonometric identity sin(36) = 3 sin(6) — 4 sin®(6), and
uy(x,0) = sin(2x).

Also, at ¢t = 0, our solution becomes

o)

u(x,0) = Z sin(nx) (A, cos(n(0)) + B, sin(n(0)))

n=1

= Z sin(nx) (A, - 1 + B, - 0)
n=1

M3

A, sin(nx)

3
l

= A sin(x) + A, sin(2x) + A sin(3x) + Z Ay, sin(nx),
n=4



and the partial derivative of our solution becomes

00

us(x,0) = Z nsin(nx)(—A, sin(n(0)) + B, cos(n(0)))

n=1

= Z nsin(nx)(—=A, -0+ B, - 1)
n=1

= Z nB,, sin(nx)
n=1

= 1By sin(x) + 2B sin(2x) + Z nB,, sin(nx).
n=3

Both our expressions of u(x, 0) yield
. . : S 3 . I
A sin(x) + A sin(2x) + A3 sin(3x) + Z Ay sin(nx) = 7 sin(x) — 7 sin(3x).
n=4

By the uniqueness of the Fourier series expansion, we can equate the terms of both sides of our above equation to obtain
the Fourier coefficients

3
Al = Zs
1
A3 = _Z,
A,=0
forn =2 and forn = 4,5,6, . ... Similarly, both our expressions of u, (x, 0) yield

1B, sin(x) + 2B sin(2x) + Z nB, sin(nx) = sin(2x).

n=3

By the uniqueness of the Fourier series expansion, we can equate the terms of both sides of our above equation to obtain
the Fourier coefficients

1
B = 5’
B,=0
forn =1and forn =3,4,5,.... Therefore, our formal solution is

(e8]

u(x,t) = Z sin(nx) (A, cos(nt) + B, sin(nt))

3
—

Ay, sin(nx) cos(nt) + i B, sin(nx) sin(nt)

Ms

Il
—_

n=1

3 1 -
= (Z sin(1x) cos(17) + 0sin(2x) cos(2¢) — 1 sin(3x) cos(31) + Z 0sin(nx) cos(nt)
n=4
. . 1. . S
+ (0 sin(1x) sin(1z) + 3 sin(2x) sin(2t) + Z 0sin(nt)
n=3
3. L. . L.
=\ sin(x) cos(t) + 3 sin(2x) sin(2t) — 7 sin(3x) cos(3t) |,
as desired. O
5.5. (a) Using the method of separation of variables, find a formal solution of the problem
U — ki, =0 if0<x<L,t>0,

ux(0,1) =uy(L,t) =0 ift >0,
u(x,0)=f(x) ifO<x<L.

Solution. We want to find a solution of the form

u(x,t) = X(x)T(¢).



Our partial derivatives are

ur(x,1) = X (x)T3 (1),
Uyx(x,1) = Xox ()T (2).

So the partial differential equation
Uy —kuyx, =0

becomes
X(X)T; (1) = kXxx (x)T(2) = 0,

which we can algebraically rearrange to write

Xex(x)  Ti(1)
X(x) kT@t)

where A is a constant in both x and ¢. This produces the system of two ordinary differential equations

42X +1X =0
dx? B
dar

— + AkT = 0.
dt

This system is decoupled, which allows us to solve each one independently and obtain the general solutions

Cre V=A% 4 Cye= V1% if 1 <0,
X(x)=3Cix+C if A =0,

C; cos( VAx) + Co sin( VAx) if 1> 0,
T(t) = De ™,

where Cy, C>, D are constants. Now, the boundary conditions
Mx(oa t) = MX(L7 t) = 0

are equivalent to
d
—X(0)T(¢r) =0,
dx
d X(L)T() =0
dx - 9

which imply either 7'(¢) = 0 or %X(O) = %X(L) = 0. If T(¢) = 0, then we would have

u(x,t) = X(x)T(¢)
=X(x)0
= 0’

which would be a trivial solution. But we are really interested in finding a nontrivial solution. So we should assume

d d

which will impose constraints on the constants C, C,, depending on A. This motivates us to break this down into cases.

e Case 1: Suppose 4 < 0. Then we have
X(x) = Cre V4 4 Cye~ V¥,
d
—X(0) =0,
7. X0
which implies

diX(x) = VoA(Cre V4 — Crem V),
X

d
ZX(0) =
o (0)=0,



which implies V-1(C; — C;) = 0. As we assumed A < 0 in this case, we have V-1 # 0, and so we conclude
Cy1 — C, =0, or equivalently C; = C;. So we have

X(x) = Cleﬁx + Cze_ﬁx
= Cre V¥ 4 e~ VA
= Cﬂeﬁx +e‘ﬁx).

We notice e V=1L + ¢~ V=1L % 0. This means
X(x) = Ci(e VeV,
X(L)=0
implies C; = 0, and so we have
X(x) = Cl(eﬁx +e_ﬁx)
= O(eﬁx + e_ﬁx)
=0.
Therefore, we have
u(x,t) = X(x)T(¢t)

=0T(¢)
= 0’

which is a trivial solution.
Case 2: Suppose A = 0. Then we have

X(x) =Cix + Cy,

d

—X(0) =0,

7. X0

which implies

d
—X(x)=0Cy,
dx (x) 1
d
—X(0) =0,
X0

which implies C; = 0, and so we have

X(x)=Cix+C,
=Ox+C2
=,

which already satisfies %X (L) = 0. Therefore, if we write % = C,D, then we have

uo(x,1) = X(x)T (1)
= CyDe O
=)D
A
==
which is a nontrivial solution.
Case 3: Suppose 4 > 0. Then we have

X(x) = Cy cos( VAx) + C, sin( VAx),
d

—X(0)=0
ZX(0) =0,

which implies

%X(x) = VA(=C sin( VAx) + C; cos( VAx)),

d
—X(0) =
—-X(0) =0,



which implies VAC, = 0, which in turn implies either YA = 0 or C; = 0. But VA = 0 implies 2 = 0, which
contradicts our assumption A > 0 for this case. So we must have C, = 0, and so we have

X(x) = C) cos( ViAx) + Gy sin( VAx)
= C) cos( VAx) + 0sin( Vix)
= C| cos( \/Zx)
and
%X(x) = VA(=Cy sin( VIx) + Gy cos( V)
= VA(=Cy sin( VAx) + 0 cos( Vix))
= —VAC; sin( Vix),

Next,

iX(x) = —VaC sin( Vix),
dx

d
—X(L) =
5 X(L)=0

implies \//_1C1 sin( \//_lL) = 0. As we assumed 4 > 0 in this case, we have VA # 0, and so we conclude
Ci sin( VAL) = 0. If C; = 0, then we would have

X(x) = C; cos( Vax) + Cy sin( VAx)

=0 cos( VAx) + 0sin( VAx)
=0,
which would imply
u(x,t) = X(x)T(¢t)
=0T (1)
=0,
meaning that u(x,7) is a trivial solution. So we should assume sin( VAL) = 0, which implies VAL = nrx, or
equivalently
nm\2
Ap=4= (T> )

and so we have
Xn(x) = Cl,n COS( V/lnx)
nmw
= C1,, COS (Tx)
and

T, (t) = Dje k!

= Dne_(%)zk’
forn=1,2,3,.... Therefore, if we write A, = C; ,D,, then we have
un(x,1) = Xp(x)T; (1)
= (Cl,n cos (%x)) (Dne_(nTn)zk’)
= Cl,nDne_(%)2kt cos (%x)
= Ape UK cog (Ex)
L

forn =1,2,3,.... This is a nontrivial solution, as desired.

We recall that an addition of solutions is again a solution. So that means, as we have established already that each
u,(x,1) is a nontrivial solution for n = 1,2, 3, .. ., it follows that

u(x,t) =up(x,t) + i uy(x,1)
n=1

Ay © nz
= 70 + Z Ane_(T)zk’ cos (%x) ,
n=1




where

forn=1,2,3,... are the Fourier coefficients, is also a solution of the problem.

(b) Solve the problem

U — 12u,, =0 ifO0<x<mt>0,
ux(0,t) = ux(m, 1) =0 ifr >0,
u(x,0)=1+sin’(x) ifO<x<L.

Solution. This problem is exactly the same as that of part (a) of this exercise with

k=12,
L=mnm,

f(x) =1 +sin’(x).
So we can take the u(x, t) from our solution to part (a) of this exercise and substitute kK = 12 and L = 7 into it to write

(o)

u(x,r) = Z ~CE)R g ( IiT )
o (552 <12>’cos( nn )
T

2
e 127 cos(nx).

A, S
= Z
=224 g

In order for u(x, r) to satisfy u(x,0) = 1 + sin>(x), we need to compute

2 T
=;£ F(x) dr,

= %/OH f(x) cos(nx) dx

with f(x) = 1 +sin’(x). Employing the trigonometric identities
sin(36) = 3 cos() — 4sin’(6),
1
sin(a) cos(B) = E(sin(a + B) +sin(a — B)),
we have
/3 Ve 3 1
/ 1 +sin’(x) dx = / 1+ = sin(x) — - sin(3x) dx
0 0 4 4

T

= (x - %cos(x) + % COS(3X)) .




and

/Oﬂ(l +sin®(x)) cos(nx) dx = /07r (l + 2 sin(x) — % sin(3x)) cos(nx) dx

T 3 V3 l Ve
= / cos(nx) dx + = / sin(x) cos(nx) dx — — / sin(3x) cos(nx) dx
0 4 Jo 4 Jo

Ve 3 Ve
= / cos(nx) dx + 3 / sin(x + nx) + sin(x — nx) dx
0 0
l T
~3 / sin(3x + nx) + sin(3x — nx) dx
0

=/ﬂcos(nx)dx+§/ﬂsin((l +n)x) + sin((1 — n)x) dx
8 Jo

0

- % /n sin((3 + n)x) + sin((3 — n)x) dx
0

= (1 sin(nx))
n

—% (—3j_ cos((3+n)x) —

/g

! cos((1 - n)x))
-n

ﬂ+3 ! cos((1+n)x)
e n)x) —
o 8 1+n 0
T

! cos((3 - n)x))
-n

0

1+n 1-n

(1_( ])l+n _(_l)ln) 1 (]_(_1)3+n+ 1_(_])3n)
- 8

1+n 1-n 3+n 3-n

+:% ifn=2,46,... 8

{ ifn=1,3,5,. 1{0 iftn=1,3,5,...
2
1+

2 2 : —
m-ﬁ-n 1fn—2,4,6,...

-Nw

ifn=13,5,.
ifn=2,4,6,.

_3
8
3
8
ifn=1,3,5,...
TL ) -1 + 1) ifn=2,4.6,...

nt— 10n2+9

So we have

/ f(x)dx

=—/ 1 + sin’(x) dx
T Jo

and
= %/Oﬂf(x) cos(nx) dx
_2 [T e
= n/ (1 +sin”(x)) cos(nx) dx

20 ifn=1,3,5,...
T ifn=2,4,6,...

n4— IOn2 +9
ifn=1,3,5,...
ifn=2,4,6,..."

Xl S

n* 1()n +9

B 3 ( 1)1+n -1 (_l)l—n -1 1 (_1)3+n -1 (_1)3—n _
)

3+n 3—-n

)



Therefore, the formal solution is

u(x,t)——o i -t cos(nZ)
n=1
4

_ 1 —nki (nn)
_2( 3) 24: 7Tn4—10n2+9e o\

2 24 1 (o2 2n)m
I+ —+= (@n) ke =7
3w ; (2 —10(2n)2 +9° i

2 24 1 2 2nm
=1+ —+= Mk x|\
7 ; 16n* —40n2 +9° COS( L x)

as desired. |

(c) Find tlim u(x,t) for all 0 < x < m, and explain the physical interpretation of your result.

Solution. For all 0 < x < m, we compute

(o]
. . 2
lim u(x,¢) = lim | = E —1ant cos(nx))
t—00 t—o00

n=

(o]

. 0 . _19,2
= lim — + Y A, lim e """ cos(nx)
t—o00 t—o00

n=1

A [e9)
= 70+ZA,, -0 - cos(nx)
n=1

Ao
> |

Physical interpretation (copied from the textbook solution manual): We have shown that the quantity fOL u(x) dx is
conserved in a one-dimensional insulated rod. The quantity kuy (x, t) measures the heat flux at a point x and time . The
homogeneous Neumann condition amounts to stating that there is zero flux at the rod’s ends. Since there are no heat
sources either (the equation is homogeneous), the temperature’s gradient decays; therefore the temperature converges to
a constant, such that the total stored energy is the same as the initial energy. O

5.6. (a) Using the method of separation of variables, find a formal solution of the problem

U —kuy, =0 ifO0<x<L,t>0,
u(0,1) =u2m,t), ux(0,t) = uy(2n,1) ift >0,
u(x,0) = f(x) if0<x<L.

Solution. We want to find a solution of the form
u(x,t) = X(x)T(¢).
Our partial derivatives are
u(x, 1) = X(0)T; (1),
Ux (X, 1) = Xoex (0T (1).

So the partial differential equation
Uy —kuyx =0

becomes
X ()T (1) = kXxx ()T (2) =

which we can algebraically rearrange to write

Xxx(x) _ Tt([) _
X(x) kT@t)

where A is a constant in both x and 7. This produces the system of two ordinary differential equations

2
d—X+/lX 0
d2
dar
— + AkT =0.
dt



This system is decoupled, which allows us to solve each one independently and obtain the general solutions

Cre VA 4 Cpe VA if1<0,
X(X): Cix+Cy if1=0,

Ci cos( VAx) + Cysin( VAx) if 1> 0,
T(t) = De~ !

where Cy, C,, D are constants. Now, the boundary conditions

u(0,t) =u(2n,1),
ux(0,1) = uy(2m,t)

are equivalent to
X(0)T(r) = X2m)T (1),

d d
- X(OT(1) = —X(2mT(1),

which imply either 7'(#) = 0 or X(0) = X(27) and £ X(0) = L X (2n). If T() = 0, then we would have

u(x,t) = X(x)T(¢)
= X(x)0
= O’

which would be a trivial solution. But we are really interested in finding a nontrivial solution. So we should assume

X(0) = X(27),
d d
EX(O) = EX(ZH),

which will impose constraints on the constants C;, C,, depending on A. This motivates us to break this down into cases.

e Case 1: Suppose A < 0. Then we have

X(x) = Cleﬁx + Cge_ﬁx,
X(0) = X(2n),

which implies C; + C> = Cy 2N Cre™ 27 V=1, We also have

%X(x) = VoA(Cre VT — Cyem VA%,

d d
—X(0) = —X(2n),
dx() dx(ﬂ)

which implies C; — C; = C e V=1_ Cre™2m ﬁ. Now we will solve for the constants C;, C». We have formulated
the linear system

C+Cy = Cre?™ V4 Cpe VA,
Ci-Cy= Clez”ﬁ _ cze-“ﬁ,
and we can algebraically rearrange each equation in the system to write
Ci(1 =™V ) =~y (1 — 727V,
Ci(1 =™V = 0y (1 — e27 VA,

We can combine the two equations in the system to deduce
Cl(l _ 827(\/3) — _C2(1 _ 6'_2”@)

— Cl(l _ 6—271\/3).

Since we are currently in the case 4 < 0, we have 1 — e V-1 # 0, and so we can divide 1 — ez”ﬁ from both
sides of our previous equation to conclude C; = —Cy, or C; = 0. Likewise, we can combine the two equations in
the system to deduce

C2(1 _ e—27r\/j) — Cl(l _ eZnﬁ)

— C2(1 _ e—2ﬂ\g).



Since we are currently in the case 4 < 0, we have 1 — e‘z”ﬁ # 0, and so we can divide 1 — e‘z’”m from both
sides of our previous equation to conclude C; = —C,, or C; = 0. So we have

X(x) = Cleﬁx + Cre™ VX
=0e V-dx Oe™ V-ax
=0.

Therefore, we have

u(x,t) = X(x)T(¢t)

=0T (1)
=0,
which is a trivial solution.
Case 2: Suppose A = 0. Then we have
X(x)=Cix+Cy,
X(0) = X(2n),
which implies C; = 0, and so we have
X(x)=Cix+Cy
=C-0+C,
= (.
The derivative is
d d
—X(x)=—(C
TX(x) = -(Co)
=0,

which clearly satisfies %X 0)=0= %X (27). Therefore, if we write % = (D, then we have

uo(x,t) = X(x)T(¢)
= CyDe * O
=)D

Ao

2 b

which is a nontrivial solution.
Case 3: Suppose 4 > 0. Then we have

X(x) = Cy cos( VAx) + C; sin( VAx),
X(0) = X(2n),

which implies
C| = C) cos(2n VA) + Cy sin(27 V). (1)

We also have

%X(x) = VA(=C) sin( Vax) + C; cos( Vix)),

d d
—X(0)=—X(2
ZX(0) = =X (2m),
which implies
Cy = —C; sin(2rm \//_l) + Cycos(2m \//_l). 2)

Now, we claim that, if either sin(27 V1) # 0 or cos(2x V) # 1, then we have C; = 0 and C, = 0.

— Subcase 1: Suppose sin(27 V1) # 0. Multiply both sides of (1) by —cos(2z V) and both sides of (2) by
sin(27r V) to obtain

—Cj cos(2r V) = =Cj cos?(2r VA) — Cy sin(27 V) cos (27 V),
Cysin(2 V) = =Cy sin® (2 V) + € cos(2m V) sin(27 V),



from which we can add up both sides of the two equations to get
—Cj cos(27 V) + Gy sin(2x V) = —C. 3)
We equate (1) and (3) to get

Cycost2mVA) — Cy sin(2r VA) = CycosZwVA) + Cs sin(2r V),
~Casin2r V1) = Cosine2 V).

Since we assumed sin(27 V) # 0, we can divide both sides by sin(27 V) to get —C, = C,, which means
C, = 0. Substitute C, = 0 into (2) to obtain

which simplifies to

0= —C; sin(2r V),

which implies C; = 0 because, once again, we assumed sin (27 \/Z) # 0.
Subcase 2: Suppose cos(2m VA) # 1. Then we can rewrite (1) and (2) as

C1(1 - cos(2r V) = C, sin(27 V), 4)
Cy(1 = cos(2r V) = —Cy sin(27 V), . (5)

Multiply both sides of (4) by C; and both sides of (5) by C, to obtain

C?(1 - cos(2n V) = C,C, sin(2r V),
C%(l —cos(2m V) = —=C,C, sin(2x \/Z),

from which we can add up both sides of the two equations to get
(C12 + C%)(l — cos(2r V) = 0.

Since we assumed cos(27r V) # 1, we must conclude C? + C3 = 0, which forces C; = 0 and C; = 0.

So we have proved our claim. Now that we have established our claim, we would have

X(x) = Cy cos( VAx) + C; sin( VAx)

= 0 cos( \//_lx) + 0 sin( Vax)
=0,

which would imply that u(x, ) = X (x)T(t) is a trivial solution. Therefore, to find a nontrivial solution for this case,
we should assume both

sin(27r V) = 0,
1 —cos(2r \/71) =0,

which imply 27 VA = 2n7, or equivalently

Ay =A=n,

and so we have

X (x) = C1p c08(V2,%) + Cap sin( V)
= Cy_ncos( \/;x) + Cy,p sin( \/r?x)

= Cy,, cos(nx) + Cy , sin(nx)

T, (t) = De

)
:Dnenkt

forn=1,2,3,.... Therefore, if we write A,, = C ,D, and B,, = C, ,D,, then we have

un(x,1) = X,,(x)T,, (1)
= (C1,n c0S(1x) + Ca p sin (1)) (D e~ E)M)
= e—nzkf(cl,nDn cos(nx) + Cp,, Dy, sin(nx))

= e "k (A, cos(nx) + By, sin(nx))

forn=1,2,3,.... This is a nontrivial solution, as desired.



We recall that an addition of solutions is again a solution. So that means, as we have established already that each
u,(x,1) is a nontrivial solution for n = 1,2, 3, .. ., it follows that

u(x,t) =up(x,t) + Z uy(x,t)
n=1

A (o)
= 70 + Z e k(A cos(nx) + By sin(nx)) |
n=1
where
1 2r
Ag=— f(x) dx,
T Jo
1 2r
A, =— f(x) cos(nx) dx,
T Jo
1 2
B,=— f(x) sin(nx) dx
T Jo
forn=1,2,3,... are the Fourier coefficients, is also a solution of the problem. 0O

(b) Find tlim u(x,t) for all 0 < x < 27, and explain the physical interpretation of your result.

Solution. For all 0 < x < m, we compute

A (o]
lim u(x,t) = tlim (70 + Z ¢k (A, cos(nx) + By sin(nx))

t—00
n=1

A (o]
= lim =2 + tlim ek (A, cos(nx) + By sin(nx))

t—o0
n=1

A (o)
= 70 + HZ:; tli_)rg 0(A; cos(nx) + By, sin(nx))

Ag

2

Physical interpretation: We have shown that the quantity fOL u(x) dx is conserved in a one-dimensional insulated rod.
The quantity ku, (x, t) measures the heat flux at a point x and time 7. The periodic Dirichlet condition amounts to stating
that the amount of thermal energy is the same at the rod’s ends, and the periodic Neumann condition amounts to stating
that the flux is the same at the rod’s ends. Since there are no heat sources either (the equation is homogeneous), the
temperature’s gradient decays; therefore the temperature converges to a constant, such that the total stored energy is the
same as the initial energy. O

5.7. Solve the problem
Uy — kit = Acos(at) if0<x<1,t>0,
ux(0,1) =u,(1,1) =0 ifr >0,
u(x,0) = 1 +cos®(nx) if0<x<1.
Solution. First, we need to find all the eigenvalues and eigenfunctions of the homogeneous problem
U —kuyy =0 fO0<x<1,t>0,
ux(0,1) =u (1,1) =0 ifr >0,
u(x,0) = 1+cos®(nx) if0<x<1.
To do this, we can proceed as we did in the method of separation of variables by writing
u(x,1) = X(x)T(t).
Our partial derivatives are
g (x,1) = X(0)T; (1),
Uxx (X,1) = Xoex (X)T ().

So the partial differential equation
Uy — 4y, =0



becomes
X ()T (1) = kXux ()T (1) = hX(X)T (1) = 0,

which we can algebraically rearrange to write
Xyx (%) _ T, (1) __
X(x) kT (1) ’

where A is a constant in both x and 7. This produces the system of two ordinary differential equations

2

X
d—+/lX=O
dx?
dT
— + kAT =0.
dt *

This system is decoupled, which allows us to solve each one independently and obtain the general solutions

Cre V- 4 Cye= V-Ax if 1 <0,
X(x)={Cix+C, if1=0,

Cy cos( \/zx) + C, sin( \/Zx) if A >0,
T(t) = De F"

where Cy, C,, D are constants. Now, the boundary conditions
ux(0,1) =ux(1,t) =0

are equivalent to
d
—X(0)T(r) =0,
dx
d
—X(1)T(r) =0,
dx

which imply either 7'(¢) = 0 or c%X(O) = %X(l) =0. IfT(¢) = 0, then we would have

u(x,t) = X(x)T(¢)
=X(x)0
= 0,

which would be a trivial solution. So we should assume

d d
—X(0) = —X(1)=0,
7. X0 =—X(1)

which will impose constraints on the constants C;, C», depending on A. This motivates us to break this down into cases.
e Case 1: Suppose A4 < 0. Then we have
X(x) = Cre V" 4 Crem V-1x,
X(0) =0,
which implies C; + C, = 0, or C; = —C;. So we have

X(x) = Cleﬁx + Cze’ﬁx
— Cleﬁx _Cle_\/jx
— Cl(eﬁx _ e—\QX).

We notice e V=1L — ¢~ V=1L % () ynless A = 0. This means

X(x) = Ci(e VA 4 o7 Vo),
X(L) =0

implies C; = 0, and so we have
X(x) = Cl(e\/jx _ e*\/jx)
=O(e\/§x +e—ﬁx>
=0,

which would mean u is a trivial solution. Therefore, the problem has no negative eigenvalues.



e Case 2: Suppose A = 0. Then we have
X(x) =Cix+ (s,
d
—X(0) =0,
5 X0

which implies

d
—X =y,
o (x)=C

d
—X(0) =0,
—X(0)
which implies C; = 0, and so we have
X(x)=Cix+Cy
=0x+C,
=(,,

which already satisfies d%X (1) = 0. Therefore, if we write % = C,D, then we have

uo(x, 1) = Xo(x)To(2)
= CzDe_’I‘O
eN)
Ao
77

which is a nontrivial solution.
e (Case 3: Suppose 4 > 0. Then we have

X(x) = C) cos( VAx) + Cy sin( VAx),

d
—X(0) =0,
dx ©)

which implies

%X(x) = VA(=C; sin( VAx) + C; cos( VAx)),

d
—X(0) =0,
7. X0

which implies C, = 0, and so we have
X(x) = C; cos( VAx) + Cy sin( VAx)
= C) cos( VAx) + 0sin( Viix)
= C) cos( VAx).
Next, we have

X(x) = Cy cos( Vix),

d
=Xx(1) =
pm (=0

which implies

iX(x) = —VaC sin( Vix),
dx

d
—X(1) =
dx() 0

implies either C; = 0 or sin( VA1) = 0. But C; = 0 (with C; = 0) implies X (x) = 0 and that u(x, ) would be a trivial
solution. So we should assume VA = n, or equivalently the eigenvalues

A, = A= (nn)?,
with the corresponding eigenfunctions
X, (x) = C1 cos( V%)
= C1,n cos( v (nm)2x)

= C} , cos(nnx),

as desired.



From the three cases above, we see that the problem has the zero eigenvalue 4 = 0 and its corresponding eigenfunction
Xo(x) = Cj, as well as positive eigenvalues 1, = (nm)? and their corresponding eigenfunctions X, (x) = Cj, cos(nmx)
(or just X, (x) = cos(nnx); these two eigenfunctions are the same up to a scaling factor). We will now use the method of
eigenfunction expansion. Based on our eignefunction X,,(x) = cos(nmx), we can represent, for any fixed ¢, our solution as

u(x,t) = %To(t) + Z T,,(t) cos(nnx),
n=1

where T, (¢) forn = 1,2, 3, ... are the time-dependent Fourier coefficients. Our derivatives are

uy (x, 1) = 0 ( To(t)+ZT (1) Cos(nﬂx))

ETO’(t) + ; T/ (1) cos(nmx)

and

Uyy(x,1) = :— ( Ty(1) + i T, (1) COS(I’HT)C))
n=1
8 (1 - 9?
o (ET (t)) + ; T (1) 5 cos(nmx)
=0+ i —(nn)*T,, (1) cos(nmx)

n=1

—(nn)*T,, (1) cos(nnx).

Me

1

n

So the nonhomogeneous partial differential equation
uy — 4y = Acos(at)
becomes

%Té(r) + ; T/ (1) cos(mx)) —k (; —(n7) T, (1) cos(nmx) | = A cos(at),
or equivalently
%T(;(t) + Z(T,’l(t) + k(nm)*T, (1)) cos(nmx) = A cos(at) + 0 cos(nmx).
n=1

By the uniqueness of the Fourier series expansion, we can equate the terms of both sides of our above equation to obtain the
ordinary differential equations

1
ET(;(t) — Acos(at) =0
T!(t) + k(nm)*T, (1) = 0
whose general solutions are, respectively,
ZAgin(at) + By ifa#0
To(t) = .
2At + By ifa=0,
Tn(t) = Bne_k(nﬂ)Zt,

where Ag and A,, forn =1,2,3, ... are the Fourier coefficients. Therefore, our solution is
(00 = 100 + 3 700) cosnm)
u(x,t) == (1) cos(nmx

1 —sinat +By ifaz0 <
= { () + Bo +ZBne*k("”)2’cos(mrx)

2At+ By ifa=0

2
% sm(at) +B4y> B, e~ k™t cos(nax) ifa # 0
At + T Bne_k("”) " cos(nmx) ifa=0"



Now, we can use the given initial conditions to write
u(x,0) = 1+ cos?(x)

1
=1+ z(l + cos(27x))
3 1
=5 + 3 cos(2nx),

where in the last step above we have employed the double-angle trigonometric identity cos® 6 = %(1 +cos(20)). Also, att =0,
our solution becomes

B (e8]
u(x,0) = 70 + Z B,, cos(nmx)
n=1

B (e8]
= 70 + Bj cos(mx) + By cos(2mx) + Z B, cos(nnx).
n=3
Both our expressions of u(x, 0) yield

B - 31
70 + Bj cos(mx) + By cos(2nmx) + Z B,, cos(nnx) = 3 + > cos(2mx).
n=3
By the uniqueness of the Fourier series expansion, we can equate the terms of both sides of our above equation to obtain the
Fourier coefficients

By =3,
1
B2 = 5,
B,=0
forn =1 and forn =3,4,5,.... Therefore, our formal solution is

Asin(at) + % + 2 B,,e‘k(””)z’ cos(nmx) ifa#0
ulx,0)=3%" ", " 2 .
At+ 2+ 30, Be k(0 cos(nmx) ifa=0

_ [Asin(an) + 5+ Bie KU cos(17x) + Bye K20 cos(27x) + X5 Bue K™% cos(nnx)  if @ # 0
T lAr+ % + B1e kUM cos(17x) + Boe ¥ 2™ cos(27x) + hoin Bpe K™t cog(nmx) ifa=0

3 {% sin(at) + % + Qe k(1m? cos(1lmx) + %e‘k(z”)2’ cos(2mx) + X7 4 0e~k(nm)’t cos(nnx) ifa#0

At + % +0e K17t cos(17x) + %e‘k(z”)zt cos(27x) + X 4 0e= %7t cos(nmx) ifa=0
| [ Asin(ar) + %e“”‘”z’ cos(2mx) +3 ifa#0
CllAr+ %e"”‘”z’ cos(2mx) + 3 ifa=0/
as desired. O

5.8. Consider the problem

Uy — Uy =€ 'sin(3x) if0<x<mt>0,
u(0,t) =u(m,t) =0 ift >0,
u(x,0) = f(x) if0<x <.

(a) Solve the problem using the method of eigenfunction expansion.
Solution. First, we need to find all the eigenvalues and eigenfunctions of the homogeneous problem

U —Uxy =0 if0<x<L,t>0,
u(0,t) =u(n,t) =0 ifr >0,
u(x,0) = f(x) if0O<x<L.

To do this, we can proceed as we did in the method of separation of variables by writing
u(x,t) = X(x)T(¢).
Our partial derivatives are

ur(x,1) = X ()73 (1),
Ux (X, 1) = Xoex (X)T(2).



So the partial differential equation
U —xy =0

becomes
X ()T (1) = Xoex (0)T (1) = 0,

which we can algebraically rearrange to write

Xax(x) _ T (1) _

where A is a constant in both x and . This produces the system of two ordinary differential equations

d’X
—+AX =0
dx?
dT
— +AT =0.
dt
This system is decoupled, which allows us to solve each one independently and obtain the general solutions
Cre VA 4 Cpem V- if1<0,
X(x)=4{Cix+C if1=0,
Ci cos( VAx) + Gy sin( VAx) if 1> 0,
T(t)=De™"

where Cy, C>, D are constants. Now, the boundary conditions
u(0,t) =u(m,t) =0
are equivalent to

X(0)T(t) = 0,
X(0)T (1) =0,

which imply either 7'(¢) = 0 or X(0) = X () = 0. If T(¢) = 0, then we would have

u(x,t) = X(x)T(¢)
=X(x)0
= O,

which would be a trivial solution. So we should assume
X(0) =X(m) =0,

which will impose constraints on the constants C;, C,, depending on A. This motivates us to break this down into cases.

e Case 1: Suppose 4 < 0. Then we have
X(x) = Cleﬁx + Cze_ﬁx,
X(0) =0,
which implies C; + C, =0, or C; = —C;. So we have
X(x) = Cleﬁx +Cze_‘mx
= Cleﬁx - Cle_ﬁx
- Cl(eﬁx _ e—ﬁx)'

We notice e V=1L — ¢~ V=1L % 0 unless A = 0. This means
X(x) = Cy(e V4 4 e Vo),
X(L)=0
implies C; = 0, and so we have
X(x) = €y (e V71 — o7 Vo1Y)
= 0(e VT 4o VoY)
=0,

which would mean u is a trivial solution. Therefore, the problem has no negative eigenvalues.



e Case 2: Suppose A = 0. Then we have
X(x) =Cix + Cy,
X(0) =0,
which implies C, = 0, and so we have
X(x)=Cix+C,
= C]X +0
= Clx.

And we have
X(x) = Cqx,
X(m) =0,
which implies C; = 0. So we have
X(x) =Cix
=0Ox
=0,

which would mean u is a trivial solution. Therefore, 0 is not an eigenvalue of the problem.
e Case 3: Suppose 4 > 0. Then we have

X(x) = Cy cos( VAx) + C; sin( VAx),
X(0)=0,
which implies C; = 0, and so we have
X(x) = Cy cos( VAx) + C; sin( VaAx)
= 0cos( VAx) + C; sin( VAx)
= Cy sin( \//_lx).
Next,
X(x) = Cysin( Vax),
X(m)=0

implies either C; = 0 or sin( VAx) = 0. But C; = 0 (with C; = 0) implies X(x) = 0 and that u(x, ) would be a
trivial solution. So we should assume VAx = nx, or equivalently the eigenvalues
Ap=A=n?

with the corresponding eigenfunctions

X, (x) = Cop sin( /4,x)
= Cy_p, sin( \/;x)

= Cy, sin(nx),

as desired.

From the three cases above, we see that the problem only has positive eigenvalues A,, = n* and their corresponding
eigenfunctions X, (x) = C, , sin(nx). We will now use the method of eigenfunction expansion. We can represent, for
any fixed ¢, our solution as

u(x,t) = Z T, (¢) sin(nx),
n=1
where T,,(¢) forn = 1,2, 3, ... are the time-dependent Fourier coefficients. (Note that, unlike Section 5.4 in the textbook,

we do not have the term %To(z‘) in our representation of u(x, t) because 0 is not an eigenvalue of this problem.) Our
derivatives are

Uz (X, t) =

Z T, (1) sin(nx))
t n=1

T, (¢) sin(nx)

I}
e sls

S
1l
—_



(b)

and

Uy (X, 1) = ;—22 (i T, (1) sin(nx>)
n=1
[y 62 .
= Z T (1) = (sin(nx))

—n’T, (1) sin(nx).

n=1
So the nonhomogeneous partial differential equation

Uy — Uyy = e " sin(3x)

becomes - .
D T sin(nx) = " =T, (1) sin(nx) = e sin(3x),
n=1 n=1

or equivalently

0o

Z(T,;(t) +n*T, (1)) sin(nx) = e sin(3x).

n=1

By the uniqueness of the Fourier series expansion, we can equate the terms of both sides of our above equation to obtain
the ordinary differential equations

e ifn=3,

Ti(0) + T (1) = {0 ifn=172andn=4.56

whose general solutions are

B3e_32t +ie™" ifn=3,
Ta(2) = { 8

Bne‘”zt ifn=1,2andn =4,5,6,....,
where
2 T
B, = —/ f(x) sin(nx) dx
T Jo
forn =1,2,3,... are the Fourier coefficients. Therefore, our solution is
u(x,t) = Z T, (1) sin(nx)
n=1
= T;(¢) sin(1x) + T»(¢) sin(2x) + T5(¢) sin(3x) + Z T, (¢) sin(nx)
n=4
1 (o]
= Bje !t sin(1x) + Bye 2 sin(2x) + (B3e_32’ + ge_’) sin(3x) + Z Bne™! sin(nx)
=4
S 1
= Bje !t sin(1x) + Bye 2 sin(2x) + Bye ¥ sin(3x) + Z Bne™! sin(nx) + ge_t sin(3x)
=4
N -n’t .
= Z Be sin(nx) + ge sin(3x) |,
n=1

as desired. O

Find u(x,t) for f(x) = xsin(x).
Solution. In order for

- 1
u(x,1) = Z B! sin(nx) + ge_’ sin(3x)
n=1

to satisfy u(x,0) = x sin(x), we need to compute

B, = ;/Oﬂ f(x) sin(nx) dx



with f(x) = x sin(x). Employing the trigonometric identity sin(«@) sin(8) = %(cos(a — B) —cos(a + B)) with @ = x and
B = nx and the method of integration by parts, we have forn =1,2,3,...

/ﬂx sin(x) sin(nx) dx = /7r X (l(cos(x —nx) — cos(x + nx)) dx
0 0 2

/Onxcos((l—n)x)dx—%‘/Oﬂxcos((1+n)x)dx

1 n
m COS((I - n)x)) .
1

- = ( 1 xsin((1 +n)x) + _ cos((1 +n)x))

1 1 .
3 (1 _nx sin((1 —n)x) +

/s

2\1+n (1+n)? 0
_cos((I-m)r)—1 cos((1+n)m) -1
T 2(1-m2  2(1+n)2

B (_1)1—n -1 (_1)1+n -1
T 2(1-n2  2(1+n)?

~ 0 ifn=1,3,5,...
= ;_m ifn=2,4,6,....

(14+n)?

To compute B, foralln =1,2,3,..., first note

% ifn=m,

T
sin sin dx =
./o (nx) sin(mx) dx {0 ifn+m,

where m = 1,2,3,...is a parameter. If n = 1,2 0rn =4,5,6, .. ., then we have

‘/7r x sin(x) sin(nx) dx = /7r u(x,0) sin(nx) dx
0 0

= / i (Z B, sin(mx) + 1 sin(3x)) sin(nx) dx
0 m=1 8

(o) 1 V.4
Z B / sin(mx) sin(nx) dx + 3 / sin(3x) sin(nx) dx
m=1 0

bg
0

I
o]

Vs 1 s
n/ sin’(nx) dx + g/ sin(3x) sin(nx) dx
0

-0

oo —

+

Il
=~
3
ST

YRS

which implies

2 T
B,=— / x sin(x) sin(nx) dx
T Jo

{0 ifn=1orifn=>5,7,9,...
=2 1 1 e .
;(W—m) 1fl’l—2,4,6,...

If n = 3, then we have

/7r x sin(x) sin(3x) dx = /7r u(x,0) sin(3x) dx
0 0

[ 1
= / ( B, sin(mx) + 3 sin(3x)) sin(3x) dx
0 m=1

© V.4 1 b d
- Z B / sin(mx) sin(3x) + 3 / sin®(3x) dx
0 0

s l T
= Bj / sin?(3x) dx + 3 / sin®(3x) dx
0 0

/ sin®(3x) dx

B+1
380



which implies

2 T . . 1
By =— x sin(x) sin(3x) dx — 3
0

Therefore, the formal solution is

- 1
u(x,t) = Z Bne™! sin(nx) + ge_’ sin(3x)

- 1
= B\t sin(1x) + Bye 2t sin(2x) + Bye 3 sin(3x) + Z Bpe ™t sin(nx) + ge_t sin(3x)

1 1
(1+2)2 (1-

2 1 ! -n’t I, .
+? 2, ((1+n>2_(1—n)2)e sin{nn) + g sin(3y)

n=4,6,8,.

Z ((1 2 _ln)z) ¢! sin(nx) — %e‘g’ sin(3x) + %e" sin(3x)

n=2 6,.

2 1
= Qe sm(lx) +— ( 2)2) e 2t sin(2x) — ge%zt sin(3x)

.
2 © 1 —(m?t - 1. . i
— T r Z ((1 + (2}1))2 (1— (2n))2) e~ (2 sin((2n)x) + 3 sin(3x)(e™" —e 9 )

n=1

00

1
((l +2n)2  (1-2n)?

s

1
) e sin(2nx) + 3 sin(3x)(e™" — e |,

g

as desired.

(c) Show that the solution u(x, t) is indeed a solution of the equation
Uy — Uyy = e " sin(3x)
forall0 < x <mandt > 0.

Solution. The solution of the problem from our solution to part (a) is
- 1
u(x,t) = Z Bpe™ sin(nx) + §€_t sin(3x).
Our partial derivatives are

- 1
Z Bpe™"! sin(nx) + ge_’ sin(3x)
n=1
0 10
B"O_ =71 gin(nx) + gae_’ sin(3x)

Il
NgE S’IQJ

N
]

1
—Bn2e sin(nx) — ge_’ sin(3x)

Ms

1

N
]

and

- 1
Z Bne™ sin(nx) + ge*’ sin(3x)
n=1

2 2

0
- d 1,0
= Z Bne*"z’ﬁ sin(nx) + 3¢ ’a 5 sin(3x)
X

- 9
= Z —Bn*e™" sin(nx) — ge‘t sin(3x)



So we have

- 1 - 9
Up — Uyx = Z —Bynte” sin(nx) — ge_’ sin(3x)) - Z —B,ne sin(nx) — ge_’ sin(3x)

= —%e" sin(3x) + e~ sin(3x)
= e " sin(3x),
as desired.
5.9. Consider the problem
U —Uyx —hu =0 f0<x<mt>0,
u(0,t) =u(m,t) =0 ift >0,

u(x,0) =x(r—-x) if0<x<m,
where £ is a real constant.

(a) Solve the problem using the method of eigenfunction expansion.

|

Solution. First, we need to find all the eigenvalues and eigenfunctions of the homogeneous problem

Uy —Uxy —hu =0 ifO0<x<L,t>0,
u(0,t) =u(m,t) =0 ifr >0,
u(x,0) = f(x) if0O<x<L.

To do this, we can proceed as we did in the method of separation of variables by writing
u(x,t) = X(x)T(¢).
Our partial derivatives are

ur(x,1) = X(0)T; (1),
Uxx (X, 1) = Xoex ()T (2).
So the partial differential equation
ur —uyxx =0

becomes
X ()T (1) = Xox (0)T (1) = hX (x)T (1) = 0,

or
X()T; (1) = (Xax + hX(x))T (1) = 0,

which we can algebraically rearrange to write

Xex(X) +hX(x)  T(1)
X(x) CT()

-1,

where A is a constant in both x and 7. This produces the system of two ordinary differential equations

d*x
—+A+h)X =0
e ( )
dT
— +AT =0.
dt+

This system is decoupled, which allows us to solve each one independently and obtain the general solutions

Cre V- (x4 €, o= V- (W+h)x ifA+h <0,
X(x) ={Cix+C, if A+ h=0,

C) cos( VA + hx) + Cosin( VA + hx) if A+ h >0,
T(t) = De—(/l+h)t

where C1, C, D are constants. Now, the boundary conditions

u(0,t) =u(m,t) =0



are equivalent to

X(0)T() = 0,
X(m)T (1) =0,

which imply either 7'(¢) = 0 or X(0) = X(xr) = 0. If T'(¢) = 0, then we would have

u(x,t) = X(x)T (1)

=X(x)0
= 0,
which would be a trivial solution. So we should assume
X(0) =X(m) =0,

which will impose constraints on the constants Cy, C,, depending on A. This motivates us to break this down into cases.

e Case 1: Suppose A + h < 0. Then we have
X(.X) — Cle V-(A+h)x + C2€_ \/—(/l+h))(7
X(0) =0,
which implies C; + C, = 0, or C; = —Cj. So we have

X()C) — Cle V-(A+h)x + Cze_ V-=(A+h)x
— Cle \/7(/l+h)x _ Cle* \/*(/Hh)x
— C] (e V-(A+h)x _ e—\/—(/l-f—h)){).

We notice e V=L — ¢~ V=1L % 0 unless A = 0. This means
X(x) = Cy (e V-0 4 o= V-(2h)x),
X(L)=0
implies C; = 0, and so we have
X(x) = Cy (e V-0 g V-0,
=0(e V=i x + e_‘/mx)
=0,

which would mean u is a trivial solution. Therefore, the problem has no negative eigenvalues.
e Case 2: Suppose A + h = 0. Then we have

X(x)=Cix+Cy,
X(0) =0,

which implies C; = 0, and so we have

X(x)=Cix+Cy
=Cix+0
=C1x.

And

X(x) =Cix,
X(m) =0,

implies C; = 0. So we have

X(x)=Cix
=0x
=0,

which would mean u is a trivial solution. Therefore, 0 is not an eigenvalue of the problem.



e Case 3: Suppose A + i > 0. Then we have

X(x) = Cicos( VA + hx) + C sin( VA + hx),
X(0) =0,

which implies C; = 0, and so we have

X(x) = Cicos( VA + hx) + Cysin( VA + hx)
= 0cos( VA + hx) + Cy sin( VA + hx)
= Cy sin( VA + hx).

Next,

X(x) = Cysin( VA + hx),
X(r)=0

implies either C; = 0 or sin( VA + hnr) = 0. But C; = 0 (with C; = 0) implies X (x) = 0 and that u(x, t) would be a
trivial solution. So we should assume VA + hn = nx, or equivalently the eigenvalues

Ay =A=n*—h,
with the corresponding eigenfunctions

X, (x) = Cp pp sin( VA, + hx)
= Cyp sin(V(n2 = h) + hx)

= Cy, sin(nx),

as desired.

From the three cases above, we see that the problem only has positive eigenvalues A,, = n> — h and their corresponding
eigenfunctions X,,(x) = C, , sin(nx). We will now use the method of eigenfunction expansion. We can represent, for
any fixed ¢, our solution as

u(x,t) = i T, () sin(nx),
n=1

where T,,(¢) forn = 1,2, 3, ... are the time-dependent Fourier coefficients. (Note that, unlike Section 5.4 in the textbook,
we do not have the term %To(t) in our representation of u(x, t) because 0 is not an eigenvalue of this problem.) Our
derivatives are

us(x,t) =

Z T, (1) sin(nx))
t n=1

T, (¢) sin(nx)

1l
Me sls

S
1l
—_

and
Uxx(x,1) = ;—; (2 T, (1) sin(nx))

- % .
= ] Tn(t)@(sm(nx))

n

8 1

= Z —n’T, (1) sin(nx).

n=1

So the partial differential equation
Uy —Uxy —hu =0

becomes

i T, (1) sin(nx) — i —n’T,, (1) sin(nx) — h i T, () sin(nx) = 0,
n=1 n=1 n=1

or equivalently

0o

Z(T,;(t) +(n2 = h)T,(1)) sin(nx) = 0.

n=1



By the uniqueness of the Fourier series expansion, we can equate the terms of both sides of our above equation to obtain
the ordinary differential equation
T, (1) + (n* = T, (1) = 0,

whose general solution is
Ta(1) = Bne_(nz_h)t’

where
2 T
B, = —/ x(m — x) sin(nx) dx
T Jo
2 (73 2 (7
=— / x sin(nx) dx + — / (m = x) sin(nx) dx
T Jo Ve %
2 1 1 2 1 1 T
=— (—— cos(nx) + — sin(nx)) +— (——(n —x)cos(nx) — — sin(nx))
7\ n n o T\ n n x
41 . (mr)
= ——sin|—
m2n 2
forn =1,2,3,... are the Fourier coefficients. Therefore, our solution is
u(x,t) = Z T, (1) sin(nx)
n=1
= Z Bne "M sin(nx)
n=1
_ 1 > 1 . nm —(nz—h)t .
= Ez_;;sm (7)6 sin(nx) |,
as desired. O

Alternate solution. We employ the substitution v(x, 1) = e u(x, t). We obtain the derivatives

ve(x, 1) = —he "M u(x, 1) + e Mu, (x,1),
Vex(x,0) = e M (x,1).
So we obtain the partial differential equation
Ve = Vix = (mhe Mu+ e Muy) — e Mu
= e " (uy =ty — hu)

— e—ht 0

We also have

v(0,1) = e " u(0,t) = e .0=0,

v(mt) =e Mu(m, )= -0=0,

v(x,0) = e Ou(x,0) = u(x,0) = x(7 — x).
So we have transformed the original problem into a simpler problem:

Vi —Vxx =0 if0<x<mt>0,
v(0,¢) =v(m,t) =0 ifr >0,

v(x,0)=x(r—x) if0<x<m.
According to our solution to Exercise 5.8, part (a), our only eigenvalues are
Ay =2A=n
with the corresponding eigenfunctions

X, (x) = Ca,p sin( V2,%)
= Cy,p sin( \/i?x)

= Cy,, sin(nx).



We will now use the method of eigenfunction expansion. We can represent, for any fixed 7,
v(x,1) = Z T, (¢) sin(nx),
n=1

where T}, (t) forn = 1,2, 3, ... are the time-dependent Fourier coefficients. (Note that, unlike Section 5.4 in the textbook,
we do not have the term %To(t) in our representation of u(x, ) because 0 is not an eigenvalue of this problem.) Our
derivatives are

ve(x,t) =

(Z T, (1) sm(nx))

T, (¢) sin(nx)

I
o m

3
I
—_

and
8% [ .
Vax (X, 1) = @ (Z Ta(1) Sln(nx))
= Z T, (t) (sm(nx))

= Z —n2T,, (1) sin(nx).
n=1

So the partial differential equation
Vi —Vxx =0

becomes . -
Z T/ (1) sin(nx) — Z —n2T, (1) sin(nx) = 0
n=1 n=1

or equivalently
D (T(1) + 0T, (1) sin(nx) = 0
n=1

By the uniqueness of the Fourier series expansion, we can equate the terms of both sides of our above equation to obtain
the ordinary differential equation
T (1) + n*T, (1) = 0

whose general solution is
-n’t
T, (1) = Bye s

where
2 [T .
B,=— x(mr — x) sin(nx) dx
T Jo
2 (37 2 (7 ,
=— / x sin(nx) dx + — / (m = x) sin(nx) dx
T Jo T z
2 (1 1 T oo 1 ¢
=— (—— cos(nx) + = sin(nx)) + — (——(n —x) cos(nx) — = sin(nx))
T\ n n o T\ n n x
41 nm
(7))
forn =1,2,3,... are the Fourier coefficients. Therefore, we have

v(x,1) = Z T, (1) sin(nx)



and so our solution is

u(x,t) = e" e Mu(x, 1)

1 1
=l — Z — sin (n27r) ¢ sin(nx)
n=1

4
IR 77 SN
= EZESIH(_)e e sin(nx)

I w1
= — Z — sin (%) e~ gin(nx) |
n

as desired. |
(b) Does tlim u(x,t) existforall 0 < x < 7?
Hint: Distinguish between the following cases: h < 1, h =1, h > 1.

Solution. Let us look at

1 2 1 : nr —n%t ht
u(x,t) = e Zl = sin (7) e sin(nx),

which should be the easiest expression for us to compute the limit. Notice that we have

0 ifh<l,
lim =31 ifh=1,
oo ifh> 1.

(Note that, for the cases & < 1 and & = 1, lim, ., "' converges uniformly to the limits 0 and 1, respectively. The
uniform convergence will allow us to pass the limit notation inside the summation sign.) If 2 < 1, we have

1 [ —n’t ht
Hm o— —2 ( ) sin(nx)

|
:EZ

hm u(x,t) = lim

=N|>—a ﬁMS

i ( ) im e " sin(nx)
t—o0

n=

1 1 .
E;ﬁ (%) -0 - sin(nx)
0

3

If h =1, we have

) e M sin(nx)

=%t ght gin (nx)

If h > 1, then we have

1 o 1
hm u(x,t) = lm — Z — sin (E) e M sin(nx)

1« 1
= Z — sin (%) lim e " sin(nx)

4r “—n 100
1 o 1
= Z — sin (n_) oo - sin(nx)
v n



meaning that u(x, r) diverges in r. O

5.10. Consider the problem

Us = Uy tau 0<x<1,t>0,
u(0,) =u(l,t) =0 >0,
u(x,0) = f(x) 0<x<l1

forany f € C([0, 1]).

(a) Assume a = —1 and f(x) = x. Solve the problem.

Remark. One can solve Exercise 5.10, part (a) in multiple ways, especially when the the problem statement of this
textbook exercise does not specify which method to use. Specifically here, one can employ the usual method of separation
of variables, the method of eigenfunction expansion (see my solution of Exercise 5.9, part (a)), or an exponential solution
in tandem with the method of eigenfunction expansion (see my alternate solution of Exercise 5.9, part (a)). As requested
by the students in my T.A. office hours, I will employ the method of separation of variables for this exercise.

Solution. The given problem with @ = —1 and f(x) = x becomes

U = Uxx — U O<x<1,t>0,
u(0,t) =u(l,t) =0 >0,
u(x,0) =x 0<x<1

Following the method of separation of variables, we want to find a solution of the form
u(x,t) = X(x)T(¢).
Our partial derivatives are
g (x, 1) = X()T; (1),
U (X, 1) = Xux ()T (2).

So the partial differential equation
Ur = Uxx — U

becomes
X()T; (1) = Xux ()T (1) — X ()T (2),

which we can algebraically rearrange to write

Xox(X) = X(x) _ Ti (1) _
X (x) TT(r)

-,

where A is a constant in both x and ¢. This produces the system of two ordinary differential equations

d*x
—+1A-1)X=0
dxz( )
dT
— + kT =0.
dt+

This system is decoupled, which allows us to solve each one independently and obtain the general solutions

Cie V- ("Dx 4 0y~ V-(A-Dx ifa-1<0,
X(x)=1Cix+C, ifA-1=0,

Cicos(VA—1x) +Cysin(VA—1x) ifA-1>0,
T(r) = De~ V1,

where Cy, C,, D are constants. Now, the boundary conditions
ux(0,1) =ux(L,1) =0
are equivalent to
d
—X(0)T(¢r) =0,
dx

d
—X(L)T(1) =0,



which imply either 7'() = 0 or “£X(0) = £ X (L) = 0. If T(¢) = 0, then we would have

u(x,t) = X(x)T(¢)
=X(x)0
=0,
which would be a trivial solution. But we are really interested in finding a nontrivial solution. So we should assume

d d
—-X(0) = Z-X(L) =0,

which will impose constraints on the constants Cy, C,, depending on A. This motivates us to break this down into cases.

e Case 1: Suppose 4 — 1 < 0. Then we have
X(x) = Cre V"UDx 4 0y V-(=Dx,
d
—X(0) =0,
i)
which implies

L ¥(3) = V== D(Cre VI -y VI,

d
ZX(0) =
o (0)=0,

which implies 4/—(2 — 1)(C; — C;) = 0. As we assumed A — 1 < 0 in this case, we have 4/—(1 — 1) # 0, and so we
conclude C| — C; = 0, or equivalently C; = C;. So we have

X(x)=Cie V=(=Dx 4 0, o= V-(A-1)x
— Cle V*(/l*])x + Cle* V*(/l*l)x
— C](e V-(1-1)x +e \/—(/I—I)X)-

‘We notice e V-(-DL e” V-(-DL # 0. This means
X(x) = Cie V- IEDx 4 em VU,
X(L)=0
implies C; = 0, and so we have
X(x) = Cy (e V7UDx 4 o= V=(1=Dx)
— 0(6 V-(1-Dx +e \/—(/l—l)x)
=0.
Therefore, we have

u(x,t) = X(x)T(¢t)
=0T (1)
= O,

which is a trivial solution.
e Case 2: Suppose A — 1 = 0. Then we have

X(x) =Cix+Cy,

d
ZX(0) =
T (0)=0,

which implies
—X(x) =Cy,
X0 =G
—X(0) =0,
7 X0



which implies C; = 0, and so we have

X(x)=Cix+Cy
=0x+C,
=Cy,

which already satisfies d%X (L) = 0. Therefore, if we write % = C,D, then we have

uo(x,t) = X(x)T(¢)
— CyDe~(A-DkO)
=D

Ag

2 9

which is a nontrivial solution.
Case 3: Suppose 4 — 1 > 0. Then we have

X(x) =Cjcos( VA = 1x) + Cp sin( VA — 1x),

d
= X(0) =
l 0) =0,

which implies

di;CX(x) = VA= 1(=Cysin( VA — 1x) + Cy cos( VA — 1x)),
d
aX(O) =0,

which implies \/HCZ = 0, which in turn implies either Vi-1=0or C, = 0. But Vi-1=0 implies 4 —1 =0,
which contradicts our assumption 4 — 1 > 0 for this case. So we must have C, = 0, and so we have
X(x) = Cycos( VA — 1x) + Csin( VA — 1x)
= Cj cos( VA — 1x) + Osin( VA — 1x)
= Cjcos( VA - 1x)

and
%X(x) = VA= 1(=C; sin( VA = 1x) + C; cos( VA — 1x))
= VA= 1(=C) sin( VA = 1x) + 0 cos( VA — 1x))
=—VA-1C; sin( VA - 1x),
Next,
%X(x) =—VA-1C;sin( VA - 1x),
:—XX(L) =0

implies VA — 1Cysin( VA —1L) = 0. As we assumed A — 1 > 0 in this case, we have VA —1 # 0, and so we
conclude Cy sin( VA — 1L) = 0. If C; = 0, then we would have

X(x) = Cicos( VA — 1x) + Cp sin( VA — 1x)
=0cos( VA — 1x) + 0sin( VA — 1x)
= 0,
which would imply
u(x,t) = X(x)T(¢t)
=0T(¢)
= 0’

meaning that u(x, ) is a trivial solution. So we should assume sin( VA — 1L) = 0, which implies VA — 1L = nnx, or

equivalently
nm\2
/ln =1= (T) + 1,



and so we have

Xn(x) = Cl,n COS( V/ln - lx)
= Crpcos(V((nm)2+1) - 1x)

= C},, cos(nmx)

and
Tn(t) = Dne_/ln,kt
= Dne_(%)zkl
forn =1,2,3,.... Therefore, if we write A,, = C;_, D, then we have
un(x,1) = X, (x)T, (1)

=(Cin COS(Vlﬂ'x))(Dne’(”ﬂ)zkt)

= C1.uDpe” " cos(nmx)

= Ane” K cos(nx)

forn=1,2,3,.... This is a nontrivial solution, as desired.

We recall that an addition of solutions is again a solution. So that means, as we have established already that each
u,(x,1) is a nontrivial solution forn = 1,2, 3, .. ., it follows that

u(x,t) =up(x,t) + Z uy(x,1)
n=1

A (o]
= 70 + Z Ape™ MK cos(nx) |

n=1

where

2 1
Ao=? /0 £(x) dx

1
=2/ x dx
0

1

and

1
A, = % /0 f(x) cos(nnx) dx

1
2/ x cos(nmx) dx
0

1 1
- —/ sin(nmx) dx
nm Jo

1

1 .
—x sin(nmx)
nm 0

cos(nmx)

1
- (m)?
= cos(nm) — cos(0)
=(-D"-1

0

forn =1,2,3,... are the Fourier coefficients, is also a solution of the problem. 0O
5.15. Using the energy method, prove the uniqueness for the problem

u,,—c2uxx=F(x,t) if0<x<L,t>0,
ux(0,1) =2, u(L,t) = -t ifr >0,
u()c,O):xz—L2 ifO0<x<L,
ur (x, 0) = sin’ (”L—x) if0<x<L.



Proof. Let u; and u; be two solutions of the problem, and define w = u; — u,. Then we have the partial differential equation

Wi — Czuxx = (Ml,n - I/t2’n) — Cz((ul)xx — (u2)xx)
=Ulyr — 62y1,xx — (U — liy)
= F(X,t) _F(X,[)
=0.

We also have the boundary conditions

wx(0,7) = (u1)x(0,7) — (u2)x(0,7)
—2_p

=0
and

w(L,t) =ui(L,t) —uy(L,t)
= 1= (-1)
=0.

‘We also have the initial conditions
w(x,0) = ui(x,0) —uz(x,0)
= (- L% - (x* - L?)
=0
and
Wi (-x9 0) = Ml,t(.x, 0) - 142,1 (-x7 0)
- () (2
sin ( 2 sin 2
=0.
So we have transformed the original problem into

Wi —Cwey =0 if0<x<L,t>0,
wy(0,8) =w(L,t) =0 ift >0,
w(x,0) =w,(x,0)=0 if0<x<L.

Now, we will employ the energy method to establish w = 0. Multiply both sides of the partial differential equation
Wer — Wiy =0

by w; to write
2
we(Wy — c“wyxx) = w0,

or equivalently
WiWi — 2wiwyx = 0.

In fact, we can rewrite the left-hand side as

d d
E(Wz)2 - Cza(wx)z =0,

N —

or equivalently

d (1 2 2 2y _
- (5((%) - 2wy )) -0,

Integrate over the domain 0 < x < L both sides to write
L L
d (1
/O = (E(wt)2 — c2(wx)2) dx = /0 0dx,

d (1t 2 _ 2 2
-3 A (W)= —c“(wy)“dx| =0.

or equivalently

This motivates us to define the energy

E(1) = %/OL(wt)2 - (wy)? dx.



Then we have
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meaning that E(¢) is constant in 7. But as we have
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we conclude E(t) = 0 for all # > 0. So we have w,(x,0) = 0 and wy (x,0) = 0. Now, w,(x,0) = 0 implies w(x,?) = C(x) and
wy(x,0) = 0 implies w(x, ) = D(¢). But the only possibility that w(x, ) = C(x) = D(¢) holds is w(x,t) = C, where C is a
constant. But w(x, 0) = 0 implies C = 0, and so w(x, ) = 0. Finally, w = O implies u; — u; = 0, or u; = u;, meaning that the
solution of the original problem is unique. O



