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Solutions to suggested homework problems from
An Introduction to Partial Differential Equations by Yehuda Pinchover and Jacob Rubinstein

Suggested problems: Exercises 5.1, 5.3(a), 5.4(a), 5.5, 5.6, 5.7, 5.8, 5.9, 5.10(a), 5.15

Note: Almost all steps for solving an ordinary differential equation (for example, any material from MATH 046 at UC Riverside)
are omitted from my solutions for purposes of brevity.

5.1. Using the method of separation of variables, find a formal solution of the problem

DC = 17DGG ,
D(0, C) = D(c, C) = 0,

D(G, 0) =
{

0 if 0 ≤ G ≤ c
2 ,

2 if c
2 < G ≤ c.

for all 0 < G < c and C > 0.

Solution. We employ the method of separation of variables for homogeneous partial differential equations. We want to find a
solution of the form

D(G, C) = - (G)) (C).
Our partial derivatives are

DC (G, C) = - (G))C (C),
DGG (G, C) = -GG (G)) (C).

So the partial differential equation
DC = 17DGG

becomes
- (G))C (C) = 17-GG (G)) (C),

which we can algebraically rearrange to write

-GG (G)
- (G) =

)C (C)
17) (C) = −_,

where _ is a constant in both G and C. This produces the system of two ordinary differential equations

32-

3G2 + _- = 0,

3)

3C
+ 17_) = 0.

This system is decoupled, which allows us to solve each one independently and obtain the general solutions

- (G) =


�14

√
−_G + �24

−
√
−_G if _ < 0,

�1G + �2 if _ = 0,
�1 cos(

√
_G) + �2 sin(

√
_G) if _ > 0,

) (C) = �4−17_C

where �1, �2, � are constants. Now, the boundary conditions

D(0, C) = D(c, C) = 0

are equivalent to

- (0)) (C) = 0,
- (c)) (C) = 0,

which imply either ) (C) = 0 or - (0) = - (c) = 0. If ) (C) = 0, then we would have

D(G, C) = - (G)) (C)
= - (G)0
= 0,

which would be a trivial solution. But we are really interested in finding a nontrivial solution. So we should assume

- (0) = - (c) = 0,

which will impose constraints on the constants �1, �2, depending on _. This motivates us to break this down into cases.



• Case 1: Suppose _ < 0. Then

- (G) = �14
√
−_G + �24

−
√
−_G ,

- (0) = 0

implies �2 = −�1, and so we have

- (G) = �14
√
−_G + �24

−
√
−_G

= �14
√
−_G − �14

−
√
−_G

= �1 (4
√
−_G − 4−

√
−_G).

Now, if _ < 0, then 4
√
−_c − 4−

√
−_c ≠ 0. This means

- (G) = �1 (4
√
−_G − 4−

√
−_G),

- (c) = 0

implies �1 = 0, and so we have

- (G) = �1 (4
√
−_G − 4−

√
−_G)

= 0(4
√
−_G − 4−

√
−_G)

= 0.

Therefore, we have

D(G, C) = - (G)) (C)
= 0) (C)
= 0,

which is a trivial solution.

• Case 2: Suppose _ = 0. Then

- (G) = �1G + �2,

- (0) = 0

implies �2 = 0, and so we have

- (G) = �1G + �2

= �1G + 0
= �1G.

Next,

- (G) = �1G,

- (c) = 0

implies �1 = 0, and so we have

- (G) = �1G

= 0 · G
= 0.

Therefore, we have

D(G, C) = - (G)) (C)
= 0) (C)
= 0,

which is a trivial solution.

• Case 3: Suppose _ > 0. Then

- (G) = �1 cos(
√
_G) + �2 sin(

√
_G),

- (0) = 0



implies �1 = 0, and so we have

- (G) = �1 cos(
√
_G) + �2 sin(

√
_G)

= 0 cos(
√
_G) + �2 sin(

√
_G)

= �2 sin(
√
_G).

Next,

- (G) = �2 sin(
√
_G),

- (c) = 0

implies sin(
√
_c) = 0, which in turn implies

√
_c = =c, or equivalently

_= = _ = =
2,

and so we have

-= (G) = �2,= sin(
√
_=G)

= �2,= sin(
√
=2G)

= �2,= sin(=G)

and

)= (C) = �=4−17_=C

= �=4
−17=2C

for = = 1, 2, 3, . . .. Therefore, if we write �= = �2,=�=, then we have

D= (G, C) = -= (G))= (C)

= (�2,= sin(=G)) (�=4−17=2C )

= �2,=�=4
−17=2C sin(=G)

= �=4
−17=2C sin(=G),

for = = 1, 2, 3, . . .. This is a nontrivial solution, as desired.

We recall that an addition of solutions is again a solution. So that means, as we have established already that each D= (G, C) is
a nontrivial solution for = = 1, 2, 3, . . ., it follows that

D(G, C) =
∞∑
==1

D= (G, C)

=

∞∑
==1

�=4
−17=2C sin(=G)

is also a solution of the problem. Finally, we need to explicitly find �= that satisfies the initial condition

5 (G) = D(G, 0) =
{

0 if 0 ≤ G ≤ c
2 ,

2 if c
2 < G ≤ c.

Indeed, we have the Fourier coefficient

�= =
2
c

∫ c

0
5 (G) sin(=G) 3G

=
2
c

(∫ c
2

0
0 sin(=G) 3G +

∫ c

c
2

2 sin(=G) 3G
)

=
2
c

(
0 +

∫ c

c
2

2 sin(=G) 3G
)

=
4
c

∫ c

c
2

sin(=G) 3G

=
4
c

1
=

(
cos

(=c
2

)
− cos(=c)

)
=

4
c

1
=

(
cos

(=c
2

)
− (−1)=

)
.



Therefore, our solution is

D(G, C) =
∞∑
==1

�=4
−17=2C sin(=G)

=

∞∑
==1

(
4
c

1
=

(
cos

(=c
2

)
− (−1)=

))
4−17=2C sin(=G)

=
4
c

∞∑
==1

1
=

(
cos

(=c
2

)
− (−1)=

)
4−17=2C sin(=G) ,

as desired. �

5.3. (a) Using the method of separation of variables, find a formal solution of a vibrating string with fixed ends:

DCC − 22DGG = 0 if 0 < G < !, C > 0,
D(0, C) = D(!, C) = 0 if C ≥ 0,

D(G, 0) = 5 (G) if 0 ≤ G ≤ !,
DC (G, 0) = 6(G) if 0 ≤ G ≤ !.

Solution. We want to find a solution of the form

D(G, C) = - (G)) (C).

Our partial derivatives are

DCC (G, C) = - (G))CC (C),
DGG (G, C) = -GG (G)) (C).

So the partial differential equation
DCC − 22DGG = 0

becomes
- (G))CC (C) − 22-GG (G)) (C) = 0,

which we can algebraically rearrange to write

-GG (G)
- (G) =

)CC (C)
22) (C)

= −_,

where _ is a constant in both G and C. This produces the system of two ordinary differential equations

32-

3G2 + _- = 0

32)

3C2
+ _22) = 0.

This system is decoupled, which allows us to solve each one independently and obtain the general solutions

- (G) =


�14

√
−_G + �24

−
√
−_G if _ < 0,

�1G + �2 if _ = 0,
�1 cos(

√
_G) + �2 sin(

√
_G) if _ > 0,

) (C) =


�14

√
−_22C + �24

−
√
−_22C if _ < 0,

�1C + �2 if _ = 0,
�1 cos(

√
_22C) + �2 sin(

√
_22C) if _ > 0,

where �1, �2, �1, �2 are constants. Now, the boundary conditions

D(0, C) = D(!, C) = 0

are equivalent to

- (0)) (C) = 0,
- (!)) (C) = 0,



which imply either ) (C) = 0 or - (0) = - (!) = 0. If ) (C) = 0, then we would have

D(G, C) = - (G)) (C)
= - (G)0
= 0,

which would be a trivial solution. But we are really interested in finding a nontrivial solution. So we should assume

- (0) = - (!) = 0,

which will impose constraints on the constants �1, �2, depending on _. This motivates us to break this down into cases.
• Case 1: Suppose _ < 0. Then

- (G) = �14
√
−_G + �24

−
√
−_G ,

- (0) = 0

implies �2 = −�1, and so we have

- (G) = �14
√
−_G + �24

−
√
−_G

= �14
√
−_G − �14

−
√
−_G

= �1 (4
√
−_G − 4−

√
−_G).

Now, if _ < 0, then 4
√
−_! − 4−

√
−_! ≠ 0. This means

- (G) = �1 (4
√
−_G − 4−

√
−_G),

- (!) = 0

implies �1 = 0, and so we have

- (G) = �1 (4
√
−_G − 4−

√
−_G)

= 0(4
√
−_G − 4−

√
−_G)

= 0.

Therefore, we have

D(G, C) = - (G)) (C)
= 0) (C)
= 0,

which is a trivial solution.
• Case 2: Suppose _ = 0. Then

- (G) = �1G + �2,

- (0) = 0

implies �2 = 0, and so we have

- (G) = �1G + �2

= �1G + 0
= �1G.

Next,

- (G) = �1G,

- (!) = 0

implies �1 = 0, and so we have

- (G) = �1G

= 0 · G
= 0.

Therefore, we have

D(G, C) = - (G)) (C)
= 0) (C)
= 0,

which is a trivial solution.



• Case 3: Suppose _ > 0. Then

- (G) = �1 cos(
√
_G) + �2 sin(

√
_G),

- (0) = 0

implies �1 = 0, and so we have

- (G) = �1 cos(
√
_G) + �2 sin(

√
_G)

= 0 cos(
√
_G) + �2 sin(

√
_G)

= �2 sin(
√
_G).

Next,

- (G) = �2 sin(
√
_G),

- (c) = 0

implies sin(
√
_!) = 0, which in turn implies

√
_! = =c, or equivalently

_= = _ =

(=c
!

)2
,

and so we have

-= (G) = �2,= sin(
√
_=G)

= �2,= sin
(=c
!
G

)
and

)= (C) = �1,= cos(
√
_=2

2C) + �2,= sin(
√
_=2

2C)

= �1,= cos

(√(=c
!

)2
22C

)
+ �2,= sin

(√(=c
!

)2
22C

)
= �1,= cos

( 2=c
!
C

)
+ �2,= sin

( 2=c
!
C

)
for = = 1, 2, 3, . . .. Therefore, if we write �= = �2,=�1,= and �= = �2,=�2,=, then we have

D= (G, C) = -= (G))= (C)

=

(
�2,= sin

(=c
!
G

)) (
�1,= cos

( 2=c
!
C

)
+ �2,= sin

( 2=c
!
C

))
= sin

(=c
!
G

) (
�2,=�1,= cos

( 2=c
!
C

)
+ �2,=�2,= sin

( 2=c
!
C

))
= sin

(=c
!
G

) (
�= cos

( 2=c
!
C

)
+ �= sin

( 2=c
!
C

))
for = = 1, 2, 3, . . .. This is a nontrivial solution, as desired.

We recall that an addition of solutions is again a solution. So that means, as we have established already that each
D= (G, C) is a nontrivial solution for = = 1, 2, 3, . . ., it follows that

D(G, C) =
∞∑
==1

D= (G, C)

=

∞∑
==1

sin
(=c
!
G

) (
�= cos

( 2=c
!
C

)
+ �= sin

( 2=c
!
C

))
,

where

�= =
2
!

∫ !

0
5 (G) cos

(=c
!
G

)
3G,

�= =
2
!

∫ !

0
6(G) sin

( 2=c
!
G

)
3G

for = = 1, 2, 3, . . . are the Fourier coefficients, is also a solution of the problem. �



5.4. (a) Find a formal solution of the problem

DCC − DGG = 0 if 0 < G < c, C > 0,
D(0, C) = D(c, C) = 0 if C ≥ 0,

D(G, 0) = sin3 (G) if 0 ≤ G ≤ c,
DC (G, 0) = sin(2G) if 0 ≤ G ≤ c.

Solution. This problem is exactly the same as that of Exercise 5.2 with

2 = 1,
! = c,

5 (G) = sin3 (G),
6(G) = sin(2G).

So we can take the D(G, C) from our solution to Exercise 5.2 and substitute 2 = 1 and ! = c into it to write

D(G, C) =
∞∑
==1

sin
(=c
!
G

) (
�= cos

( 2=c
!
C

)
+ �= sin

( 2=c
!
C

))
=

∞∑
==1

sin
(=c
c
G

) (
�= cos

(
(1)=c
c

C

)
+ �= sin

(
(1)=c
c

C

))
=

∞∑
==1

sin(=G) (�= cos(=C) + �= sin(=C)).

And its partial derivative with respect to C is

DC (G, C) =
m

mC

( ∞∑
==1

sin(=G) (�= cos(=C) + �= sin(=C))
)

=

∞∑
==1

sin(=G)
(
�=

m

mC
cos(=C) + �=

m

mC
sin(=C)

)
=

∞∑
==1

sin(=G) (�= (−= sin(=C)) + �= (= cos(=C)))

=

∞∑
==1

= sin(=G) (−�= sin(=C) + �= cos(=C)).

Now, we can use the given initial conditions to write

D(G, 0) = sin3 (G)

=
3
4

sin(G) − 1
4

sin(3G),

where in the last step above we have employed the triple-angle trigonometric identity sin(3\) = 3 sin(\) − 4 sin3 (\), and

DC (G, 0) = sin(2G).

Also, at C = 0, our solution becomes

D(G, 0) =
∞∑
==1

sin(=G) (�= cos(=(0)) + �= sin(=(0)))

=

∞∑
==1

sin(=G) (�= · 1 + �= · 0)

=

∞∑
==1

�= sin(=G)

= �1 sin(G) + �2 sin(2G) + �3 sin(3G) +
∞∑
==4

�= sin(=G),



and the partial derivative of our solution becomes

DC (G, 0) =
∞∑
==1

= sin(=G) (−�= sin(=(0)) + �= cos(=(0)))

=

∞∑
==1

= sin(=G) (−�= · 0 + �= · 1)

=

∞∑
==1

=�= sin(=G)

= 1�1 sin(G) + 2�2 sin(2G) +
∞∑
==3

=�= sin(=G).

Both our expressions of D(G, 0) yield

�1 sin(G) + �2 sin(2G) + �3 sin(3G) +
∞∑
==4

�= sin(=G) = 3
4

sin(G) − 1
4

sin(3G).

By the uniqueness of the Fourier series expansion, we can equate the terms of both sides of our above equation to obtain
the Fourier coefficients

�1 =
3
4
,

�3 = −
1
4
,

�= = 0

for = = 2 and for = = 4, 5, 6, . . .. Similarly, both our expressions of DC (G, 0) yield

1�1 sin(G) + 2�2 sin(2G) +
∞∑
==3

=�= sin(=G) = sin(2G).

By the uniqueness of the Fourier series expansion, we can equate the terms of both sides of our above equation to obtain
the Fourier coefficients

�2 =
1
2
,

�= = 0

for = = 1 and for = = 3, 4, 5, . . .. Therefore, our formal solution is

D(G, C) =
∞∑
==1

sin(=G) (�= cos(=C) + �= sin(=C))

=

∞∑
==1

�= sin(=G) cos(=C) +
∞∑
==1

�= sin(=G) sin(=C)

=

(
3
4

sin(1G) cos(1C) + 0 sin(2G) cos(2C) − 1
4

sin(3G) cos(3C) +
∞∑
==4

0 sin(=G) cos(=C)
)

+
(
0 sin(1G) sin(1C) + 1

2
sin(2G) sin(2C) +

∞∑
==3

0 sin(=C)
)

=
3
4

sin(G) cos(C) + 1
2

sin(2G) sin(2C) − 1
4

sin(3G) cos(3C) ,

as desired. �

5.5. (a) Using the method of separation of variables, find a formal solution of the problem

DC − :DGG = 0 if 0 < G < !, C > 0,
DG (0, C) = DG (!, C) = 0 if C ≥ 0,

D(G, 0) = 5 (G) if 0 ≤ G ≤ !.

Solution. We want to find a solution of the form

D(G, C) = - (G)) (C).



Our partial derivatives are

DC (G, C) = - (G))C (C),
DGG (G, C) = -GG (G)) (C).

So the partial differential equation
DC − :DGG = 0

becomes
- (G))C (C) − :-GG (G)) (C) = 0,

which we can algebraically rearrange to write

-GG (G)
- (G) =

)C (C)
:) (C) = −_,

where _ is a constant in both G and C. This produces the system of two ordinary differential equations

32-

3G2 + _- = 0

3)

3C
+ _:) = 0.

This system is decoupled, which allows us to solve each one independently and obtain the general solutions

- (G) =


�14

√
−_G + �24

−
√
−_G if _ < 0,

�1G + �2 if _ = 0,
�1 cos(

√
_G) + �2 sin(

√
_G) if _ > 0,

) (C) = �4−_:C ,

where �1, �2, � are constants. Now, the boundary conditions

DG (0, C) = DG (!, C) = 0

are equivalent to

3

3G
- (0)) (C) = 0,

3

3G
- (!)) (C) = 0,

which imply either ) (C) = 0 or 3
3G
- (0) = 3

3G
- (!) = 0. If ) (C) = 0, then we would have

D(G, C) = - (G)) (C)
= - (G)0
= 0,

which would be a trivial solution. But we are really interested in finding a nontrivial solution. So we should assume

3

3G
- (0) = 3

3G
- (!) = 0,

which will impose constraints on the constants �1, �2, depending on _. This motivates us to break this down into cases.

• Case 1: Suppose _ < 0. Then we have

- (G) = �14
√
−_G + �24

−
√
−_G ,

3

3G
- (0) = 0,

which implies

3

3G
- (G) =

√
−_(�14

√
−_G − �24

−
√
−_G),

3

3G
- (0) = 0,



which implies
√
−_(�1 − �2) = 0. As we assumed _ < 0 in this case, we have

√
−_ ≠ 0, and so we conclude

�1 − �2 = 0, or equivalently �1 = �2. So we have

- (G) = �14
√
−_G + �24

−
√
−_G

= �14
√
−_G + �14

−
√
−_G

= �1 (4
√
−_G + 4−

√
−_G).

We notice 4
√
−_! + 4−

√
−_! ≠ 0. This means

- (G) = �1 (4
√
−_G + 4−

√
−_G),

- (!) = 0

implies �1 = 0, and so we have

- (G) = �1 (4
√
−_G + 4−

√
−_G)

= 0(4
√
−_G + 4−

√
−_G)

= 0.

Therefore, we have

D(G, C) = - (G)) (C)
= 0) (C)
= 0,

which is a trivial solution.
• Case 2: Suppose _ = 0. Then we have

- (G) = �1G + �2,

3

3G
- (0) = 0,

which implies

3

3G
- (G) = �1,

3

3G
- (0) = 0,

which implies �1 = 0, and so we have

- (G) = �1G + �2

= 0G + �2

= �2,

which already satisfies 3
3G
- (!) = 0. Therefore, if we write �0

2 = �2�, then we have

D0 (G, C) = - (G)) (C)
= �2�4

−_: (0)

= �2�

=
�0

2
,

which is a nontrivial solution.
• Case 3: Suppose _ > 0. Then we have

- (G) = �1 cos(
√
_G) + �2 sin(

√
_G),

3

3G
- (0) = 0,

which implies

3

3G
- (G) =

√
_(−�1 sin(

√
_G) + �2 cos(

√
_G)),

3

3G
- (0) = 0,



which implies
√
_�2 = 0, which in turn implies either

√
_ = 0 or �2 = 0. But

√
_ = 0 implies _ = 0, which

contradicts our assumption _ > 0 for this case. So we must have �2 = 0, and so we have

- (G) = �1 cos(
√
_G) + �2 sin(

√
_G)

= �1 cos(
√
_G) + 0 sin(

√
_G)

= �1 cos(
√
_G)

and
3

3G
- (G) =

√
_(−�1 sin(

√
_G) + �2 cos(

√
_G))

=
√
_(−�1 sin(

√
_G) + 0 cos(

√
_G))

= −
√
_�1 sin(

√
_G),

Next,

3

3G
- (G) = −

√
_�1 sin(

√
_G),

3

3G
- (!) = 0

implies
√
_�1 sin(

√
_!) = 0. As we assumed _ > 0 in this case, we have

√
_ ≠ 0, and so we conclude

�1 sin(
√
_!) = 0. If �1 = 0, then we would have

- (G) = �1 cos(
√
_G) + �2 sin(

√
_G)

= 0 cos(
√
_G) + 0 sin(

√
_G)

= 0,

which would imply

D(G, C) = - (G)) (C)
= 0) (C)
= 0,

meaning that D(G, C) is a trivial solution. So we should assume sin(
√
_!) = 0, which implies

√
_! = =c, or

equivalently

_= = _ =

(=c
!

)2
,

and so we have

-= (G) = �1,= cos(
√
_=G)

= �1,= cos
(=c
!
G

)
and

)= (C) = �=4−_=:C

= �=4
−( =c

!
)2:C

for = = 1, 2, 3, . . .. Therefore, if we write �= = �1,=�=, then we have

D= (G, C) = -= (G))= (C)

=

(
�1,= cos

(=c
!
G

))
(�=4−(

=c
!
)2:C )

= �1,=�=4
−( =c

!
)2:C cos

(=c
!
G

)
= �=4

−( =c
!
)2:C cos

(=c
!
G

)
for = = 1, 2, 3, . . .. This is a nontrivial solution, as desired.

We recall that an addition of solutions is again a solution. So that means, as we have established already that each
D= (G, C) is a nontrivial solution for = = 1, 2, 3, . . ., it follows that

D(G, C) = D0 (G, C) +
∞∑
==1

D= (G, C)

=
�0

2
+
∞∑
==1

�=4
−( =c

!
)2:C cos

(=c
!
G

)
,



where

�0 =
2
!

∫ !

0
5 (G) 3G,

�= =
2
!

∫ !

0
5 (G) cos

(=c
!
G

)
3G

for = = 1, 2, 3, . . . are the Fourier coefficients, is also a solution of the problem. �

(b) Solve the problem

DC − 12DGG = 0 if 0 < G < c, C > 0,
DG (0, C) = DG (c, C) = 0 if C ≥ 0,

D(G, 0) = 1 + sin3 (G) if 0 ≤ G ≤ !.

Solution. This problem is exactly the same as that of part (a) of this exercise with

: = 12,
! = c,

5 (G) = 1 + sin3 (G).

So we can take the D(G, C) from our solution to part (a) of this exercise and substitute : = 12 and ! = c into it to write

D(G, C) = �0

2
+
∞∑
==1

�=4
−( =c

!
)2:C cos

(=c
!
G

)
=
�0

2
+
∞∑
==1

�=4
−( =c

c
)2 (12)C cos

(=c
c
G

)
=
�0

2
+
∞∑
==1

�=4
−12=2C cos(=G).

In order for D(G, C) to satisfy D(G, 0) = 1 + sin3 (G), we need to compute

�0 =
2
c

∫ c

0
5 (G) 3G,

�= =
2
c

∫ c

0
5 (G) cos(=G) 3G

with 5 (G) = 1 + sin3 (G). Employing the trigonometric identities

sin(3\) = 3 cos(\) − 4 sin3 (\),

sin(U) cos(V) = 1
2
(sin(U + V) + sin(U − V)),

we have ∫ c

0
1 + sin3 (G) 3G =

∫ c

0
1 + 3

4
sin(G) − 1

4
sin(3G) 3G

=

(
G − 3

4
cos(G) + 1

12
cos(3G)

)����c
0

=

(
c + 2

3

)
−

(
−2

3

)
= c + 4

3



and ∫ c

0
(1 + sin3 (G)) cos(=G) 3G =

∫ c

0

(
1 + 3

4
sin(G) − 1

4
sin(3G)

)
cos(=G) 3G

=

∫ c

0
cos(=G) 3G + 3

4

∫ c

0
sin(G) cos(=G) 3G − 1

4

∫ c

0
sin(3G) cos(=G) 3G

=

∫ c

0
cos(=G) 3G + 3

8

∫ c

0
sin(G + =G) + sin(G − =G) 3G

− 1
8

∫ c

0
sin(3G + =G) + sin(3G − =G) 3G

=

∫ c

0
cos(=G) 3G + 3

8

∫ c

0
sin((1 + =)G) + sin((1 − =)G) 3G

− 1
8

∫ c

0
sin((3 + =)G) + sin((3 − =)G) 3G

=

(
1
=

sin(=G)
)����c

0
+ 3

8

(
− 1

1 + = cos((1 + =)G) − 1
1 − = cos((1 − =)G)

)����c
0

− 1
8

(
− 1

3 + = cos((3 + =)G) − 1
3 − = cos((3 − =)G)

)����c
0

= 0 + 3
8

(
− (−1)1+= − 1

1 + = − (−1)1−= − 1
1 − =

)
− 1

8

(
− (−1)3+= − 1

3 + = − (−1)3−= − 1
3 − =

)
=

3
8

(
1 − (−1)1+=

1 + = + 1 − (−1)1−=
1 − =

)
− 1

8

(
1 − (−1)3+=

3 + = + 1 − (−1)3−=
3 − =

)
=

3
8

{
0 if = = 1, 3, 5, . . .

2
1+= +

2
1−= if = = 2, 4, 6, . . .

− 1
8

{
0 if = = 1, 3, 5, . . .

2
3+= +

2
3−= if = = 2, 4, 6, . . .

=

{
0 if = = 1, 3, 5, . . .
3
4 (

1
1+= +

1
1−= ) −

1
4 (

1
3+= +

1
3−= ) if = = 2, 4, 6, . . .

=

{
0 if = = 1, 3, 5, . . .

12
=4−10=2+9 if = = 2, 4, 6, . . .

.

So we have

�0 =
2
c

∫ c

0
5 (G) 3G

=
2
c

∫ c

0
1 + sin3 (G) 3G

=
2
c

(
c + 4

3

)
= 2 + 4

3c

and

�= =
2
c

∫ c

0
5 (G) cos(=G) 3G

=
2
c

∫ c

0
(1 + sin3 (G)) cos(=G) 3G

=
2
c

{
0 if = = 1, 3, 5, . . .

12
=4−10=2+9 if = = 2, 4, 6, . . .

=

{
0 if = = 1, 3, 5, . . .
24
c

1
=4−10=2+9 if = = 2, 4, 6, . . .

.



Therefore, the formal solution is

D(G, C) = �0

2
+
∞∑
==1

�=4
−=2:C cos

(=c
!
G

)
=

1
2

(
2 + 4

3c

)
+

∑
==2,4,6,...

24
c

1
=4 − 10=2 + 9

4−=
2:C cos

(=c
!
G

)
= 1 + 2

3c
+ 24
c

∞∑
==1

1
(2=)4 − 10(2=)2 + 9

4−(2=)
2:C cos

(
(2=)c
!

G

)
= 1 + 2

3c
+ 24
c

∞∑
==1

1
16=4 − 40=2 + 9

4−4=2:C cos
(

2=c
!
G

)
,

as desired. �

(c) Find lim
C→∞

D(G, C) for all 0 < G < c, and explain the physical interpretation of your result.

Solution. For all 0 < G < c, we compute

lim
C→∞

D(G, C) = lim
C→∞

(
�0

2
+
∞∑
==1

�=4
−12=2C cos(=G)

)
= lim
C→∞

�0

2
+
∞∑
==1

�= lim
C→∞

4−12=2C cos(=G)

=
�0

2
+
∞∑
==1

�= · 0 · cos(=G)

=
�0

2
.

Physical interpretation (copied from the textbook solution manual): We have shown that the quantity
∫ !

0 D(G) 3G is
conserved in a one-dimensional insulated rod. The quantity :DG (G, C) measures the heat flux at a point G and time C. The
homogeneous Neumann condition amounts to stating that there is zero flux at the rod’s ends. Since there are no heat
sources either (the equation is homogeneous), the temperature’s gradient decays; therefore the temperature converges to
a constant, such that the total stored energy is the same as the initial energy. �

5.6. (a) Using the method of separation of variables, find a formal solution of the problem

DC − :DGG = 0 if 0 < G < !, C > 0,
D(0, C) = D(2c, C), DG (0, C) = DG (2c, C) if C ≥ 0,

D(G, 0) = 5 (G) if 0 ≤ G ≤ !.

Solution. We want to find a solution of the form

D(G, C) = - (G)) (C).

Our partial derivatives are

DC (G, C) = - (G))C (C),
DGG (G, C) = -GG (G)) (C).

So the partial differential equation
DC − :DGG = 0

becomes
- (G))C (C) − :-GG (G)) (C) = 0,

which we can algebraically rearrange to write

-GG (G)
- (G) =

)C (C)
:) (C) = −_,

where _ is a constant in both G and C. This produces the system of two ordinary differential equations

32-

3G2 + _- = 0

3)

3C
+ _:) = 0.



This system is decoupled, which allows us to solve each one independently and obtain the general solutions

- (G) =


�14

√
−_G + �24

−
√
−_G if _ < 0,

�1G + �2 if _ = 0,
�1 cos(

√
_G) + �2 sin(

√
_G) if _ > 0,

) (C) = �4−_:C

where �1, �2, � are constants. Now, the boundary conditions

D(0, C) = D(2c, C),
DG (0, C) = DG (2c, C)

are equivalent to

- (0)) (C) = - (2c)) (C),
3

3G
- (0)) (C) = 3

3G
- (2c)) (C),

which imply either ) (C) = 0 or - (0) = - (2c) and 3
3G
- (0) = 3

3G
- (2c). If ) (C) = 0, then we would have

D(G, C) = - (G)) (C)
= - (G)0
= 0,

which would be a trivial solution. But we are really interested in finding a nontrivial solution. So we should assume

- (0) = - (2c),
3

3G
- (0) = 3

3G
- (2c),

which will impose constraints on the constants �1, �2, depending on _. This motivates us to break this down into cases.

• Case 1: Suppose _ < 0. Then we have

- (G) = �14
√
−_G + �24

−
√
−_G ,

- (0) = - (2c),

which implies �1 + �2 = �14
2c
√
−_ + �24

−2c
√
−_. We also have

3

3G
- (G) =

√
−_(�14

√
−_G − �24

−
√
−_G),

3

3G
- (0) = 3

3G
- (2c),

which implies �1 −�2 = �14
2c
√
−_ −�24

−2c
√
−_. Now we will solve for the constants �1, �2. We have formulated

the linear system

�1 + �2 = �14
2c
√
−_ + �24

−2c
√
−_,

�1 − �2 = �14
2c
√
−_ − �24

−2c
√
−_,

and we can algebraically rearrange each equation in the system to write

�1 (1 − 42c
√
−_) = −�2 (1 − 4−2c

√
−_),

�1 (1 − 42c
√
−_) = �2 (1 − 4−2c

√
−_).

We can combine the two equations in the system to deduce

�1 (1 − 42c
√
−_) = −�2 (1 − 4−2c

√
−_)

= −�1 (1 − 4−2c
√
−_).

Since we are currently in the case _ < 0, we have 1 − 42c
√
−_ ≠ 0, and so we can divide 1 − 42c

√
−_ from both

sides of our previous equation to conclude �1 = −�1, or �1 = 0. Likewise, we can combine the two equations in
the system to deduce

�2 (1 − 4−2c
√
−_) = �1 (1 − 42c

√
−_)

= −�2 (1 − 4−2c
√
−_).



Since we are currently in the case _ < 0, we have 1 − 4−2c
√
−_ ≠ 0, and so we can divide 1 − 4−2c

√
−_ from both

sides of our previous equation to conclude �2 = −�2, or �2 = 0. So we have

- (G) = �14
√
−_G + �24

−
√
−_G

= 04
√
−_G + 04−

√
−_G

= 0.

Therefore, we have

D(G, C) = - (G)) (C)
= 0) (C)
= 0,

which is a trivial solution.
• Case 2: Suppose _ = 0. Then we have

- (G) = �1G + �2,

- (0) = - (2c),

which implies �1 = 0, and so we have

- (G) = �1G + �2

= �1 · 0 + �2

= �2.

The derivative is

3

3G
- (G) = 3

3G
(�2)

= 0,

which clearly satisfies 3
3G
- (0) = 0 = 3

3G
- (2c). Therefore, if we write �0

2 = �2�, then we have

D0 (G, C) = - (G)) (C)
= �2�4

−_: (0)

= �2�

=
�0

2
,

which is a nontrivial solution.
• Case 3: Suppose _ > 0. Then we have

- (G) = �1 cos(
√
_G) + �2 sin(

√
_G),

- (0) = - (2c),

which implies
�1 = �1 cos(2c

√
_) + �2 sin(2c

√
_). (1)

We also have

3

3G
- (G) =

√
_(−�1 sin(

√
_G) + �2 cos(

√
_G)),

3

3G
- (0) = 3

3G
- (2c),

which implies
�2 = −�1 sin(2c

√
_) + �2 cos(2c

√
_). (2)

Now, we claim that, if either sin(2c
√
_) ≠ 0 or cos(2c

√
_) ≠ 1, then we have �1 = 0 and �2 = 0.

– Subcase 1: Suppose sin(2c
√
_) ≠ 0. Multiply both sides of (1) by − cos(2c

√
_) and both sides of (2) by

sin(2c
√
_) to obtain

−�1 cos(2c
√
_) = −�1 cos2 (2c

√
_) − �2 sin(2c

√
_) cos(2c

√
_),

�2 sin(2c
√
_) = −�1 sin2 (2c

√
_) + �2 cos(2c

√
_) sin(2c

√
_),



from which we can add up both sides of the two equations to get

−�1 cos(2c
√
_) + �2 sin(2c

√
_) = −�1. (3)

We equate (1) and (3) to get

���
���

�
�1 cos(2c

√
_) − �2 sin(2c

√
_) =���

���
�

�1 cos(2c
√
_) + �2 sin(2c

√
_),

which simplifies to
−�2��

���sin(2c
√
_) = �2��

���sin(2c
√
_).

Since we assumed sin(2c
√
_) ≠ 0, we can divide both sides by sin(2c

√
_) to get −�2 = �2, which means

�2 = 0. Substitute �2 = 0 into (2) to obtain

0 = −�1 sin(2c
√
_),

which implies �1 = 0 because, once again, we assumed sin(2c
√
_) ≠ 0.

– Subcase 2: Suppose cos(2c
√
_) ≠ 1. Then we can rewrite (1) and (2) as

�1 (1 − cos(2c
√
_)) = �2 sin(2c

√
_), (4)

�2 (1 − cos(2c
√
_)) = −�1 sin(2c

√
_), . (5)

Multiply both sides of (4) by �1 and both sides of (5) by �2 to obtain

�2
1 (1 − cos(2c

√
_)) = �1�2 sin(2c

√
_),

�2
2 (1 − cos(2c

√
_)) = −�1�2 sin(2c

√
_),

from which we can add up both sides of the two equations to get

(�2
1 + �

2
2 ) (1 − cos(2c

√
_)) = 0.

Since we assumed cos(2c
√
_) ≠ 1, we must conclude �2

1 + �
2
2 = 0, which forces �1 = 0 and �2 = 0.

So we have proved our claim. Now that we have established our claim, we would have

- (G) = �1 cos(
√
_G) + �2 sin(

√
_G)

= 0 cos(
√
_G) + 0 sin(

√
_G)

= 0,

which would imply that D(G, C) = - (G)) (C) is a trivial solution. Therefore, to find a nontrivial solution for this case,
we should assume both

sin(2c
√
_) = 0,

1 − cos(2c
√
_) = 0,

which imply 2c
√
_ = 2=c, or equivalently

_= = _ = =
2,

and so we have

-= (G) = �1,= cos(
√
_=G) + �2,= sin(

√
_=G)

= �1,= cos(
√
=2G) + �2,= sin(

√
=2G)

= �1,= cos(=G) + �2,= sin(=G)

and

)= (C) = �=4−_=:C

= �=4
−=2:C

for = = 1, 2, 3, . . .. Therefore, if we write �= = �1,=�= and �= = �2,=�=, then we have

D= (G, C) = -= (G))= (C)

= (�1,= cos(=G) + �2,= sin(=G)) (�=4−(
=c
!
)2:C )

= 4−=
2:C (�1,=�= cos(=G) + �2,=�= sin(=G))

= 4−=
2:C (�= cos(=G) + �= sin(=G))

for = = 1, 2, 3, . . .. This is a nontrivial solution, as desired.



We recall that an addition of solutions is again a solution. So that means, as we have established already that each
D= (G, C) is a nontrivial solution for = = 1, 2, 3, . . ., it follows that

D(G, C) = D0 (G, C) +
∞∑
==1

D= (G, C)

=
�0

2
+
∞∑
==1

4−=
2:C (�= cos(=G) + �= sin(=G)) ,

where

�0 =
1
c

∫ 2c

0
5 (G) 3G,

�= =
1
c

∫ 2c

0
5 (G) cos(=G) 3G,

�= =
1
c

∫ 2c

0
5 (G) sin(=G) 3G

for = = 1, 2, 3, . . . are the Fourier coefficients, is also a solution of the problem. �

(b) Find lim
C→∞

D(G, C) for all 0 < G < 2c, and explain the physical interpretation of your result.

Solution. For all 0 < G < c, we compute

lim
C→∞

D(G, C) = lim
C→∞

(
�0

2
+
∞∑
==1

4−=
2:C (�= cos(=G) + �= sin(=G))

)
= lim
C→∞

�0

2
+
∞∑
==1

lim
C→∞

4−=
2:C (�= cos(=G) + �= sin(=G))

=
�0

2
+
∞∑
==1

lim
C→∞

0(�= cos(=G) + �= sin(=G))

=
�0

2
.

Physical interpretation: We have shown that the quantity
∫ !

0 D(G) 3G is conserved in a one-dimensional insulated rod.
The quantity :DG (G, C) measures the heat flux at a point G and time C. The periodic Dirichlet condition amounts to stating
that the amount of thermal energy is the same at the rod’s ends, and the periodic Neumann condition amounts to stating
that the flux is the same at the rod’s ends. Since there are no heat sources either (the equation is homogeneous), the
temperature’s gradient decays; therefore the temperature converges to a constant, such that the total stored energy is the
same as the initial energy. �

5.7. Solve the problem

DC − :DGG = � cos(UC) if 0 < G < 1, C > 0,
DG (0, C) = DG (1, C) = 0 if C ≥ 0,

D(G, 0) = 1 + cos2 (cG) if 0 ≤ G ≤ 1.

Solution. First, we need to find all the eigenvalues and eigenfunctions of the homogeneous problem

DC − :DGG = 0 if 0 < G < 1, C > 0,
DG (0, C) = DG (1, C) = 0 if C ≥ 0,

D(G, 0) = 1 + cos2 (cG) if 0 ≤ G ≤ 1.

To do this, we can proceed as we did in the method of separation of variables by writing

D(G, C) = - (G)) (C).

Our partial derivatives are

DC (G, C) = - (G))C (C),
DGG (G, C) = -GG (G)) (C).

So the partial differential equation
DC − 4DGG = 0



becomes
- (G))C (C) − :-GG (G)) (C) − ℎ- (G)) (C) = 0,

which we can algebraically rearrange to write
-GG (G)
- (G) =

)C (C)
:) (C) = −_,

where _ is a constant in both G and C. This produces the system of two ordinary differential equations

32-

3G2 + _- = 0

3)

3C
+ :_) = 0.

This system is decoupled, which allows us to solve each one independently and obtain the general solutions

- (G) =


�14

√
−_G + �24

−
√
−_G if _ < 0,

�1G + �2 if _ = 0,
�1 cos(

√
_G) + �2 sin(

√
_G) if _ > 0,

) (C) = �4−:_C

where �1, �2, � are constants. Now, the boundary conditions

DG (0, C) = DG (1, C) = 0

are equivalent to

3

3G
- (0)) (C) = 0,

3

3G
- (1)) (C) = 0,

which imply either ) (C) = 0 or 3
3G
- (0) = 3

3G
- (1) = 0. If ) (C) = 0, then we would have

D(G, C) = - (G)) (C)
= - (G)0
= 0,

which would be a trivial solution. So we should assume

3

3G
- (0) = 3

3G
- (1) = 0,

which will impose constraints on the constants �1, �2, depending on _. This motivates us to break this down into cases.

• Case 1: Suppose _ < 0. Then we have

- (G) = �14
√
−_G + �24

−
√
−_G ,

- (0) = 0,

which implies �1 + �2 = 0, or �2 = −�1. So we have

- (G) = �14
√
−_G + �24

−
√
−_G

= �14
√
−_G − �14

−
√
−_G

= �1 (4
√
−_G − 4−

√
−_G).

We notice 4
√
−_! − 4−

√
−_! ≠ 0 unless _ = 0. This means

- (G) = �1 (4
√
−_G + 4−

√
−_G),

- (!) = 0

implies �1 = 0, and so we have

- (G) = �1 (4
√
−_G − 4−

√
−_G)

= 0(4
√
−_G + 4−

√
−_G)

= 0,

which would mean D is a trivial solution. Therefore, the problem has no negative eigenvalues.



• Case 2: Suppose _ = 0. Then we have

- (G) = �1G + �2,

3

3G
- (0) = 0,

which implies

3

3G
- (G) = �1,

3

3G
- (0) = 0,

which implies �1 = 0, and so we have

- (G) = �1G + �2

= 0G + �2

= �2,

which already satisfies 3
3G
- (1) = 0. Therefore, if we write �0

2 = �2�, then we have

D0 (G, C) = -0 (G))0 (C)
= �2�4

−_·0

= �2�

=
�0

2
,

which is a nontrivial solution.
• Case 3: Suppose _ > 0. Then we have

- (G) = �1 cos(
√
_G) + �2 sin(

√
_G),

3

3G
- (0) = 0,

which implies

3

3G
- (G) =

√
_(−�1 sin(

√
_G) + �2 cos(

√
_G)),

3

3G
- (0) = 0,

which implies �2 = 0, and so we have

- (G) = �1 cos(
√
_G) + �2 sin(

√
_G)

= �1 cos(
√
_G) + 0 sin(

√
_G)

= �1 cos(
√
_G).

Next, we have

- (G) = �1 cos(
√
_G),

3

3G
- (1) = 0

which implies

3

3G
- (G) = −

√
_�1 sin(

√
_G),

3

3G
- (1) = 0

implies either �1 = 0 or sin(
√
_) = 0. But �2 = 0 (with �1 = 0) implies - (G) = 0 and that D(G, C) would be a trivial

solution. So we should assume
√
_ = =c, or equivalently the eigenvalues

_= = _ = (=c)2,

with the corresponding eigenfunctions

-= (G) = �1,= cos(
√
_=G)

= �1,= cos(
√
(=c)2G)

= �1,= cos(=cG),

as desired.



From the three cases above, we see that the problem has the zero eigenvalue _ = 0 and its corresponding eigenfunction
-0 (G) = �2, as well as positive eigenvalues _= = (=c)2 and their corresponding eigenfunctions -= (G) = �1,= cos(=cG)
(or just -= (G) = cos(=cG); these two eigenfunctions are the same up to a scaling factor). We will now use the method of
eigenfunction expansion. Based on our eignefunction -= (G) = cos(=cG), we can represent, for any fixed C, our solution as

D(G, C) = 1
2
)0 (C) +

∞∑
==1

)= (C) cos(=cG),

where )= (C) for = = 1, 2, 3, . . . are the time-dependent Fourier coefficients. Our derivatives are

DC (G, C) =
m

mC

(
1
2
)0 (C) +

∞∑
==1

)= (C) cos(=cG)
)

=
1
2
) ′0 (C) +

∞∑
==1

) ′= (C) cos(=cG)

and

DGG (G, C) =
m2

mG2

(
1
2
) ′0 (C) +

∞∑
==1

) ′= (C) cos(=cG)
)

=
m2

mG2

(
1
2
) ′0 (C)

)
+
∞∑
==1

)= (C)
m2

mG2 cos(=cG)

= 0 +
∞∑
==1

−(=c)2)= (C) cos(=cG)

=

∞∑
==1

−(=c)2)= (C) cos(=cG).

So the nonhomogeneous partial differential equation

DC − 4DGG = � cos(UC)

becomes (
1
2
) ′0 (C) +

∞∑
==1

) ′= (C) cos(=cG)
)
− :

( ∞∑
==1

−(=c)2)= (C) cos(=cG)
)
= � cos(UC),

or equivalently
1
2
) ′0 (C) +

∞∑
==1

() ′= (C) + : (=c)2)= (C)) cos(=cG) = � cos(UC) + 0 cos(=cG).

By the uniqueness of the Fourier series expansion, we can equate the terms of both sides of our above equation to obtain the
ordinary differential equations

1
2
) ′0 (C) − � cos(UC) = 0,

) ′= (C) + : (=c)2)= (C) = 0,

whose general solutions are, respectively,

)0 (C) =
{

2�
U

sin(UC) + �0 if U ≠ 0
2�C + �0 if U = 0,

)= (C) = �=4−: (=c)
2C ,

where �0 and �= for = = 1, 2, 3, . . . are the Fourier coefficients. Therefore, our solution is

D(G, C) = 1
2
)0 (C) +

∞∑
==1

)= (C) cos(=cG)

=
1
2

{
2�
U

sin(UC) + �0 if U ≠ 0
2�C + �0 if U = 0

+
∞∑
==1

�=4
−: (=c)2C cos(=cG)

=

{
�
U

sin(UC) + �0
2 +

∑∞
==1 �=4

−: (=c)2C cos(=cG) if U ≠ 0
�C + �0

2 +
∑∞
==1 �=4

−: (=c)2C cos(=cG) if U = 0
.



Now, we can use the given initial conditions to write

D(G, 0) = 1 + cos2 (cG)

= 1 + 1
2
(1 + cos(2cG))

=
3
2
+ 1

2
cos(2cG),

where in the last step above we have employed the double-angle trigonometric identity cos2 \ = 1
2 (1+cos(2\)). Also, at C = 0,

our solution becomes

D(G, 0) = �0

2
+
∞∑
==1

�= cos(=cG)

=
�0

2
+ �1 cos(cG) + �2 cos(2cG) +

∞∑
==3

�= cos(=cG).

Both our expressions of D(G, 0) yield

�0

2
+ �1 cos(cG) + �2 cos(2cG) +

∞∑
==3

�= cos(=cG) = 3
2
+ 1

2
cos(2cG).

By the uniqueness of the Fourier series expansion, we can equate the terms of both sides of our above equation to obtain the
Fourier coefficients

�0 = 3,

�2 =
1
2
,

�= = 0

for = = 1 and for = = 3, 4, 5, . . .. Therefore, our formal solution is

D(G, C) =
{
�
U

sin(UC) + �0
2 +

∑∞
==1 �=4

−: (=c)2C cos(=cG) if U ≠ 0
�C + �0

2 +
∑∞
==1 �=4

−: (=c)2C cos(=cG) if U = 0

=

{
�
U

sin(UC) + �0
2 + �14

−: (1c)2C cos(1cG) + �24
−: (2c)2C cos(2cG) +∑∞

==3 �=4
−: (=c)2C cos(=cG) if U ≠ 0

�C + �0
2 + �14

−: (1c)2C cos(1cG) + �24
−: (2c)2C cos(2cG) +∑∞

==3 �=4
−: (=c)2C cos(=cG) if U = 0

=

{
�
U

sin(UC) + 3
2 + 04−: (1c)

2C cos(1cG) + 1
2 4
−: (2c)2C cos(2cG) +∑∞

==3 04−: (=c)
2C cos(=cG) if U ≠ 0

�C + 3
2 + 04−: (1c)

2C cos(1cG) + 1
2 4
−: (2c)2C cos(2cG) +∑∞

==3 04−: (=c)
2C cos(=cG) if U = 0

=

{
�
U

sin(UC) + 1
2 4
−4: c2C cos(2cG) + 3

2 if U ≠ 0
�C + 1

2 4
−4: c2C cos(2cG) + 3

2 if U = 0
,

as desired. �

5.8. Consider the problem

DC − DGG = 4−C sin(3G) if 0 < G < c, C > 0,
D(0, C) = D(c, C) = 0 if C ≥ 0,

D(G, 0) = 5 (G) if 0 ≤ G ≤ c.

(a) Solve the problem using the method of eigenfunction expansion.

Solution. First, we need to find all the eigenvalues and eigenfunctions of the homogeneous problem

DC − DGG = 0 if 0 < G < !, C > 0,
D(0, C) = D(c, C) = 0 if C ≥ 0,

D(G, 0) = 5 (G) if 0 ≤ G ≤ !.

To do this, we can proceed as we did in the method of separation of variables by writing

D(G, C) = - (G)) (C).

Our partial derivatives are

DC (G, C) = - (G))C (C),
DGG (G, C) = -GG (G)) (C).



So the partial differential equation
DC − DGG = 0

becomes
- (G))C (C) − -GG (G)) (C) = 0,

which we can algebraically rearrange to write

-GG (G)
- (G) =

)C (C)
) (C) = −_,

where _ is a constant in both G and C. This produces the system of two ordinary differential equations

32-

3G2 + _- = 0

3)

3C
+ _) = 0.

This system is decoupled, which allows us to solve each one independently and obtain the general solutions

- (G) =


�14

√
−_G + �24

−
√
−_G if _ < 0,

�1G + �2 if _ = 0,
�1 cos(

√
_G) + �2 sin(

√
_G) if _ > 0,

) (C) = �4−_C

where �1, �2, � are constants. Now, the boundary conditions

D(0, C) = D(c, C) = 0

are equivalent to

- (0)) (C) = 0,
- (c)) (C) = 0,

which imply either ) (C) = 0 or - (0) = - (c) = 0. If ) (C) = 0, then we would have

D(G, C) = - (G)) (C)
= - (G)0
= 0,

which would be a trivial solution. So we should assume

- (0) = - (c) = 0,

which will impose constraints on the constants �1, �2, depending on _. This motivates us to break this down into cases.

• Case 1: Suppose _ < 0. Then we have

- (G) = �14
√
−_G + �24

−
√
−_G ,

- (0) = 0,

which implies �1 + �2 = 0, or �2 = −�1. So we have

- (G) = �14
√
−_G + �24

−
√
−_G

= �14
√
−_G − �14

−
√
−_G

= �1 (4
√
−_G − 4−

√
−_G).

We notice 4
√
−_! − 4−

√
−_! ≠ 0 unless _ = 0. This means

- (G) = �1 (4
√
−_G + 4−

√
−_G),

- (!) = 0

implies �1 = 0, and so we have

- (G) = �1 (4
√
−_G − 4−

√
−_G)

= 0(4
√
−_G + 4−

√
−_G)

= 0,

which would mean D is a trivial solution. Therefore, the problem has no negative eigenvalues.



• Case 2: Suppose _ = 0. Then we have

- (G) = �1G + �2,

- (0) = 0,

which implies �2 = 0, and so we have

- (G) = �1G + �2

= �1G + 0
= �1G.

And we have

- (G) = �1G,

- (c) = 0,

which implies �1 = 0. So we have

- (G) = �1G

= 0G
= 0,

which would mean D is a trivial solution. Therefore, 0 is not an eigenvalue of the problem.
• Case 3: Suppose _ > 0. Then we have

- (G) = �1 cos(
√
_G) + �2 sin(

√
_G),

- (0) = 0,

which implies �1 = 0, and so we have

- (G) = �1 cos(
√
_G) + �2 sin(

√
_G)

= 0 cos(
√
_G) + �2 sin(

√
_G)

= �2 sin(
√
_G).

Next,

- (G) = �2 sin(
√
_G),

- (c) = 0

implies either �2 = 0 or sin(
√
_c) = 0. But �2 = 0 (with �1 = 0) implies - (G) = 0 and that D(G, C) would be a

trivial solution. So we should assume
√
_c = =c, or equivalently the eigenvalues

_= = _ = =
2,

with the corresponding eigenfunctions

-= (G) = �2,= sin(
√
_=G)

= �2,= sin(
√
=2G)

= �2,= sin(=G),

as desired.

From the three cases above, we see that the problem only has positive eigenvalues _= = =2 and their corresponding
eigenfunctions -= (G) = �2,= sin(=G). We will now use the method of eigenfunction expansion. We can represent, for
any fixed C, our solution as

D(G, C) =
∞∑
==1

)= (C) sin(=G),

where )= (C) for = = 1, 2, 3, . . . are the time-dependent Fourier coefficients. (Note that, unlike Section 5.4 in the textbook,
we do not have the term 1

2)0 (C) in our representation of D(G, C) because 0 is not an eigenvalue of this problem.) Our
derivatives are

DC (G, C) =
m

mC

( ∞∑
==1

)= (C) sin(=G)
)

=

∞∑
==1

) ′= (C) sin(=G)



and

DGG (G, C) =
m2

mG2

( ∞∑
==1

)= (C) sin(=G)
)

=

∞∑
==1

)= (C)
m2

mG2 (sin(=G))

=

∞∑
==1

−=2)= (C) sin(=G).

So the nonhomogeneous partial differential equation

DC − DGG = 4−C sin(3G)

becomes
∞∑
==1

) ′= (C) sin(=G) −
∞∑
==1

−=2)= (C) sin(=G) = 4−C sin(3G),

or equivalently
∞∑
==1

() ′= (C) + =2)= (C)) sin(=G) = 4−C sin(3G).

By the uniqueness of the Fourier series expansion, we can equate the terms of both sides of our above equation to obtain
the ordinary differential equations

) ′= (C) + =2)= (C) =
{
4−C if = = 3,
0 if = = 1, 2 and = = 4, 5, 6, . . . ,

whose general solutions are

)= (C) =
{
�34

−32C + 1
8 4
−C if = = 3,

�=4
−=2C if = = 1, 2 and = = 4, 5, 6, . . . .,

where

�= =
2
c

∫ c

0
5 (G) sin(=G) 3G

for = = 1, 2, 3, . . . are the Fourier coefficients. Therefore, our solution is

D(G, C) =
∞∑
==1

)= (C) sin(=G)

= )1 (C) sin(1G) + )2 (C) sin(2G) + )3 (C) sin(3G) +
∞∑
==4

)= (C) sin(=G)

= �14
−12C sin(1G) + �24

−22C sin(2G) +
(
�34

−32C + 1
8
4−C

)
sin(3G) +

∞∑
==4

�=4
−=2C sin(=G)

= �14
−12C sin(1G) + �24

−22C sin(2G) + �34
−32C sin(3G) +

∞∑
==4

�=4
−=2C sin(=G) + 1

8
4−C sin(3G)

=

∞∑
==1

�=4
−=2C sin(=G) + 1

8
4−C sin(3G) ,

as desired. �

(b) Find D(G, C) for 5 (G) = G sin(G).

Solution. In order for

D(G, C) =
∞∑
==1

�=4
−=2C sin(=G) + 1

8
4−C sin(3G)

to satisfy D(G, 0) = G sin(G), we need to compute

�= =
2
c

∫ c

0
5 (G) sin(=G) 3G



with 5 (G) = G sin(G). Employing the trigonometric identity sin(U) sin(V) = 1
2 (cos(U − V) − cos(U + V)) with U = G and

V = =G and the method of integration by parts, we have for = = 1, 2, 3, . . .∫ c

0
G sin(G) sin(=G) 3G =

∫ c

0
G

(
1
2
(cos(G − =G) − cos(G + =G)

)
3G

=

∫ c

0
G cos((1 − =)G) 3G − 1

2

∫ c

0
G cos((1 + =)G) 3G

=
1
2

(
1

1 − =G sin((1 − =)G) + 1
(1 − =)2

cos((1 − =)G)
)����c

0

− 1
2

(
1

1 + =G sin((1 + =)G) + 1
(1 + =)2

cos((1 + =)G)
)����c

0

=
cos((1 − =)c) − 1

2(1 − =)2
− cos((1 + =)c) − 1

2(1 + =)2

=
(−1)1−= − 1
2(1 − =)2

− (−1)1+= − 1
2(1 + =)2

=

{
0 if = = 1, 3, 5, . . .

1
(1+=)2 −

1
(1−=)2 if = = 2, 4, 6, . . ..

To compute �= for all = = 1, 2, 3, . . ., first note∫ c

0
sin(=G) sin(<G) 3G =

{
c
2 if = = <,
0 if = ≠ <,

where < = 1, 2, 3, . . . is a parameter. If = = 1, 2 or = = 4, 5, 6, . . ., then we have∫ c

0
G sin(G) sin(=G) 3G =

∫ c

0
D(G, 0) sin(=G) 3G

=

∫ c

0

( ∞∑
<=1

�< sin(<G) + 1
8

sin(3G)
)

sin(=G) 3G

=

∞∑
<=1

�<

∫ c

0
sin(<G) sin(=G) 3G + 1

8

∫ c

0
sin(3G) sin(=G) 3G

= �=

∫ c

0
sin2 (=G) 3G + 1

8

∫ c

0
sin(3G) sin(=G) 3G

= �= ·
c

2
+ 1

8
· 0

=
c

2
�=,

which implies

�= =
2
c

∫ c

0
G sin(G) sin(=G) 3G

=

{
0 if = = 1 or if = = 5, 7, 9, . . .
2
c
( 1
(1+=)2 −

1
(1−=)2 ) if = = 2, 4, 6, . . .

.

If = = 3, then we have∫ c

0
G sin(G) sin(3G) 3G =

∫ c

0
D(G, 0) sin(3G) 3G

=

∫ c

0

( ∞∑
<=1

�< sin(<G) + 1
8

sin(3G)
)

sin(3G) 3G

=

∞∑
<=1

�<

∫ c

0
sin(<G) sin(3G) + 1

8

∫ c

0
sin2 (3G) 3G

= �3

∫ c

0
sin2 (3G) 3G + 1

8

∫ c

0
sin2 (3G) 3G

=

(
�3 +

1
8

) ∫ c

0
sin2 (3G) 3G

=

(
�3 +

1
8

)
c

2
,



which implies

�3 =
2
c

∫ c

0
G sin(G) sin(3G) 3G − 1

8

=
2
c
· 0 − 1

8

= −1
8
.

Therefore, the formal solution is

D(G, C) =
∞∑
==1

�=4
−=2C sin(=G) + 1

8
4−C sin(3G)

= �14
−12C sin(1G) + �24

−22C sin(2G) + �34
−32C sin(3G) +

∞∑
==4

�=4
−=2C sin(=G) + 1

8
4−C sin(3G)

= 04−12C sin(1G) + 2
c

(
1

(1 + 2)2
− 1
(1 − 2)2

)
4−22C sin(2G) − 1

8
4−32C sin(3G)

+ 2
c

∑
==4,6,8,...

(
1

(1 + =)2
− 1
(1 − =)2

)
4−=

2C sin(=G) + 1
8
4−C sin(3G)

=
2
c

∑
==2,4,6,...

(
1

(1 + =)2
− 1
(1 − =)2

)
4−=

2C sin(=G) − 1
8
4−9C sin(3G) + 1

8
4−C sin(3G)

=
2
c

∞∑
==1

(
1

(1 + (2=))2
− 1
(1 − (2=))2

)
4−(2=)

2C sin((2=)G) + 1
8

sin(3G) (4−C − 4−9C )

=
2
c

∞∑
==1

(
1

(1 + 2=)2
− 1
(1 − 2=)2

)
4−4=2C sin(2=G) + 1

8
sin(3G) (4−C − 4−9C ) ,

as desired. �

(c) Show that the solution D(G, C) is indeed a solution of the equation

DC − DGG = 4−C sin(3G)

for all 0 < G < c and C > 0.

Solution. The solution of the problem from our solution to part (a) is

D(G, C) =
∞∑
==1

�=4
−=2C sin(=G) + 1

8
4−C sin(3G).

Our partial derivatives are

DC =
m

mC

( ∞∑
==1

�=4
−=2C sin(=G) + 1

8
4−C sin(3G)

)
=

∞∑
==1

�=
m

mC
4−=

2C sin(=G) + 1
8
m

mC
4−C sin(3G)

=

∞∑
==1

−�==24=
2C sin(=G) − 1

8
4−C sin(3G)

and

DGG =
m2

mG2

( ∞∑
==1

�=4
−=2C sin(=G) + 1

8
4−C sin(3G)

)
=

∞∑
==1

�=4
−=2C m

2

mG2 sin(=G) + 1
8
4−C

m2

mG2 sin(3G)

=

∞∑
==1

−�==24−=
2C sin(=G) − 9

8
4−C sin(3G)



So we have

DC − DGG =
(
���

���
���

�∞∑
==1

−�==24=
2C sin(=G) − 1

8
4−C sin(3G)

)
−

(
���

���
���

�∞∑
==1

−�==24−=
2C sin(=G) − 9

8
4−C sin(3G)

)
= −1

8
4−C sin(3G) + 9

8
4−C sin(3G)

= 4−C sin(3G),

as desired. �

5.9. Consider the problem

DC − DGG − ℎD = 0 if 0 < G < c, C > 0,
D(0, C) = D(c, C) = 0 if C ≥ 0,

D(G, 0) = G(c − G) if 0 ≤ G ≤ c,

where ℎ is a real constant.

(a) Solve the problem using the method of eigenfunction expansion.

Solution. First, we need to find all the eigenvalues and eigenfunctions of the homogeneous problem

DC − DGG − ℎD = 0 if 0 < G < !, C > 0,
D(0, C) = D(c, C) = 0 if C ≥ 0,

D(G, 0) = 5 (G) if 0 ≤ G ≤ !.

To do this, we can proceed as we did in the method of separation of variables by writing

D(G, C) = - (G)) (C).

Our partial derivatives are

DC (G, C) = - (G))C (C),
DGG (G, C) = -GG (G)) (C).

So the partial differential equation
DC − DGG = 0

becomes
- (G))C (C) − -GG (G)) (C) − ℎ- (G)) (C) = 0,

or
- (G))C (C) − (-GG + ℎ- (G))) (C) = 0,

which we can algebraically rearrange to write

-GG (G) + ℎ- (G)
- (G) =

)C (C)
) (C) = −_,

where _ is a constant in both G and C. This produces the system of two ordinary differential equations

32-

3G2 + (_ + ℎ)- = 0

3)

3C
+ _) = 0.

This system is decoupled, which allows us to solve each one independently and obtain the general solutions

- (G) =


�14
√
−(_+ℎ)G + �24

−
√
−(_+ℎ)G if _ + ℎ < 0,

�1G + �2 if _ + ℎ = 0,
�1 cos(

√
_ + ℎG) + �2 sin(

√
_ + ℎG) if _ + ℎ > 0,

) (C) = �4−(_+ℎ)C

where �1, �2, � are constants. Now, the boundary conditions

D(0, C) = D(c, C) = 0



are equivalent to

- (0)) (C) = 0,
- (c)) (C) = 0,

which imply either ) (C) = 0 or - (0) = - (c) = 0. If ) (C) = 0, then we would have

D(G, C) = - (G)) (C)
= - (G)0
= 0,

which would be a trivial solution. So we should assume

- (0) = - (c) = 0,

which will impose constraints on the constants �1, �2, depending on _. This motivates us to break this down into cases.

• Case 1: Suppose _ + ℎ < 0. Then we have

- (G) = �14
√
−(_+ℎ)G + �24

−
√
−(_+ℎ)G ,

- (0) = 0,

which implies �1 + �2 = 0, or �2 = −�1. So we have

- (G) = �14
√
−(_+ℎ)G + �24

−
√
−(_+ℎ)G

= �14
√
−(_+ℎ)G − �14

−
√
−(_+ℎ)G

= �1 (4
√
−(_+ℎ)G − 4−

√
−(_+ℎ)G).

We notice 4
√
−_! − 4−

√
−_! ≠ 0 unless _ = 0. This means

- (G) = �1 (4
√
−(_+ℎ)G + 4−

√
−(_+ℎ)G),

- (!) = 0

implies �1 = 0, and so we have

- (G) = �1 (4
√
−(_+ℎ)G − 4−

√
−(_+ℎ)G)

= 0(4
√
−(_+ℎ)G + 4−

√
−(_+ℎ)G)

= 0,

which would mean D is a trivial solution. Therefore, the problem has no negative eigenvalues.
• Case 2: Suppose _ + ℎ = 0. Then we have

- (G) = �1G + �2,

- (0) = 0,

which implies �2 = 0, and so we have

- (G) = �1G + �2

= �1G + 0
= �1G.

And

- (G) = �1G,

- (c) = 0,

implies �1 = 0. So we have

- (G) = �1G

= 0G
= 0,

which would mean D is a trivial solution. Therefore, 0 is not an eigenvalue of the problem.



• Case 3: Suppose _ + ℎ > 0. Then we have

- (G) = �1 cos(
√
_ + ℎG) + �2 sin(

√
_ + ℎG),

- (0) = 0,

which implies �1 = 0, and so we have

- (G) = �1 cos(
√
_ + ℎG) + �2 sin(

√
_ + ℎG)

= 0 cos(
√
_ + ℎG) + �2 sin(

√
_ + ℎG)

= �2 sin(
√
_ + ℎG).

Next,

- (G) = �2 sin(
√
_ + ℎG),

- (c) = 0

implies either �2 = 0 or sin(
√
_ + ℎc) = 0. But �2 = 0 (with �1 = 0) implies - (G) = 0 and that D(G, C) would be a

trivial solution. So we should assume
√
_ + ℎc = =c, or equivalently the eigenvalues

_= = _ = =
2 − ℎ,

with the corresponding eigenfunctions

-= (G) = �2,= sin(
√
_= + ℎG)

= �2,= sin(
√
(=2 − ℎ) + ℎG)

= �2,= sin(=G),

as desired.

From the three cases above, we see that the problem only has positive eigenvalues _= = =2 − ℎ and their corresponding
eigenfunctions -= (G) = �2,= sin(=G). We will now use the method of eigenfunction expansion. We can represent, for
any fixed C, our solution as

D(G, C) =
∞∑
==1

)= (C) sin(=G),

where )= (C) for = = 1, 2, 3, . . . are the time-dependent Fourier coefficients. (Note that, unlike Section 5.4 in the textbook,
we do not have the term 1

2)0 (C) in our representation of D(G, C) because 0 is not an eigenvalue of this problem.) Our
derivatives are

DC (G, C) =
m

mC

( ∞∑
==1

)= (C) sin(=G)
)

=

∞∑
==1

) ′= (C) sin(=G)

and

DGG (G, C) =
m2

mG2

( ∞∑
==1

)= (C) sin(=G)
)

=

∞∑
==1

)= (C)
m2

mG2 (sin(=G))

=

∞∑
==1

−=2)= (C) sin(=G).

So the partial differential equation
DC − DGG − ℎD = 0

becomes
∞∑
==1

) ′= (C) sin(=G) −
∞∑
==1

−=2)= (C) sin(=G) − ℎ
∞∑
==1

)= (C) sin(=G) = 0,

or equivalently
∞∑
==1

() ′= (C) + (=2 − ℎ))= (C)) sin(=G) = 0.



By the uniqueness of the Fourier series expansion, we can equate the terms of both sides of our above equation to obtain
the ordinary differential equation

) ′= (C) + (=2 − ℎ))= (C) = 0,

whose general solution is
)= (C) = �=4−(=

2−ℎ)C ,

where

�= =
2
c

∫ c

0
G(c − G) sin(=G) 3G

=
2
c

∫ c
2

0
G sin(=G) 3G + 2

c

∫ c

c
2

(c − G) sin(=G) 3G

=
2
c

(
−1
=

cos(=G) + 1
=2 sin(=G)

)���� c2
0
+ 2
c

(
−1
=
(c − G) cos(=G) − 1

=2 sin(=G)
)����c

c
2

=
4
c2

1
=

sin
(=c

2

)
for = = 1, 2, 3, . . . are the Fourier coefficients. Therefore, our solution is

D(G, C) =
∞∑
==1

)= (C) sin(=G)

=

∞∑
==1

�=4
−(=2−ℎ)C sin(=G)

=
1

4c

∞∑
==1

1
=2 sin

(=c
2

)
4−(=

2−ℎ)C sin(=G) ,

as desired. �

Alternate solution. We employ the substitution E(G, C) = 4−ℎCD(G, C). We obtain the derivatives

EC (G, C) = −ℎ4−ℎCD(G, C) + 4−ℎCDC (G, C),
EGG (G, C) = 4−ℎCDGG (G, C).

So we obtain the partial differential equation

EC − EGG = (−ℎ4−ℎCD + 4−ℎCDC ) − 4−ℎCDGG
= 4−ℎC (DC − DGG − ℎD)
= 4−ℎC · 0
= 0.

We also have

E(0, C) = 4−ℎCD(0, C) = 4−ℎC · 0 = 0,

E(c, C) = 4−ℎCD(c, C) = 4−ℎC · 0 = 0,

E(G, 0) = 4−ℎ ·0D(G, 0) = D(G, 0) = G(c − G).

So we have transformed the original problem into a simpler problem:

EC − EGG = 0 if 0 < G < c, C > 0,
E(0, C) = E(c, C) = 0 if C ≥ 0,

E(G, 0) = G(c − G) if 0 ≤ G ≤ c.

According to our solution to Exercise 5.8, part (a), our only eigenvalues are

_= = _ = =
2,

with the corresponding eigenfunctions

-= (G) = �2,= sin(
√
_=G)

= �2,= sin(
√
=2G)

= �2,= sin(=G).



We will now use the method of eigenfunction expansion. We can represent, for any fixed C,

E(G, C) =
∞∑
==1

)= (C) sin(=G),

where )= (C) for = = 1, 2, 3, . . . are the time-dependent Fourier coefficients. (Note that, unlike Section 5.4 in the textbook,
we do not have the term 1

2)0 (C) in our representation of D(G, C) because 0 is not an eigenvalue of this problem.) Our
derivatives are

EC (G, C) =
m

mC

( ∞∑
==1

)= (C) sin(=G)
)

=

∞∑
==1

) ′= (C) sin(=G)

and

EGG (G, C) =
m2

mG2

( ∞∑
==1

)= (C) sin(=G)
)

=

∞∑
==1

)= (C)
m2

mG2 (sin(=G))

=

∞∑
==1

−=2)= (C) sin(=G).

So the partial differential equation
EC − EGG = 0

becomes
∞∑
==1

) ′= (C) sin(=G) −
∞∑
==1

−=2)= (C) sin(=G) = 0,

or equivalently
∞∑
==1

() ′= (C) + =2)= (C)) sin(=G) = 0.

By the uniqueness of the Fourier series expansion, we can equate the terms of both sides of our above equation to obtain
the ordinary differential equation

) ′= (C) + =2)= (C) = 0,

whose general solution is
)= (C) = �=4−=

2C ,

where

�= =
2
c

∫ c

0
G(c − G) sin(=G) 3G

=
2
c

∫ c
2

0
G sin(=G) 3G + 2

c

∫ c

c
2

(c − G) sin(=G) 3G

=
2
c

(
−1
=

cos(=G) + 1
=2 sin(=G)

)���� c2
0
+ 2
c

(
−1
=
(c − G) cos(=G) − 1

=2 sin(=G)
)����c

c
2

=
4
c2

1
=

sin
(=c

2

)
for = = 1, 2, 3, . . . are the Fourier coefficients. Therefore, we have

E(G, C) =
∞∑
==1

)= (C) sin(=G)

=

∞∑
==1

�=4
−=2C sin(=G)

=
1

4c

∞∑
==1

1
=2 sin

(=c
2

)
4−=

2C sin(=G),



and so our solution is

D(G, C) = 4ℎC4−ℎCD(G, C)
= 4ℎCE(G, C)

= 4ℎC
1

4c

∞∑
==1

1
=2 sin

(=c
2

)
4−=

2C sin(=G)

=
1

4c

∞∑
==1

1
=2 sin

(=c
2

)
4−=

2C4ℎC sin(=G)

=
1

4c

∞∑
==1

1
=2 sin

(=c
2

)
4−(=

2−ℎ)C sin(=G) ,

as desired. �

(b) Does lim
C→∞

D(G, C) exist for all 0 < G < c?

Hint: Distinguish between the following cases: ℎ < 1, ℎ = 1, ℎ > 1.

Solution. Let us look at

D(G, C) = 1
4c

∞∑
==1

1
=2 sin

(=c
2

)
4−=

2C4ℎC sin(=G),

which should be the easiest expression for us to compute the limit. Notice that we have

lim
C→∞

4ℎC =


0 if ℎ < 1,
1 if ℎ = 1,
∞ if ℎ > 1.

(Note that, for the cases ℎ < 1 and ℎ = 1, limC→∞ 4ℎC converges uniformly to the limits 0 and 1, respectively. The
uniform convergence will allow us to pass the limit notation inside the summation sign.) If ℎ < 1, we have

lim
C→∞

D(G, C) = lim
C→∞

1
4c

∞∑
==1

1
=2 sin

(=c
2

)
4−=

2C4ℎC sin(=G)

=
1

4c

∞∑
==1

1
=2 sin

(=c
2

)
lim
C→∞

4−=
2C4ℎC sin(=G)

=
1

4c

∞∑
==1

1
=2 sin

(=c
2

)
· 0 · sin(=G)

= 0.

If ℎ = 1, we have

lim
C→∞

D(G, C) = lim
C→∞

1
4c

∞∑
==1

1
=2 sin

(=c
2

)
4−=

2C4ℎC sin(=G)

=
1

4c

∞∑
==1

1
=2 sin

(=c
2

)
lim
C→∞

4−=
2C4ℎC sin(=G)

=
1

4c

∞∑
==1

1
=2 sin

(=c
2

)
· 1 · sin(=G)

=
1

4c

∞∑
==1

1
=2 sin

(=c
2

)
sin(=G)

=
1

4c
sin(=G).

If ℎ > 1, then we have

lim
C→∞

D(G, C) = lim
C→∞

1
4c

∞∑
==1

1
=2 sin

(=c
2

)
4−=

2C4ℎC sin(=G)

=
1

4c

∞∑
==1

1
=2 sin

(=c
2

)
lim
C→∞

4−=
2C4ℎC sin(=G)

=
1

4c

∞∑
==1

1
=2 sin

(=c
2

)
· ∞ · sin(=G)

= ∞,



meaning that D(G, C) diverges in C. �

5.10. Consider the problem

DC = DGG + UD 0 < G < 1, C > 0,
D(0, C) = D(1, C) = 0 C ≥ 0,
D(G, 0) = 5 (G) 0 ≤ G ≤ 1

for any 5 ∈ � ( [0, 1]).

(a) Assume U = −1 and 5 (G) = G. Solve the problem.

Remark. One can solve Exercise 5.10, part (a) in multiple ways, especially when the the problem statement of this
textbook exercise does not specify which method to use. Specifically here, one can employ the usual method of separation
of variables, the method of eigenfunction expansion (see my solution of Exercise 5.9, part (a)), or an exponential solution
in tandem with the method of eigenfunction expansion (see my alternate solution of Exercise 5.9, part (a)). As requested
by the students in my T.A. office hours, I will employ the method of separation of variables for this exercise.

Solution. The given problem with U = −1 and 5 (G) = G becomes

DC = DGG − D 0 < G < 1, C > 0,
D(0, C) = D(1, C) = 0 C ≥ 0,
D(G, 0) = G 0 ≤ G ≤ 1

Following the method of separation of variables, we want to find a solution of the form

D(G, C) = - (G)) (C).

Our partial derivatives are

DC (G, C) = - (G))C (C),
DGG (G, C) = -GG (G)) (C).

So the partial differential equation
DC = DGG − D

becomes
- (G))C (C) = -GG (G)) (C) − - (G)) (C),

which we can algebraically rearrange to write

-GG (G) − - (G)
- (G) =

)C (C)
) (C) = −_,

where _ is a constant in both G and C. This produces the system of two ordinary differential equations

32-

3G2 + (_ − 1)- = 0

3)

3C
+ _:) = 0.

This system is decoupled, which allows us to solve each one independently and obtain the general solutions

- (G) =


�14
√
−(_−1)G + �24

−
√
−(_−1)G if _ − 1 < 0,

�1G + �2 if _ − 1 = 0,
�1 cos(

√
_ − 1G) + �2 sin(

√
_ − 1G) if _ − 1 > 0,

) (C) = �4−(_−1)C ,

where �1, �2, � are constants. Now, the boundary conditions

DG (0, C) = DG (!, C) = 0

are equivalent to

3

3G
- (0)) (C) = 0,

3

3G
- (!)) (C) = 0,



which imply either ) (C) = 0 or 3
3G
- (0) = 3

3G
- (!) = 0. If ) (C) = 0, then we would have

D(G, C) = - (G)) (C)
= - (G)0
= 0,

which would be a trivial solution. But we are really interested in finding a nontrivial solution. So we should assume

3

3G
- (0) = 3

3G
- (!) = 0,

which will impose constraints on the constants �1, �2, depending on _. This motivates us to break this down into cases.

• Case 1: Suppose _ − 1 < 0. Then we have

- (G) = �14
√
−(_−1)G + �24

−
√
−(_−1)G ,

3

3G
- (0) = 0,

which implies

3

3G
- (G) =

√
−(_ − 1) (�14

√
−(_−1)G − �24

−
√
−(_−1)G),

3

3G
- (0) = 0,

which implies
√
−(_ − 1) (�1 −�2) = 0. As we assumed _ − 1 < 0 in this case, we have

√
−(_ − 1) ≠ 0, and so we

conclude �1 − �2 = 0, or equivalently �1 = �2. So we have

- (G) = �14
√
−(_−1)G + �24

−
√
−(_−1)G

= �14
√
−(_−1)G + �14

−
√
−(_−1)G

= �1 (4
√
−(_−1)G + 4−

√
−(_−1)G).

We notice 4
√
−(_−1)! + 4−

√
−(_−1)! ≠ 0. This means

- (G) = �1 (4
√
−(_−1)G + 4−

√
−(_−1)G),

- (!) = 0

implies �1 = 0, and so we have

- (G) = �1 (4
√
−(_−1)G + 4−

√
−(_−1)G)

= 0(4
√
−(_−1)G + 4−

√
−(_−1)G)

= 0.

Therefore, we have

D(G, C) = - (G)) (C)
= 0) (C)
= 0,

which is a trivial solution.
• Case 2: Suppose _ − 1 = 0. Then we have

- (G) = �1G + �2,

3

3G
- (0) = 0,

which implies

3

3G
- (G) = �1,

3

3G
- (0) = 0,



which implies �1 = 0, and so we have

- (G) = �1G + �2

= 0G + �2

= �2,

which already satisfies 3
3G
- (!) = 0. Therefore, if we write �0

2 = �2�, then we have

D0 (G, C) = - (G)) (C)
= �2�4

−(_−1): (0)

= �2�

=
�0

2
,

which is a nontrivial solution.
• Case 3: Suppose _ − 1 > 0. Then we have

- (G) = �1 cos(
√
_ − 1G) + �2 sin(

√
_ − 1G),

3

3G
- (0) = 0,

which implies

3

3G
- (G) =

√
_ − 1(−�1 sin(

√
_ − 1G) + �2 cos(

√
_ − 1G)),

3

3G
- (0) = 0,

which implies
√
_ − 1�2 = 0, which in turn implies either

√
_ − 1 = 0 or �2 = 0. But

√
_ − 1 = 0 implies _−1 = 0,

which contradicts our assumption _ − 1 > 0 for this case. So we must have �2 = 0, and so we have

- (G) = �1 cos(
√
_ − 1G) + �2 sin(

√
_ − 1G)

= �1 cos(
√
_ − 1G) + 0 sin(

√
_ − 1G)

= �1 cos(
√
_ − 1G)

and

3

3G
- (G) =

√
_ − 1(−�1 sin(

√
_ − 1G) + �2 cos(

√
_ − 1G))

=
√
_ − 1(−�1 sin(

√
_ − 1G) + 0 cos(

√
_ − 1G))

= −
√
_ − 1�1 sin(

√
_ − 1G),

Next,

3

3G
- (G) = −

√
_ − 1�1 sin(

√
_ − 1G),

3

3G
- (!) = 0

implies
√
_ − 1�1 sin(

√
_ − 1!) = 0. As we assumed _ − 1 > 0 in this case, we have

√
_ − 1 ≠ 0, and so we

conclude �1 sin(
√
_ − 1!) = 0. If �1 = 0, then we would have

- (G) = �1 cos(
√
_ − 1G) + �2 sin(

√
_ − 1G)

= 0 cos(
√
_ − 1G) + 0 sin(

√
_ − 1G)

= 0,

which would imply

D(G, C) = - (G)) (C)
= 0) (C)
= 0,

meaning that D(G, C) is a trivial solution. So we should assume sin(
√
_ − 1!) = 0, which implies

√
_ − 1! = =c, or

equivalently

_= = _ =

(=c
!

)2
+ 1,



and so we have

-= (G) = �1,= cos(
√
_= − 1G)

= �1,= cos(
√
((=c)2 + 1) − 1G)

= �1,= cos(=cG)

and

)= (C) = �=4−_=:C

= �=4
−( =c

!
)2:C

for = = 1, 2, 3, . . .. Therefore, if we write �= = �1,=�=, then we have

D= (G, C) = -= (G))= (C)

= (�1,= cos(=cG)) (�=4−(=c)
2:C )

= �1,=�=4
−(=c)2:C cos(=cG)

= �=4
−(=c)2:C cos(=cG)

for = = 1, 2, 3, . . .. This is a nontrivial solution, as desired.

We recall that an addition of solutions is again a solution. So that means, as we have established already that each
D= (G, C) is a nontrivial solution for = = 1, 2, 3, . . ., it follows that

D(G, C) = D0 (G, C) +
∞∑
==1

D= (G, C)

=
�0

2
+
∞∑
==1

�=4
−(=c)2:C cos(=cG) ,

where

�0 =
2
1

∫ 1

0
5 (G) 3G

= 2
∫ 1

0
G 3G

= 2
G2

2

����1
0

= 1

and

�= =
2
1

∫ 1

0
5 (G) cos(=cG) 3G

= 2
∫ 1

0
G cos(=cG) 3G

=
1
=c
G sin(=cG)

����1
0
− 1
=c

∫ 1

0
sin(=cG) 3G

= 0 − 1
(=c)2

cos(=cG)
����1
0

= cos(=c) − cos(0)
= (−1)= − 1

for = = 1, 2, 3, . . . are the Fourier coefficients, is also a solution of the problem. �

5.15. Using the energy method, prove the uniqueness for the problem

DCC − 22DGG = � (G, C) if 0 < G < !, C > 0,

DG (0, C) = C2, D(!, C) = −C if C ≥ 0,

D(G, 0) = G2 − !2 if 0 ≤ G ≤ !,

DC (G, 0) = sin2
( cG
!

)
if 0 ≤ G ≤ !.



Proof. Let D1 and D2 be two solutions of the problem, and define F = D1 − D2. Then we have the partial differential equation

FCC − 22DGG = (D1,CC − D2,CC ) − 22 ((D1)GG − (D2)GG)
= D1,CC − 22H1,GG − (D2,CC − 22DGG)
= � (G, C) − � (G, C)
= 0.

We also have the boundary conditions

FG (0, C) = (D1)G (0, C) − (D2)G (0, C)
= C2 − C2

= 0

and

F(!, C) = D1 (!, C) − D2 (!, C)
= −C − (−C)
= 0.

We also have the initial conditions

F(G, 0) = D1 (G, 0) − D2 (G, 0)
= (G2 − !2) − (G2 − !2)
= 0

and

FC (G, 0) = D1,C (G, 0) − D2,C (G, 0)

= sin2
( cG
!

)
− sin2

( cG
!

)
= 0.

So we have transformed the original problem into

FCC − 22FGG = 0 if 0 < G < !, C > 0,
FG (0, C) = F(!, C) = 0 if C ≥ 0,
F(G, 0) = FC (G, 0) = 0 if 0 ≤ G ≤ !.

Now, we will employ the energy method to establish F = 0. Multiply both sides of the partial differential equation

FCC − 22FGG = 0

by FC to write
FC (FCC − 22FGG) = FC0,

or equivalently
FCFCC − 22FCFGG = 0.

In fact, we can rewrite the left-hand side as

1
2
3

3C
(FC )2 − 22 3

3C
(FG)2 = 0,

or equivalently
3

3C

(
1
2
((FC )2 − 22 (FG)2)

)
= 0.

Integrate over the domain 0 < G < ! both sides to write∫ !

0

3

3C

(
1
2
(FC )2 − 22 (FG)2

)
3G =

∫ !

0
0 3G,

or equivalently
3

3C

(
1
2

∫ !

0
(FC )2 − 22 (FG)2 3G

)
= 0.

This motivates us to define the energy

� (C) = 1
2

∫ !

0
(FC )2 − 22 (FG)2 3G.



Then we have

3

3C
� (C) = 3

3C

(
1
2

∫ !

0
(FC )2 − 22 (FG)2 3G

)
= 0,

meaning that � (C) is constant in C. But as we have

� (0) = 1
2

∫ !

0
(FC (G, 0))2 − 22 (FG (G, 0))2 3G

=
1
2

∫ !

0
02 − 2202 3G

= 0,

we conclude � (C) = 0 for all C ≥ 0. So we have FC (G, 0) = 0 and FG (G, 0) = 0. Now, FC (G, 0) = 0 implies F(G, C) = � (G) and
FG (G, 0) = 0 implies F(G, C) = � (C). But the only possibility that F(G, C) = � (G) = � (C) holds is F(G, C) = �, where � is a
constant. But F(G, 0) = 0 implies � = 0, and so F(G, C) = 0. Finally, F = 0 implies D1 − D2 = 0, or D1 = D2, meaning that the
solution of the original problem is unique. �


