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Solutions to suggested homework problems from
An Introduction to Partial Differential Equations by Yehuda Pinchover and Jacob Rubinstein

Suggested problems: Exercises 7.2, 7.3, 7.4, 7.7, 7.8, 7.11, 7.14(a), 7.15, 7.20, 7.22

Note: Almost all steps for solving an ordinary differential equation (for example, any material from MATH 046 at UC Riverside)
are omitted from my solutions for purposes of brevity.

7.2. Prove uniqueness for the Dirichlet and Neumann problems for the reduced Helmholtz equation

D − :D = 0

in a bounded planar domain � ⊂ R2, where : is a positive constant.

Solution. Consider the Dirichlet problem

ΔD − :D = 0 (G, H) ∈ �,
D(G, H) = 6(G, H) (G, H) ∈ m�.

Let D1 and D2 be two solutions of the Dirichlet problem, and let F1 := D1 − D2. Then F1 solves

ΔF1 − :F1 = 0 (G, H) ∈ �,
F1 (G, H) = 0 (G, H) ∈ m�.

Now, we recall Green’s third identity (also known as integration by parts),∬
�

∇D · ∇E 3G 3H =
∫
m�

D
mD

m=
3B −

∬
�

DΔE 3G 3H.

Substitute D = F1 and E = F1 into Green’s third identity in order to obtain∬
�

∇F1 · ∇F1 3G 3H =

∫
m�

F1
mF1

m=
3B −

∬
�

F1ΔF1 3G 3H.

The definition of the dot product of two vectors implies in particular ∇F1 ·∇F1 = |∇F1 |2. And the partial differential equation
ΔF1 − :F1 = 0 is of course equivalent to ΔF1 = :F1. So we obtain, in fact,∬

�

|∇F1 |2 3G 3H =
∫
m�

F1
mF1

m=
3B − :

∬
�

(F1)2 3G 3H.

Finally, as we have F1 = 0 on m�, we obtain∬
�

|∇F1 |2 3G 3H =
∫
m�

0
mF1

m=
3B − :

∬
�

(F1)2 3G 3H,

or more succinctly ∬
�

|∇F1 |2 3G 3H = −:
∬
�

(F1)2 3G 3H

Observe that, for any : > 0, the left hand side and right hand side satisfy∬
�

|∇F1 |2 3G 3H ≥ 0,

−:
∬
�

(F1)2 3G 3H ≤ 0,

respectively. The only way these inequalities hold true simultaneously is only when they satisfy∬
�

|∇F1 |2 3G 3H = 0,

−:
∬
�

(F1)2 3G 3H = 0.

In particular, as : > 0, the equality

−:
∬
�

(F1)2 3G 3H = 0



implies (F1)2 = 0, which in turn gives F1 = 0, or equivalently D1 = D2. This establishes the uniqueness of the Dirichlet
problem. Next, consider the Neumann problem

ΔD − :D = 0 (G, H) ∈ �,
m=D(G, H) = 6(G, H) (G, H) ∈ m�.

Let D3 and D4 be two solutions of the Dirichlet problem, and let F2 := D3 − D4. Then F2 solves

ΔF2 − :F2 = 0 (G, H) ∈ �,
m=F2 (G, H) = 0 (G, H) ∈ m�.

Now, we will establish F2 = 0 in �. As established previously for F1, we obtain∬
�

|∇F2 |2 3G 3H =
∫
m�

F2
mF2

m=
3B − :

∬
�

(F2)2 3G 3H.

Finally, as we have mF2
m=

= 0 on m�, we obtain∬
�

|∇F2 |2 3G 3H =
∫
m�

F20 3B − :
∬
�

(F2)2 3G 3H.

or more succinctly ∬
�

|∇F2 |2 3G 3H = −:
∬
�

(F2)2 3G 3H

Following the rest of our proof for F1, we conclude F2 = 0, or equivalently D3 = D4, in �. This establishes the uniqueness of
the Neumann problem. �

7.3. Solve the problem

ΔD + :D = 0 0 < G < c, 0 < H < c,
D(0, H) = 1 0 < H < c,

D(c, H) = D(G, 0) = D(G, c) = 0 0 < G < c.

Solution. We want to find a solution of the form

D(G, H) = - (G). (H).

Our partial derivatives are

DGG (G, C) = -GG (G). (H),
DHH (G, C) = - (G).HH (H)

So the partial differential equation
DGG + DHH − :D = ΔD − :D = 0

becomes
-GG (G). (H) + - (G).HH (H) − :- (G). (H) = 0,

which we can algebraically rearrange to write

−-GG (G) − :- (G)
- (G) =

.HH (H)
. (H) = −_,

where _ is a constant in both G and H. This produces the system of two ordinary differential equations

32-

3G2 − (_ + :)- = 0

32.

3H2 + _. = 0.

This system is decoupled, which allows us to solve each one independently and obtain the general solutions

- (G) =


�1 cos(

√
−(_ + :)G) + �2 sin(

√
−(_ + :)G) if _ + : < 0,

�1G + �2 if _ + : = 0,
�14

√
_+:G + �24

−
√
_+:G if _ + : > 0,

. (H) =


�14

√
−_H + �24

−
√
−_H if _ < 0,

�1H + �2 if _ = 0,
�1 cos(

√
_H) + �2 sin(

√
_H) if _ > 0,



where �1, �2, �1, �2 are constants. Now, the boundary conditions

D(c, H) = D(G, 0) = D(G, c) = 0

are equivalent to

- (c). (H) = - (G). (0) = - (G). (c) = 0,

which imply either - (G) = . (H) = 0 or - (c) = . (0) = . (c) = 0. If we assume either - (G) = 0 or . (H) = 0, then in either
case we would have a trivial solution. But we are really interested in finding a nontrivial solution. So we should assume

- (c) = . (0) = . (c) = 0,

which will impose constraints on the constants �1, �2, depending on _. This motivates us to break this down into cases.

• Case 1: Suppose _ < 0. Then

. (H) = �14
√
−_H + �24

−
√
−_H ,

. (0) = 0

implies �2 = −�1, and so we have

. (H) = �14
√
−_H + �24

−
√
−_H

= �14
√
−_H − �14

−
√
−_H

= �1 (4
√
−_H − 4−

√
−_H).

Now, if _ < 0, then 4
√
−_c − 4−

√
−_c ≠ 0. This means

. (H) = �1 (4
√
−_H − �24

−
√
−_H),

. (c) = 0

implies �1 = 0, and so we have

- (G) = �1 (4
√
−_H − 4−

√
−_H)

= 0(4
√
−_H − 4−

√
−_H)

= 0.

Therefore, we have

D(G, H) = - (G). (H)
= 0. (H)
= 0,

which is a trivial solution.

• Case 2: Suppose _ = 0. Then

. (H) = �1H + �2,

. (0) = 0

implies �2 = 0, and so we have

. (H) = �1H + �2

= �1H + 0
= �1H.

Next,

. (H) = �1H,

. (c) = 0

implies �1 = 0, and so we have

. (H) = �1H

= 0H
= 0.



Therefore, we have

D(G, H) = - (G). (H)
= 0. (H)
= 0,

which is a trivial solution.

• Case 3: Suppose _ > 0. Then

. (H) = �1 cos(
√
_H) + �2 sin(

√
_H),

. (0) = 0

implies �1 = 0, and so we have

. (H) = �1 cos(
√
_H) + �2 sin(

√
_H)

= 0 cos(
√
_G) + �2 sin(

√
_H)

= �2 sin(
√
_H).

Next,

. (H) = �2 sin(
√
_H),

. (c) = 0

implies sin(
√
_H) = 0, which in turn implies

√
_c = =c, or equivalently

_= = _ = =
2,

and so we have

.= (H) = �2,= sin(
√
_=H)

= �2,= sin(
√
=2H)

= �2,= sin(=H).

Also, as we are in the case of _ > 0 and we are given : > 0 from the problem statement, it follows that we have _+: > 0.
Therefore, we get

-= (G) = �1,=4
√
_=+:G + �2,=4

−
√
_=+:G

= �1,=4
√
=2+:G + �2,=4

−
√
=2+:G

for = = 1, 2, 3, . . .. Therefore, if we write �= = �2,=�1,= and �= = �2,=�2,=, then we have

D= (G, H) = -= (G).= (H)

= (�1,=4
√
=2+:G + �2,=4

−
√
=2+:G) (�2,= sin(=H))

= (�1,=�2,=4
√
=2+:G + �2,=�2,=4

−
√
=2+:G) sin(=H)

= (�=4
√
=2+:G + �=4−

√
=2+:G) sin(=H)

for = = 1, 2, 3, . . .. This is a nontrivial solution, as desired.

We recall that an addition of solutions is again a solution. So that means, as we have established already that each D= (G, C) is
a nontrivial solution for = = 1, 2, 3, . . ., it follows that

D(G, H) =
∞∑
==1

D= (G, H)

=

∞∑
==1

(�=4
√
=2+:G + �=4−

√
=2+:G) sin(=H)

is also a nontrivial solution of the problem. Next, we will compute the Fourier coefficients �=, �=. We have

1 = D(0, H) =
∞∑
==1

(�= + �=) sin(=H),

0 = D(c, H) =
∞∑
==1

(�=4
√
=2+: c + �=4−

√
=2+: c) sin(=H).



Now, recall ∫ c

0
sin(=H) sin(<H) 3H =

{
c
2 if = = <,
0 if = ≠ <.

Consequently, we obtain∫ c

0
1 sin(=H) 3H =

∫ c

0

∞∑
<=1

(�< + �<) sin(<H) sin(=H) 3H

=

∞∑
<=1

(�< + �<)
∫ c

0
sin

( √
<2 + :c
1

G

)
sin

( √
<2 + :c
1

G

)
3G

= (�= + �=)
c

2

and ∫ c

0
0 sin(=H) 3H =

∫ c

0

∞∑
<=1

(�<4
√
<2+: c + �<4−

√
<2+: c) sin(<H) sin(=H) 3H

=

∞∑
<=1

(�<4
√
<2+: c + �<4−

√
<2+: c)

∫ c

0
sin(<H) sin(=H) 3H

= (�=4
√
=2+: c + �=4−

√
=2+: c) c

2
.

In other words, we have the system

�= + �= =
2
c

∫ c

0
1 sin(=H) 3H =

{
4
c=

if = = 1, 3, 5, . . .
0 if = = 2, 4, 6, . . . ,

�=4
√
=2+: c + �=4−

√
=2+: c =

2
c

∫ c

0
0 sin(=H) 3H = 0,

which we can solve simultaneously to obtain the coefficients

�= = −
2
c

4−
√
=2+: c

= sinh(=c) ,

�= =
2
c

4
√
=2+: c

= sinh(=c) .

So our formal solution is

D(G, H) =
∞∑
==1

(�=4
√
=2+:G + �=4−

√
=2+:G) sin(=H)

=
2
c

∑
==1,3,5,...

1
= sinh(=c) (−4

−
√
=2+: c4

√
=2+:G + 4

√
=2+: c4−

√
=2+:G) sin(=H)

=
2
c

∑
==1,3,5,...

1
= sinh(=c) (4

√
=2+: (c−G) − 4−

√
=2+: (c−G) ) sin(=H)

=
4
c

∑
==1,3,5,...

1
= sinh(=c)

4
√
=2+: (c−G) − 4−

√
=2+: (c−G)

2
sin(=H)

=
4
c

∑
==1,3,5,...

1
sinh(=c) sinh(

√
=2 + : (c − G)) sin(=H)

=
4
c

∞∑
==1

1
sinh((2= − 1)c) sinh(

√
(2= − 1)2 + : (c − G)) sin((2= − 1)H) ,

as desired. �

7.4. Solve the problem

ΔD = 0 0 < G < c, 0 < H < c,
D(G, 0) = D(G, c) = 1 0 ≤ G ≤ c,
D(0, H) = D(c, H) = 0 0 ≤ H ≤ c.



Solution. We want to find a solution of the form

D(G, H) = - (G). (H).

Our partial derivatives are

DGG (G, C) = -GG (G). (H),
DHH (G, C) = - (G).HH (H)

So the partial differential equation
DGG + DHH = ΔD = 0

becomes
-GG (G). (H) + - (G).HH (H) = 0,

which we can algebraically rearrange to write

-GG (G)
- (G) = −

.HH (H)
. (H) = −_,

where _ is a constant in both G and H. This produces the system of two ordinary differential equations

32-

3G2 + _- = 0

32.

3H2 − _. = 0.

This system is decoupled, which allows us to solve each one independently and obtain the general solutions

- (G) =


�14

√
−_G + �24

−
√
−_G if _ < 0,

�1G + �2 if _ = 0,
�1 cos(

√
_G) + �2 sin(

√
_G) if _ > 0,

. (H) =


�1 cos(

√
−_H) + �2 sin(

√
−_H) if _ < 0,

�1H + �2 if _ = 0,
�14

√
_H + �24

−
√
−_H if _ > 0,

where �1, �2, �1, �2 are constants. Now, the boundary conditions

D(0, H) = D(c, H) = 0

are equivalent to

- (0). (H) = 0,
- (c). (H) = 0,

which imply either . (H) = 0 or - (0) = - (c) = 0. If . (H) = 0, then we would have

D(G, H) = - (G). (H)
= - (G)0
= 0,

which would be a trivial solution. But we are really interested in finding a nontrivial solution. So we should assume

- (0) = - (c) = 0,

which will impose constraints on the constants �1, �2, depending on _. This motivates us to break this down into cases.

• Case 1: Suppose _ < 0. Then

- (G) = �14
√
−_G + �24

−
√
−_G ,

- (0) = 0

implies �2 = −�1, and so we have

- (G) = �14
√
−_G + �24

−
√
−_G

= �14
√
−_G − �14

−
√
−_G

= �1 (4
√
−_G − 4−

√
−_G).



Now, if _ < 0, then 4
√
−_c − 4−

√
−_c ≠ 0. This means

- (G) = �1 (4
√
−_G − 4−

√
−_G),

- (c) = 0

implies �1 = 0, and so we have

- (G) = �1 (4
√
−_G − 4−

√
−_G)

= 0(4
√
−_G − 4−

√
−_G)

= 0.

Therefore, we have

D(G, H) = - (G). (H)
= 0. (H)
= 0,

which is a trivial solution.

• Case 2: Suppose _ = 0. Then

- (G) = �1G + �2,

- (0) = 0

implies �2 = 0, and so we have

- (G) = �1G + �2

= �1G + 0
= �1G.

Next,

- (G) = �1G,

- (c) = 0

implies �1 = 0, and so we have

- (G) = �1G

= 0G
= 0.

Therefore, we have

D(G, H) = - (G). (H)
= 0. (H)
= 0,

which is a trivial solution.

• Case 3: Suppose _ > 0. Then

- (G) = �1 cos(
√
_G) + �2 sin(

√
_G),

- (0) = 0

implies �1 = 0, and so we have

- (G) = �1 cos(
√
_G) + �2 sin(

√
_G)

= 0 cos(
√
_G) + �2 sin(

√
_G)

= �2 sin(
√
_G).

Next,

- (G) = �2 sin(
√
_G),

- (c) = 0



implies sin(
√
_c) = 0, which in turn implies

√
_c = =c, or equivalently

_= = _ = =
2,

and so we have

-= (G) = �2,= sin(
√
_=G)

= �2,= sin(
√
=2G)

= �2,= sin(=G)

and

.= (H) = �1,=4
√
_=H + �2,=4

−
√
_=H

= �1,=4
√
=2H + �2,=4

−
√
=2H

= �1,=4
=H + �2,=4

−=H

for = = 1, 2, 3, . . .. Therefore, if we write �= = �2,=�1,= and �= = �2,=�2,=, then we have

D= (G, H) = -= (G).= (H)
= (�2,= sin(=G)) (�1,=4

=H + �2,=4
−=H)

= sin(=G) (�2,=�1,=4
=H + �2,=�2,=4

−=H)
= sin(=G) (�=4=H + �=4−=H)

for = = 1, 2, 3, . . .. This is a nontrivial solution, as desired.

We recall that an addition of solutions is again a solution. So that means, as we have established already that each D= (G, C) is
a nontrivial solution for = = 1, 2, 3, . . ., it follows that

D(G, H) =
∞∑
==1

D= (G, H)

=

∞∑
==1

sin(=G) (�=4=H + �=4−=H)

is also a nontrivial solution of the problem. Next, we will compute the Fourier coefficients �=, �=. We have

1 = D(G, 0) =
∞∑
==1

sin(=G) (�= + �=),

1 = D(G, c) =
∞∑
==1

sin(=G) (�=4=c + �=4−=c).

Now, recall ∫ c

0
sin(=G) sin(<G) 3G =

{
c
2 if = = <,
0 if = ≠ <.

Consequently, we obtain ∫ c

0
1 sin(=G) 3G =

∫ c

0

∞∑
<=1

sin(<G) (�< + �<) sin(=G) 3G

=

∞∑
<=1

(�< + �<)
∫ c

0
sin(<G) sin(=G) 3G

= (�= + �=)
c

2

and ∫ c

0
1 sin(=G) 3G =

∫ c

0

∞∑
<=1

sin(<G) (�<4<c + �<4−<c) sin(=G) 3G

=

∞∑
<=1

(�<4<c + �<4−<c)
∫ c

0
sin(<G) sin(=G) 3G

= (�=4=c + �=4−=c)
c

2
.



In other words, we have the system

�= + �= =
2
c

∫ c

0
1 sin(=G) 3G =

{
4
c

1
=

if = = 1, 3, 5, . . .
0 if = = 2, 4, 6, . . . ,

�=4
=c + �=4−=c =

2
c

∫ c

0
1 sin(=G) 3G =

{
4
c

1
=

if = = 1, 3, 5, . . .
0 if = = 2, 4, 6, . . . ,

which we can solve simultaneously to obtain the coefficients

�= =

{
2
c

1
= sinh(=c) (1 − 4

−=c) if = = 1, 3, 5, . . . ,
0 if = = 2, 4, 6, . . . ,

�= =

{
2
c

1
= sinh(=c) (4

=c − 1) if = = 1, 3, 5, . . . ,
0 if = = 2, 4, 6, . . . .

So our formal solution is

D(G, H) =
∞∑
==1

sin(=G) (�=4=H + �=4−=H)

=
∑

==1,3,5,...

sin(=G)
(

2
c

1
= sinh(=c) (1 − 4

−=c)4=H + 2
c

1
= sinh(=c) (4

=c − 1)4−=H
)

=
2
c

∑
==1,3,5,...

1
= sinh(=c) sin(=G) ((1 − 4−=c)4=H + (4=c − 1)4−=H)

=
4
c

∑
==1,3,5,...

1
= sinh(=c) sin(=G)

(
4=(c−H) − 4−=(c−H)

2
+ 4

=H − 4−=H
2

)
=

4
c

∑
==1,3,5,...

1
= sinh(=c) sin(=G) (sinh(=(c − H)) + sinh(=H))

=
4
c

∞∑
==1

1
(2= − 1) sinh((2= − 1)c) sin((2= − 1)G) (sinh((2= − 1) (c − H)) + sinh((2= − 1)H)) .

as desired. �

7.7. (a) Compute the Laplace equation in a polar coordinate system.

Solution. We know already that the Laplacian is defined in the Cartesian coordinate system by

ΔD = DGG + DHH .

To compute the Laplace equation ΔD = 0 in the polar coordinate system, we need to derive the equivalent expression of
the Laplacian in polar coordinates. Let

G = G(A, \) = A cos(\),
H = H(A, \) = A sin(\),

D(G, H) = F(A, \) = D(G(A, \), H(A, \)),

the first two of which imply

A =
√
G2 + H2,

\ = tan−1
( H
G

)
.

We obtain first partial derivatives

AG = (
√
G2 + H2)G =

G√
G2 + H2

=
G

A
,

AH = (
√
G2 + H2)H =

H√
G2 + H2

=
H

A
,

\G =

(
tan−1

( H
G

))
G
= − H

G2 + H2 = −
H

A2 ,

\H =

(
tan−1

( H
G

))
H
=

G

G2 + H2 =
G

A2



and the second partial derivatives

AGG =

(
G√

G2 + H2

)
G

=
H2

(G2 + H2) 3
2

=
H2

A3 ,

AHH =

(
H√

G2 + H2

)
H

=
G2

(G2 + H2) 3
2

=
G2

A3 ,

\GG =

(
− H

G2 + H2

)
G

=
2GH

(G2 + H2)2
=

2GH
A4 ,

\HH =

(
G

G2 + H2

)
H

= − 2GH
(G2 + H2)2

= −2GH
A4 .

So, by the multivariable chain rule, we obtain the second partial derivatives

DGG = (F(A, \))GG
= (FAAG + F \\G)G
= (FAAG)G + (F \\G)G
= (FAA (AG)2 + FAAGG) + (F \ \ (\G)2 + F \\GG)

= FAA
G2

A2 + FA
H2

A3 + F \ \
H2

A4 + F \
2GH
A4

and

DHH = (F(A, \))HH
= (FAAG + F \\G)H
= (FAAH)H + (F \\H)H
= (FAA (AH)2 + FAAHH) + (F \ \ (\H)2 + F \\HH)

= FAA
H2

A2 + FA
G2

A3 + F \ \
G2

A4 − F \
2GH
A4 .

Therefore, the Laplacian in polar coordinates is

ΔD = DGG + DHH

=

(
FAA

G2

A2 + FA
H2

A3 + F \ \
H2

A4 +�
�
��

F \
2GH
A4

)
+

(
FAA

H2

A2 + FA
G2

A3 + F \ \
G2

A4 −�
�
��

F \
2GH
A4

)
= FAA

G2 + H2

A2 + FA
G2 + H2

A3 + F \ \
G2 + H2

A4

= FAA
A2

A2 + FA
A2

A3 + F \ \
A2

A4

= FAA +
1
A
FA +

1
A2F \ \ .

This means that the Laplace equation ΔD = 0 in polar coordinates is written

FAA +
1
A
FA +

1
A2F \ \ = 0,

as desired. �

(b) Let � ⊂ R2 be the disk � = {(G, H) ∈ R2 | G2 + H2 < 6}. Solve the problem

ΔD = 0 (G, H) ∈ �,
D(G, H) = H + H2 (G, H) ∈ m�.

Write your answer in the Cartesian coordinate system.

Solution. Define F(A, \) = D(G(A, \), H(A, \)). Then the problem is transformed into

ΔF = 0 0 < A <
√

6, 0 ≤ \ ≤ 2c

F(
√

6, \) =
√

6 sin(\) + 6 sin2 (\) 0 ≤ \ ≤ 2c

We want to find a solution of the form
F(A, \) = '(A)Θ(\).



Our partial derivatives are

FA (A, \) = 'A (A)Θ(\),
FAA (A, \) = 'AA (A)Θ(\),
F \ \ (A, \) = '(A)Θ\ \ (\).

So the partial differential equation

FAA +
1
A
FA +

1
A2F \ \ = ΔF = 0

becomes
'AA (A)Θ(\) +

1
A
'A (A)Θ(\) +

1
A2 '(A)Θ\ \ (\) = 0,

which we can algebraically rearrange to write

−A
2'AA (A) + A'A (A)

'(A) =
Θ\ \ (\)
Θ(\) = −_,

where _ is a constant in both A and \. This produces the system of two ordinary differential equations

A2 3
2'

3A2 + A
3'

3A
− _' = 0

32Θ

3A2 + _Θ = 0.

This system is decoupled, which allows us to solve each one independently and obtain the general solutions

'(A) =


�1 cos(

√
−_ ln(A)) + �2 sin(

√
−_ ln(A)) if _ < 0,

�1 ln(A) + �2 if _ = 0,
�1A

√
_ + �2A

−
√
_ if _ > 0,

Θ(\) =


�14

√
−_\ + �24

−
√
−_\ if _ < 0,

�1\ + �2 if _ = 0,
�1 cos(

√
_\) + �2 sin(

√
_\) if _ > 0,

where �1, �2, �1, �2 are constants. Now, according to page 196 of the textbook, the equation for Θ holds at the interval
(0, 2c). In order for Θ(\) to be twice differentiable (so that 3

2Θ
3\2 makes sense, after all) for all \ ∈ R, we need to impose

the periodic boundary conditions

Θ(0) = Θ(2c),
3

3\
Θ(0) = 3

3\
Θ(2c),

which will impose constraints on the constants �1, �2, depending on _. This motivates us to break this down into cases.

• Case 1: Suppose _ < 0. Then we have

Θ(\) = �14
√
−_\ + �24

−
√
−_\ ,

Θ(0) = Θ(2c),

which implies �1 + �2 = �14
2c
√
−_ + �24

−2c
√
−_. We also have

3

3\
Θ(\) =

√
−_(�14

√
−_G − �24

−
√
−_G),

3

3\
Θ(0) = 3

3\
Θ(2c),

which implies �1−�2 = �14
2c
√
−_−�24

−2c
√
−_. Now we will solve for the constants �1, �2. We have formulated

the linear system

�1 + �2 = �14
2c
√
−_ + �24

−2c
√
−_,

�1 − �2 = �14
2c
√
−_ − �24

−2c
√
−_,

and we can algebraically rearrange each equation in the system to write

�1 (1 − 42c
√
−_) = −�2 (1 − 4−2c

√
−_),

�1 (1 − 42c
√
−_) = �2 (1 − 4−2c

√
−_).



We can combine the two equations in the system to deduce

�1 (1 − 42c
√
−_) = −�2 (1 − 4−2c

√
−_)

= −�1 (1 − 4−2c
√
−_).

Since we are currently in the case _ < 0, we have 1 − 42c
√
−_ ≠ 0, and so we can divide 1 − 42c

√
−_ from both

sides of our previous equation to conclude �1 = −�1, or �1 = 0. Likewise, we can combine the two equations in
the system to deduce

�2 (1 − 4−2c
√
−_) = �1 (1 − 42c

√
−_)

= −�2 (1 − 4−2c
√
−_).

Since we are currently in the case _ < 0, we have 1 − 4−2c
√
−_ ≠ 0, and so we can divide 1 − 4−2c

√
−_ from both

sides of our previous equation to conclude �2 = −�2, or �2 = 0. So we have

Θ(\) = �14
√
−_\ + �24

−
√
−_\

= 04
√
−_\ + 04−

√
−_\

= 0.

Therefore, we have

F(A, \) = '(A)Θ(\)
= '(A) · 0
= 0,

which is a trivial solution.
• Case 2: Suppose _ = 0. Then we have

Θ(\) = �1\ + �2,

Θ(0) = Θ(2c),

which implies �1 = 0, and so we have

Θ(\) = �1\ + �2

= �1 · 0 + �2

= �2.

The derivative is

3

3\
Θ(\) = 3

3\
(�2)

= 0,

which clearly satisfies 3
3\
Θ(0) = 0 = 3

3\
Θ(2c). Next, observe that ln(A) is undefined at the origin (at A =

0). Following page 197 of the textbook, we only consider smooth solutions and disregard any solutions that are
undefined at the origin, and so we shall impose the condition �1 = 0. So we have

'(A) = �1 ln(A) + �2

= 0 ln(A) + �2

= �2.

Therefore, if we write U0
2 = �2�2, then we have

F0 (A, \) = '(A)Θ(\)
= �2�2

=
U0

2
,

which is a nontrivial smooth solution on a disk.
• Case 3: Suppose _ > 0. Then we have

Θ(\) = �1 cos(
√
_\) + �2 sin(

√
_\),

Θ(0) = Θ(2c),



which implies
�1 = �1 cos(2c

√
_) + �2 sin(2c

√
_). (1)

We also have

3

3\
Θ(\) =

√
_(−�1 sin(

√
_\) + �2 cos(

√
_\)),

3

3\
Θ(0) = 3

3\
Θ(2c),

which implies
�2 = −�1 sin(2c

√
_) + �2 cos(2c

√
_). (2)

Now, we claim that, if either sin(2c
√
_) ≠ 0 or cos(2c

√
_) ≠ 1, then we have �1 = 0 and �2 = 0.

– Subcase 1: Suppose sin(2c
√
_) ≠ 0. Multiply both sides of (1) by − cos(2c

√
_) and both sides of (2) by

sin(2c
√
_) to obtain

−�1 cos(2c
√
_) = −�1 cos2 (2c

√
_) − �2 sin(2c

√
_) cos(2c

√
_),

�2 sin(2c
√
_) = −�1 sin2 (2c

√
_) + �2 cos(2c

√
_) sin(2c

√
_),

from which we can add up both sides of the two equations to get

−�1 cos(2c
√
_) + �2 sin(2c

√
_) = −�1. (3)

We equate (1) and (3) to get

((((
(((

�1 cos(2c
√
_) − �2 sin(2c

√
_) =(((((

((
�1 cos(2c

√
_) + �2 sin(2c

√
_),

which simplifies to
−�2��

���sin(2c
√
_) = �2���

��sin(2c
√
_).

Since we assumed sin(2c
√
_) ≠ 0, we can divide both sides by sin(2c

√
_) to get −�2 = �2, which means

�2 = 0. Substitute �2 = 0 into (2) to obtain

0 = −�1 sin(2c
√
_),

which implies �1 = 0 because, once again, we assumed sin(2c
√
_) ≠ 0.

– Subcase 2: Suppose cos(2c
√
_) ≠ 1. Then we can rewrite (1) and (2) as

�1 (1 − cos(2c
√
_)) = �2 sin(2c

√
_), (4)

�2 (1 − cos(2c
√
_)) = −�1 sin(2c

√
_), . (5)

Multiply both sides of (4) by �1 and both sides of (5) by �2 to obtain

�2
1 (1 − cos(2c

√
_)) = �1�2 sin(2c

√
_),

�2
2 (1 − cos(2c

√
_)) = −�1�2 sin(2c

√
_),

from which we can add up both sides of the two equations to get

(�2
1 + �

2
2) (1 − cos(2c

√
_)) = 0.

Since we assumed cos(2c
√
_) ≠ 1, we must conclude �2

1 + �
2
2 = 0, which forces �1 = 0 and �2 = 0.

So we have proved our claim. Now that we have established our claim, we would have

Θ(\) = �1 cos(
√
_\) + �2 sin(

√
_\)

= 0 cos(
√
_\) + 0 sin(

√
_\)

= 0,

which would imply that F(A, \) = '(A)Θ(\) is a trivial solution. Therefore, to find a nontrivial solution for this
case, we should assume both

sin(2c
√
_) = 0,

1 − cos(2c
√
_) = 0,

which imply 2c
√
_ = 2=c, or equivalently

_= = _ = =
2,



and so we have

Θ= (\) = �1,= cos(
√
_=\) + �2,= sin(

√
_=\)

= �1,= cos(
√
=2\) + �2,= sin(

√
=2\)

= �1,= cos(=\) + �2,= sin(=\)

and

'= (A) = �1,=A
√
_= + �2,=A

−
√
_=

= �1,=A
√
=2 + �2,=A

−
√
=2

= �1,=A
= + �2,=A

−=

for = = 1, 2, 3, . . .. Observe that A−= for = = 1, 2, . . . is undefined at the origin (at A = 0). Following page 197 of the
textbook, we only consider smooth solutions and disregard any solutions that are undefined at the origin, and so we
shall impose the condition �2,= = 0. So we have

'= (A) = �1,=A
= + �2,=A

−=

= �1,=A
= + 0A−=

= �1,=A
=.

Therefore, if we write U= := �1,=�1,= and V= := �1,=�2,=, then we have

F= (A, \) = '= (A)Θ= (\)
= (�1,=A

=) (�1,= cos(=\) + �2,= sin(=\))
= A= (�1,=�1,= cos(=\) + �1,=�2,= sin(=\))
= A= (U= cos(=\) + V= sin(=\)).

for = = 1, 2, 3, . . .. This is a nontrivial smooth solution on a disk.

We recall that an addition of smooth solutions is again a smooth solution. So that means, as we have established already
that each F= (A, \) is a nontrivial smooth solution for = = 1, 2, 3, . . ., it follows that

F(A, \) = F0 (A, \) +
∞∑
==1

F= (A, \)

=
U0

2
+
∞∑
==1

A= (U= cos(=\) + V= sin(=\))

is a general smooth solution of the Laplace equation on a disk. Next, we will compute the Fourier coefficients U0, U=, V=.
We have

F(
√

6, \) = U0

2
+
∞∑
==1

6
=
2 (U= cos(=\) + V= sin(=\))

=
U0

2
+
∞∑
==1

6
=
2 U= cos(=\) +

∞∑
==1

6
=
2 V= sin(=\)

and the given boundary condition

F(
√

6, \) =
√

6 sin(\) + 6 sin2 (\)
=
√

6 sin(\) + 3(1 − cos(2\))
= 3 − 3 cos(2\) +

√
6 sin(\).

Both our expressions of F(
√

6, \) yield

U0

2
+
∞∑
==1

6
=
2 U= cos(=\) +

∞∑
==1

6
=
2 V= sin(=\) = 3 − 3 cos(2\) +

√
6 sin(\).

By the uniqueness of the Fourier series expansion, we can equate the terms of both sides of our above equation to find
the Fourier coefficients

U0 = 6,

U2 = −
1
2
,

U= = 0



for = = 1 and for = = 3, 4, 5, . . . and

V1 = 1,
V= = 0

for = = 2, 3, 4, . . .. Therefore, our formal solution in polar coordinates is

F(A, \) = U0

2
+
∞∑
==1

A= (U= cos(=\) + V= sin(=\))

=
U0

2
+
∞∑
==1

U=A
= cos(=\) +

∞∑
==1

V=A
= sin(=\)

=
U0

2
+

©­­«U2A
2 cos(2\) +

∑
==1

==3,4,5,...

U=A
= cos(=\)

ª®®¬ +
(
V1A

1 sin(1\) +
∑

==2,3,4,...

V=A
= sin(=\)

)

=
6
2
+

©­­«−
1
2
A2 cos(2\) +

∑
==1

==3,4,5,...

0A= cos(=\)
ª®®¬ +

(
1A1 sin(1\) +

∑
==2,3,4,...

0A= sin(=\)
)

= 3 − 1
2
A2 cos(2\) + A sin(\) .

In Cartesian coordinates, our formal solution is

D(G, H) = D(G(A, \), H(A, \))
= F(A, \)

= 3 − 1
2
A2 cos(2\) + A sin(\)

= 3 − 1
2
A2 (cos2 (\) − sin2 (\)) + A sin(\)

= 3 − 1
2
((A cos(\))2 − (A sin(\))2) + A sin(\)

= 3 − 1
2
(G2 − H2) + H ,

where we used G = A cos(\) and H = A sin(\). �

7.8. (a) Solve the problem

ΔD = 0 0 < G < c, 0 < H < c,
D(G, 0) = D(G, c) = 0 0 ≤ G ≤ c,

D(0, H) = 0, D(c, H) = sin(H) 0 ≤ H ≤ c.

Solution. We want to find a solution of the form

D(G, H) = - (G). (H).

Our partial derivatives are

DGG (G, C) = -GG (G). (H),
DHH (G, C) = - (G).HH (H)

So the partial differential equation
DGG + DHH = ΔD = 0

becomes
-GG (G). (H) + - (G).HH (H) = 0,

which we can algebraically rearrange to write

−-GG (G)
- (G) =

.HH (H)
. (H) = −_,

where _ is a constant in both G and H. This produces the system of two ordinary differential equations

32-

3G2 − _- = 0

32.

3H2 + _. = 0.



This system is decoupled, which allows us to solve each one independently and obtain the general solutions

- (G) =


�1 cos(

√
−_G) + �2 sin(

√
−_G) if _ < 0,

�1G + �2 if _ = 0,
�14

√
_G + �24

−
√
_G if _ > 0,

. (H) =


�14

√
−_H + �24

−
√
−_H if _ < 0,

�1H + �2 if _ = 0,
�1 cos(

√
_H) + �2 sin(

√
_H) if _ > 0,

where �1, �2, �1, �2 are constants. Now, the boundary conditions

D(0, H) = D(G, 0) = D(G, c) = 0

are equivalent to

- (0). (H) = - (G). (0) = - (G). (c) = 0,

which imply either - (G) = . (H) = 0 or - (c) = . (0) = . (c) = 0. If we assume either - (G) = 0 or . (H) = 0, then in
either case we would have a trivial solution. But we are really interested in finding a nontrivial solution. So we should
assume

- (0) = . (0) = . (c) = 0,

which will impose constraints on the constants �1, �2, depending on _. This motivates us to break this down into cases.

• Case 1: Suppose _ < 0. Then

. (H) = �14
√
−_H + �24

−
√
−_H ,

. (0) = 0

implies �2 = −�1, and so we have

. (H) = �14
√
−_H + �24

−
√
−_H

= �14
√
−_H − �14

−
√
−_H

= �1 (4
√
−_H − 4−

√
−_H).

Now, if _ < 0, then 4
√
−_c − 4−

√
−_c ≠ 0. This means

. (H) = �1 (4
√
−_H − �24

−
√
−_H),

. (c) = 0

implies �1 = 0, and so we have

- (G) = �1 (4
√
−_H − 4−

√
−_H)

= 0(4
√
−_H − 4−

√
−_H)

= 0.

Therefore, we have

D(G, H) = - (G). (H)
= 0. (H)
= 0,

which is a trivial solution.
• Case 2: Suppose _ = 0. Then

. (H) = �1H + �2,

. (0) = 0

implies �2 = 0, and so we have

. (H) = �1H + �2

= �1H + 0
= �1H.



Next,

. (H) = �1H,

. (c) = 0

implies �1 = 0, and so we have

. (H) = �1H

= 0H
= 0.

Therefore, we have

D(G, H) = - (G). (H)
= 0. (H)
= 0,

which is a trivial solution.
• Case 3: Suppose _ > 0. Then

. (H) = �1 cos(
√
_H) + �2 sin(

√
_H),

. (0) = 0

implies �1 = 0, and so we have

. (H) = �1 cos(
√
_H) + �2 sin(

√
_H)

= 0 cos(
√
_G) + �2 sin(

√
_H)

= �2 sin(
√
_H).

Next,

. (H) = �2 sin(
√
_H),

. (c) = 0

implies sin(
√
_H) = 0, which in turn implies

√
_c = =c, or equivalently

_= = _ = =
2.

Also,

- (G) = �14
√
_G + �24

−
√
_G ,

- (0) = 0

implies �2 = −�1, and so we have

- (G) = �14
√
_G + �24

−
√
_G

= �14
√
_G − �14

−
√
_G

= 2�1
4
√
_G − 4−

√
_G

2
= 2�1 sinh(

√
_G).

Therefore, we have

-= (G) = 2�1,= sinh(
√
_=G)

= 2�1,= sinh(
√
=2G)

= 2�1,= sinh(=G).

and

.= (H) = �2,= sin(
√
_=H)

= �2,= sin(
√
=2H)

= �2,= sin(=H)



for = = 1, 2, 3, . . .. Therefore, if we write �= = 2�1,=�1,=, then we have

D= (G, H) = -= (G).= (H)
= (2�1,= sinh(=G)) (�2,= sin(=H))
= 2�1,=�2,= sinh(=G) sin(=H)
= �= sinh(=G) sin(=H)

for = = 1, 2, 3, . . .. This is a nontrivial solution, as desired.

We recall that an addition of solutions is again a solution. So that means, as we have established already that each
D= (G, C) is a nontrivial solution for = = 1, 2, 3, . . ., it follows that

D(G, H) =
∞∑
==1

D= (G, H)

=

∞∑
==1

�= sinh(=G) sin(=H)

is also a nontrivial solution of the problem. Next, we will compute the Fourier coefficients �=. We have

sin(H) = D(c, H) =
∞∑
==1

�= sinh(=c) sin(=H).

Now, recall ∫ c

0
sin(=H) sin(<H) 3H =

{
c
2 if = = <,
0 if = ≠ <.

Consequently, we obtain ∫ c

0
sin(H) sin(=H) 3H =

∫ c

0

∞∑
<=1

�< sinh(<c) sin(<H) sin(=H) 3H

=

∞∑
<=1

�< sinh(<c)
∫ c

0
sin(<H) sin(=H) 3H

= �= sinh(=c) c
2
,

which implies

�= =
2

c sinh(=c)

∫ c

0
sin(H) sin(=H) 3H

=

{
1

sinh(=c) if = = 1,
0 if = = 2, 3, 4, . . . .

So our formal solution is

D(G, H) =
∞∑
==1

�= sinh(=G) sin(=H)

= �1 sinh(1G) sin(1H) +
∞∑
==2

�= sinh(=G) sin(=H)

=
1

sinh(c) sinh(1G) sin(1H) +
∞∑
==2

0 sinh(=G) sin(=H)

=
1

sinh(c) sinh(G) sin(H) ,

as desired. �

(b) Is there a point {(G, H) ∈ R2 | 0 < G < c, 0 < H < c} such that D(G, H) = 0?

Answer. No, there does not exist a point in {(G, H) ∈ R2 | 0 < G < c, 0 < H < c} such that D(G, H) = 0. Because we
have 3

3G
(sinh(G)) = cosh(G) > 0 for all 0 < G < c, it follows that sinh(G) is an increasing function of G, which implies

in particular sinh(G) > sinh(0) = 0 for all 0 < G < c. Also, we have sin(H) > 0 for all 0 < H < c. So we conclude

D(G, H) = 1
sinh(c) sinh(G) sin(H) > 0,

which implies D(G, H) ≠ 0 on all of {(G, H) ∈ R2 | 0 < G < c, 0 < H < c}. �



7.11. Let � ⊂ R2 be the domain � = {(G, H) ∈ R2 | G2 + H2 > 4}. Solve

ΔD = 0 (G, H) ∈ �,
D(G, H) = H (G, H) ∈ m�,

lim
|G |+ |H |→∞

D(G, H) = 0.

Solution. Define F(A, \) = D(G(A, \), H(A, \)). Then the problem is transformed into

ΔF = 0 0 < A <
√

6, 0 ≤ \ ≤ 2c
F(2, \) = 2 sin(\) 0 ≤ \ ≤ 2c

lim
A→∞

F(A, \) = 0.

We want to find a solution of the form
F(A, \) = '(A)Θ(\).

Our partial derivatives are

FA (A, \) = 'A (A)Θ(\),
FAA (A, \) = 'AA (A)Θ(\),
F \ \ (A, \) = '(A)Θ\ \ (\).

So the partial differential equation

FAA +
1
A
FA +

1
A2F \ \ = ΔF = 0

becomes
'AA (A)Θ(\) +

1
A
'A (A)Θ(\) +

1
A2 '(A)Θ\ \ (\) = 0,

which we can algebraically rearrange to write

−A
2'AA (A) + A'A (A)

'(A) =
Θ\ \ (\)
Θ(\) = −_,

where _ is a constant in both A and \. This produces the system of two ordinary differential equations

A2 3
2'

3A2 + A
3'

3A
− _' = 0

32Θ

3A2 + _Θ = 0.

This system is decoupled, which allows us to solve each one independently and obtain the general solutions

'(A) =


�1 cos(

√
−_ ln(A)) + �2 sin(

√
−_ ln(A)) if _ < 0,

�1 ln(A) + �2 if _ = 0,
�1A

√
_ + �2A

−
√
_ if _ > 0,

Θ(\) =


�14

√
−_\ + �24

−
√
−_\ if _ < 0,

�1\ + �2 if _ = 0,
�1 cos(

√
_\) + �2 sin(

√
_\) if _ > 0,

where �1, �2, �1, �2 are constants. Now, according to page 196 of the textbook, the equation for Θ holds at the interval
(0, 2c). In order for Θ(\) to be twice differentiable (so that 3

2Θ
3\2 makes sense, after all) for all \ ∈ R, we need to impose the

periodic boundary conditions

Θ(0) = Θ(2c),
3

3\
Θ(0) = 3

3\
Θ(2c),

which will impose constraints on the constants �1, �2, depending on _. This motivates us to break this down into cases.

• Case 1: Suppose _ < 0. Then we have

Θ(\) = �14
√
−_\ + �24

−
√
−_\ ,

Θ(0) = Θ(2c),



which implies �1 + �2 = �14
2c
√
−_ + �24

−2c
√
−_. We also have

3

3\
Θ(\) =

√
−_(�14

√
−_G − �24

−
√
−_G),

3

3\
Θ(0) = 3

3\
Θ(2c),

which implies �1 − �2 = �14
2c
√
−_ − �24

−2c
√
−_. Now we will solve for the constants �1, �2. We have formulated

the linear system

�1 + �2 = �14
2c
√
−_ + �24

−2c
√
−_,

�1 − �2 = �14
2c
√
−_ − �24

−2c
√
−_,

and we can algebraically rearrange each equation in the system to write

�1 (1 − 42c
√
−_) = −�2 (1 − 4−2c

√
−_),

�1 (1 − 42c
√
−_) = �2 (1 − 4−2c

√
−_).

We can combine the two equations in the system to deduce

�1 (1 − 42c
√
−_) = −�2 (1 − 4−2c

√
−_)

= −�1 (1 − 4−2c
√
−_).

Since we are currently in the case _ < 0, we have 1 − 42c
√
−_ ≠ 0, and so we can divide 1 − 42c

√
−_ from both sides of

our previous equation to conclude �1 = −�1, or �1 = 0. Likewise, we can combine the two equations in the system to
deduce

�2 (1 − 4−2c
√
−_) = �1 (1 − 42c

√
−_)

= −�2 (1 − 4−2c
√
−_).

Since we are currently in the case _ < 0, we have 1 − 4−2c
√
−_ ≠ 0, and so we can divide 1 − 4−2c

√
−_ from both sides

of our previous equation to conclude �2 = −�2, or �2 = 0. So we have

Θ(\) = �14
√
−_\ + �24

−
√
−_\

= 04
√
−_\ + 04−

√
−_\

= 0.

Therefore, we have

F(A, \) = '(A)Θ(\)
= '(A) · 0
= 0,

which is a trivial solution.
• Case 2: Suppose _ = 0. Then we have

Θ(\) = �1\ + �2,

Θ(0) = Θ(2c),

which implies �1 = 0, and so we have

Θ(\) = �1\ + �2

= �1 · 0 + �2

= �2.

The derivative is
3

3\
Θ(\) = 3

3\
(�2)

= 0,

which clearly satisfies 3
3\
Θ(0) = 0 = 3

3\
Θ(2c). Therefore, if we write U0

2 = �2�2, then we have

F0 (A, \) = '(A)Θ(\)
= (�1 ln(A) + �2)�2

= �1�2 ln(A) + �2�2

=
U0

2
ln(A) + V0

2
,

which is a nontrivial smooth solution that is also bounded in �.



• Case 3: Suppose _ > 0. Then we have

Θ(\) = �1 cos(
√
_\) + �2 sin(

√
_\),

Θ(0) = Θ(2c),

which implies
�1 = �1 cos(2c

√
_) + �2 sin(2c

√
_). (1)

We also have

3

3\
Θ(\) =

√
_(−�1 sin(

√
_\) + �2 cos(

√
_\)),

3

3\
Θ(0) = 3

3\
Θ(2c),

which implies
�2 = −�1 sin(2c

√
_) + �2 cos(2c

√
_). (2)

Now, we claim that, if either sin(2c
√
_) ≠ 0 or cos(2c

√
_) ≠ 1, then we have �1 = 0 and �2 = 0.

– Subcase 1: Suppose sin(2c
√
_) ≠ 0. Multiply both sides of (1) by − cos(2c

√
_) and both sides of (2) by sin(2c

√
_)

to obtain

−�1 cos(2c
√
_) = −�1 cos2 (2c

√
_) − �2 sin(2c

√
_) cos(2c

√
_),

�2 sin(2c
√
_) = −�1 sin2 (2c

√
_) + �2 cos(2c

√
_) sin(2c

√
_),

from which we can add up both sides of the two equations to get

−�1 cos(2c
√
_) + �2 sin(2c

√
_) = −�1. (3)

We equate (1) and (3) to get

((((
(((

�1 cos(2c
√
_) − �2 sin(2c

√
_) =(((((

((
�1 cos(2c

√
_) + �2 sin(2c

√
_),

which simplifies to
−�2���

��sin(2c
√
_) = �2���

��sin(2c
√
_).

Since we assumed sin(2c
√
_) ≠ 0, we can divide both sides by sin(2c

√
_) to get −�2 = �2, which means �2 = 0.

Substitute �2 = 0 into (2) to obtain
0 = −�1 sin(2c

√
_),

which implies �1 = 0 because, once again, we assumed sin(2c
√
_) ≠ 0.

– Subcase 2: Suppose cos(2c
√
_) ≠ 1. Then we can rewrite (1) and (2) as

�1 (1 − cos(2c
√
_)) = �2 sin(2c

√
_), (4)

�2 (1 − cos(2c
√
_)) = −�1 sin(2c

√
_), . (5)

Multiply both sides of (4) by �1 and both sides of (5) by �2 to obtain

�2
1 (1 − cos(2c

√
_)) = �1�2 sin(2c

√
_),

�2
2 (1 − cos(2c

√
_)) = −�1�2 sin(2c

√
_),

from which we can add up both sides of the two equations to get

(�2
1 + �

2
2) (1 − cos(2c

√
_)) = 0.

Since we assumed cos(2c
√
_) ≠ 1, we must conclude �2

1 + �
2
2 = 0, which forces �1 = 0 and �2 = 0.

So we have proved our claim. Now that we have established our claim, we would have

Θ(\) = �1 cos(
√
_\) + �2 sin(

√
_\)

= 0 cos(
√
_\) + 0 sin(

√
_\)

= 0,

which would imply that F(A, \) = '(A)Θ(\) is a trivial solution. Therefore, to find a nontrivial solution for this case, we
should assume both

sin(2c
√
_) = 0,

1 − cos(2c
√
_) = 0,



which imply 2c
√
_ = 2=c, or equivalently

_= = _ = =
2,

and so we have

Θ= (\) = �1,= cos(
√
_=\) + �2,= sin(

√
_=\)

= �1,= cos(
√
=2\) + �2,= sin(

√
=2\)

= �1,= cos(=\) + �2,= sin(=\)

and

'= (A) = �1,=A
√
_= + �2,=A

−
√
_=

= �1,=A
√
=2 + �2,=A

−
√
=2

= �1,=A
= + �2,=A

−=

for = = 1, 2, 3, . . .. Observe that A= for = = 1, 2, . . . is unbounded as A → ∞. Following page 197 of the textbook, we
only consider bounded solutions and disregard any solutions that are unbounded as A → ∞, and so we shall impose the
condition �1,= = 0. So we have

'= (A) = �1,=A
= + �2,=A

−=

= 0A= + �2,=A
−=

= �2,=A
−=.

Therefore, if we write U= := �2,=�1,= and V= := �2,=�2,=, then we have

F= (A, \) = '= (A)Θ= (\)
= (�2,=A

−=) (�1,= cos(=\) + �2,= sin(=\))
= A−= (�2,=�1,= cos(=\) + �2,=�2,= sin(=\))
= A−= (U= cos(=\) + V= sin(=\)).

for = = 1, 2, 3, . . .. This is a nontrivial smooth solution that is also bounded in � because we also have the assumption
lim
A→∞

F(A, \) = 0.

We recall that an addition of smooth solutions is again a smooth solution. So that means, as we have established already that
each F= (A, \) is a nontrivial smooth solution for = = 1, 2, 3, . . ., it follows that

F(A, \) = F0 (A, \) +
∞∑
==1

F= (A, \)

=
U0

2
+
∞∑
==1

A−= (U= cos(=\) + V= sin(=\))

is the general solution of the Laplace equation that is bounded in �. Next, we will compute the Fourier coefficients U0, U=, V=.
We have

F(2, \) = U0

2
+
∞∑
==1

2−= (U= cos(=\) + V= sin(=\))

=
U0

2
+
∞∑
==1

2−=U= cos(=\) +
∞∑
==1

2−=V= sin(=\)

and the given boundary condition
F(2, \) = 2 sin(\).

Both our expressions of F(2, \) yield

U0

2
+
∞∑
==1

2−=U= cos(=\) +
∞∑
==1

2−=V= sin(=\) = 2 sin(\).

By the uniqueness of the Fourier series expansion, we can equate the terms of both sides of our above equation to find the
Fourier coefficients

U= = 0

for = = 0, 1, 2, . . . and

V1 = 4,
V= = 0



for = = 2, 3, 4, . . .. Therefore, our formal solution in polar coordinates is

F(A, \) = U0

2
+
∞∑
==1

A−= (U= cos(=\) + V= sin(=\))

=
U0

2
+
∞∑
==1

U=A
−= cos(=\) +

∞∑
==1

V=A
= sin(=\)

=
U0

2
+
∞∑
==1

U=A
−= cos(=\) +

(
V1A
−1 sin(1\) +

∑
==2,3,4,...

V=A
−= sin(=\)

)
=

0
2
+
∞∑
==1

0A= cos(=\) +
(
4A−1 sin(1\) +

∑
==2,3,4,...

0A−= sin(=\)
)

=
4
A

sin(\) .

In Cartesian coordinates, our formal solution is

D(G, H) = D(G(A, \), H(A, \))
= F(A, \)

=
4
A

sin(\)

=
4A sin(\)

A2

=
4H

G2 + H2 ,

where we used H = A sin(\) and A2 = G2 + H2. �

7.14. Consider the domain � = {(G, H) ∈ R2 | G2 + H2 < 4} and the Neumann problem

ΔD = 0 (G, H) ∈ �,
mD

m=
= UG2 + VH + W (G, H) ∈ m�,

where U, V, W are real constants.

(a) Find the values of U, V, W for which the problem is not solvable.

Solution. Lemma 7.4 of the textbook states that a necessary condition for the existence of a solution to the Neumann
problem

ΔD = 5 (G, H) (G, H) ∈ �,
mD

m=
= 6(G, H) (G, H) ∈ m�,

is ∫
m�

6(G(B), H(B)) 3B =
∬
�

5 (G, H) 3G 3H,

where (G(B), H(B)) is a parameterization of m�. For this specific exercise, we have 5 (G, H) = 0 and 6(G, H) = UG2+VH+W.
So the necessary condition becomes ∫

m�

U(G(B))2 + VH(B) + W 3B =
∬
�

0 3G 3H.

Now, the domain � = {(G, H) ∈ R2 | G2 + H2 < 4} implies the specific parameterizations

G(B) = 2 cos(\),
H(B) = 2 sin(\)

along the boundary m�. The necessary condition therefore becomes∫ 2c

0
U(2 cos(\))2 + V(2 sin(\)) + W 3\ =

∬
�

0 3G 3H,



or equivalently ∫ 2c

0
4U cos2 (\) + 2V sin(\) + W 3\ = 0.

But we can also rewrite the left hand side as∫ 2c

0
4U cos2 (\) + 2V sin(\) + W 3\ = 4U2

∫ 2c

0
cos2 (\) 3\ + 2V

∫ 2c

0
sin(\) 3\ + W

∫ 2c

0
1 3\

= 4U2 · c + 2V · 0 + W · 2c
= 2c(2U2 + W).

So the necessary condition finally becomes
2c(2U2 + W) = 0,

which implies
2U2 + W = 0,

or W = −2U2. We conclude that, if the solution to the Neumann problem exists, then we must have W = −2U2. In other
words, this problem is not solvable if we have W ≠ −2U2. �

7.15. Let � = {(G, H) ∈ R2 | 0 < G < c, 0 < H < c}. Denote its boundary by m�.

(a) Assume EGG + EHH + GEG + HEH > 0 in �. Prove that E has no local maximum in �.

Solution. We will prove by contradiction. Suppose instead that E has a local maximum at some (G0, H0) ∈ �. Then all
the first partial derivatives of E at (G0, H0) are zero and the second partial derivatives are nonpositive (negative or zero);
that is, we have

EG (G0, H0) = 0,
EH (G0, H0) = 0,
EGG (G0, H0) ≤ 0,
EHH (G0, H0) ≤ 0.

So, at (G0, H0) ∈ �, we have

EGG + EHH + GEG + HEH = EGG + EHH + G · 0 + H · 0
= EGG + EHH
≤ 0 + 0
= 0,

which contradicts the assumption EGG + EHH + GEG + HEH > 0 in �. We conclude that E has no local maximum in �. �

(b) Consider the problem

DGG + DHH + GDG + HDH = 0 if (G, H) ∈ �,
D(G, H) = 5 (G, H) if (G, H) ∈ m�,

where 5 is a continuous function. Show that, if D is a solution, then the maximum of D is achieved on the boundary m�.
Hint: Use the auxiliary function E n (G, H) = D(G, H) + nG2 for any n > 0.

Solution. Following the given hint, define E n (G, H) = D(G, H) + nG2 for any n > 0. Then we have the first and second
partial derivatives

(E n )G (G, H) = DG (G, H) + 2nG,
(E n )H (G, H) = DH (G, H),
(E n )GG (G, H) = DGG (G, H) + 2n,
(E n )HH (G, H) = DHH (G, H).

So we have

(E n )GG + (E n )HH + G(E n )G + H(E n )H = (DGG + 2n) + DHH + G(DG + 2nG) + HDH
= DGG + DHH + GDG + HDH + 2n (1 + G2)
= 0 + 2n (1 + G2)
= 2n (1 + G2)
> 2n (1 + 02)
= 2n
> 0



in �. Note that we have just obtained exactly the partial differential equation described in part (a). Since 5 is continuous
on m� and D = 5 on m�, it follows that D is continuous on m� and smooth in �. Consequently, E n = D + nG2 is also
continuous on m� and smooth in �. This rules out the possibility that E n does not have a maximum on either � or m�;
in other words, max

�∪m�
E n exists. But part (a) asserts that E n has no local maximum in �. So we conclude that the only

place on which the maximum of E n exists is m�. This implies that, for all n > 0, we have

max
�∪m�

E n = max
m�

E n

= max
m�
(D + nG2)

= max
m�

D + n (max
m�

G2)

= max
m�

D + nc2.

In other words, we have
E n (G, H) ≤ max

m�
D(G, H) + nc2

for all (G, H) ∈ �. Finally, we can send n → 0+ both sides of our latest equation, writing

lim
n→0+

E n (G, H) ≤ lim
n→0+
(max
m�

D(G, H) + nc2),

to conclude
D(G, H) ≤ max

m�
D(G, H)

for all (G, H) ∈ �. In other words, we conclude that the maximum of D is achieved on m�. �

(c) Show that the problem formulated in part (b) has at most one solution.

Solution. Suppose D1 (G, H) and D2 (G, H) are two solutions of the problem formulated in part (b). First, define F(G, H) =
D1 (G, H) − D2 (G, H). Then F and −F solve

FGG + FHH + GFG + HFH = 0 if (G, H) ∈ �,
F(G, H) = 0 if (G, H) ∈ m�.

By the Weak Maximum Principle, we have

max
�

F(G, H) ≤ max
m�

F(G, H),

max
�
−F(G, H) ≤ max

m�
−F(G, H),

which implies

F(G, H) ≤ max
m�

F(G, H) = max
m�

0 = 0,

−F(G, H) ≤ max
m�
−F(G, H) = max

m�
0 = 0

for all (G, H) ∈ �. Note that −F(G, H) ≤ 0 is equivalent to F(G, H) ≥ 0. So we conclude

0 ≤ F(G, H) ≤ 0,

which forces F = 0, or D1 − D2 = 0 in �. In other words, we have D1 = D2 in �, meaning that the problem in part (b) has
at most one solution in �. It also goes without saying that the problem in part (b) also has at most one solution in m�
because we have been dealing with F = 0 on m�. �

7.20. Consider the domain � = {(A, \) ∈ R × [0, 2c] | 2 < A < 4, 0 ≤ \ ≤ 2c}. Find D(A, \) that solves

ΔD = 0 2 < A < 4, 0 ≤ \ ≤ 2c,
D(2, \) = 0, D(4, \) = sin(\), 0 ≤ \ ≤ 2c.

Solution. We want to find a solution of the form

D(A, \) = '(A)Θ(\).

Our partial derivatives are

DA (A, \) = 'A (A)Θ(\),
DAA (A, \) = 'AA (A)Θ(\),
D\ \ (A, \) = '(A)Θ\ \ (\).



So the partial differential equation

DAA +
1
A
DA +

1
A2 D\ \ = ΔF = 0

becomes
'AA (A)Θ(\) +

1
A
'A (A)Θ(\) +

1
A2 '(A)Θ\ \ (\) = 0,

which we can algebraically rearrange to write

−A
2'AA (A) + A'A (A)

'(A) =
Θ\ \ (\)
Θ(\) = −_,

where _ is a constant in both A and \. This produces the system of two ordinary differential equations

A2 3
2'

3A2 + A
3'

3A
− _' = 0

32Θ

3A2 + _Θ = 0.

This system is decoupled, which allows us to solve each one independently and obtain the general solutions

'(A) =


�1 cos(

√
−_ ln(A)) + �2 sin(

√
−_ ln(A)) if _ < 0,

�1 ln(A) + �2 if _ = 0,
�1A

√
_ + �2A

−
√
_ if _ > 0,

Θ(\) =


�14

√
−_\ + �24

−
√
−_\ if _ < 0,

�1\ + �2 if _ = 0,
�1 cos(

√
_\) + �2 sin(

√
_\) if _ > 0,

where �1, �2, �1, �2 are constants. Now, according to page 196 of the textbook, the equation for Θ holds at the interval
(0, 2c). In order for Θ(\) to be twice differentiable (so that 3

2Θ
3\2 makes sense, after all) for all \ ∈ R, we need to impose the

periodic boundary conditions

Θ(0) = Θ(2c),
3

3\
Θ(0) = 3

3\
Θ(2c),

which will impose constraints on the constants �1, �2, depending on _. This motivates us to break this down into cases.

• Case 1: Suppose _ < 0. Then we have

Θ(\) = �14
√
−_\ + �24

−
√
−_\ ,

Θ(0) = Θ(2c),

which implies �1 + �2 = �14
2c
√
−_ + �24

−2c
√
−_. We also have

3

3\
Θ(\) =

√
−_(�14

√
−_G − �24

−
√
−_G),

3

3\
Θ(0) = 3

3\
Θ(2c),

which implies �1 − �2 = �14
2c
√
−_ − �24

−2c
√
−_. Now we will solve for the constants �1, �2. We have formulated

the linear system

�1 + �2 = �14
2c
√
−_ + �24

−2c
√
−_,

�1 − �2 = �14
2c
√
−_ − �24

−2c
√
−_,

and we can algebraically rearrange each equation in the system to write

�1 (1 − 42c
√
−_) = −�2 (1 − 4−2c

√
−_),

�1 (1 − 42c
√
−_) = �2 (1 − 4−2c

√
−_).

We can combine the two equations in the system to deduce

�1 (1 − 42c
√
−_) = −�2 (1 − 4−2c

√
−_)

= −�1 (1 − 4−2c
√
−_).



Since we are currently in the case _ < 0, we have 1 − 42c
√
−_ ≠ 0, and so we can divide 1 − 42c

√
−_ from both sides of

our previous equation to conclude �1 = −�1, or �1 = 0. Likewise, we can combine the two equations in the system to
deduce

�2 (1 − 4−2c
√
−_) = �1 (1 − 42c

√
−_)

= −�2 (1 − 4−2c
√
−_).

Since we are currently in the case _ < 0, we have 1 − 4−2c
√
−_ ≠ 0, and so we can divide 1 − 4−2c

√
−_ from both sides

of our previous equation to conclude �2 = −�2, or �2 = 0. So we have

Θ(\) = �14
√
−_\ + �24

−
√
−_\

= 04
√
−_\ + 04−

√
−_\

= 0.

Therefore, we have

F(A, \) = '(A)Θ(\)
= '(A) · 0
= 0,

which is a trivial solution.

• Case 2: Suppose _ = 0. Then we have

Θ(\) = �1\ + �2,

Θ(0) = Θ(2c),

which implies �1 = 0, and so we have

Θ(\) = �1\ + �2

= �1 · 0 + �2

= �2.

The derivative is

3

3\
Θ(\) = 3

3\
(�2)

= 0,

which clearly satisfies 3
3\
Θ(0) = 0 = 3

3\
Θ(2c). Therefore, if we write U0

2 = �1�2 and V0
2 = �2�2, then we have

D0 (A, \) = '(A)Θ(\)
= (�1 ln(A) + �2)�2

= �1�2 ln(A) + �2�2

=
U0

2
ln(A) + V0

2
,

which is a nontrivial smooth solution that is also bounded in �.

• Case 3: Suppose _ > 0. Then we have

Θ(\) = �1 cos(
√
_\) + �2 sin(

√
_\),

Θ(0) = Θ(2c),

which implies
�1 = �1 cos(2c

√
_) + �2 sin(2c

√
_). (1)

We also have

3

3\
Θ(\) =

√
_(−�1 sin(

√
_\) + �2 cos(

√
_\)),

3

3\
Θ(0) = 3

3\
Θ(2c),

which implies
�2 = −�1 sin(2c

√
_) + �2 cos(2c

√
_). (2)

Now, we claim that, if either sin(2c
√
_) ≠ 0 or cos(2c

√
_) ≠ 1, then we have �1 = 0 and �2 = 0.



– Subcase 1: Suppose sin(2c
√
_) ≠ 0. Multiply both sides of (1) by − cos(2c

√
_) and both sides of (2) by sin(2c

√
_)

to obtain

−�1 cos(2c
√
_) = −�1 cos2 (2c

√
_) − �2 sin(2c

√
_) cos(2c

√
_),

�2 sin(2c
√
_) = −�1 sin2 (2c

√
_) + �2 cos(2c

√
_) sin(2c

√
_),

from which we can add up both sides of the two equations to get

−�1 cos(2c
√
_) + �2 sin(2c

√
_) = −�1. (3)

We equate (1) and (3) to get

((((
(((

�1 cos(2c
√
_) − �2 sin(2c

√
_) =(((((

((
�1 cos(2c

√
_) + �2 sin(2c

√
_),

which simplifies to
−�2��

���sin(2c
√
_) = �2���

��sin(2c
√
_).

Since we assumed sin(2c
√
_) ≠ 0, we can divide both sides by sin(2c

√
_) to get −�2 = �2, which means �2 = 0.

Substitute �2 = 0 into (2) to obtain
0 = −�1 sin(2c

√
_),

which implies �1 = 0 because, once again, we assumed sin(2c
√
_) ≠ 0.

– Subcase 2: Suppose cos(2c
√
_) ≠ 1. Then we can rewrite (1) and (2) as

�1 (1 − cos(2c
√
_)) = �2 sin(2c

√
_), (4)

�2 (1 − cos(2c
√
_)) = −�1 sin(2c

√
_), . (5)

Multiply both sides of (4) by �1 and both sides of (5) by �2 to obtain

�2
1 (1 − cos(2c

√
_)) = �1�2 sin(2c

√
_),

�2
2 (1 − cos(2c

√
_)) = −�1�2 sin(2c

√
_),

from which we can add up both sides of the two equations to get

(�2
1 + �

2
2) (1 − cos(2c

√
_)) = 0.

Since we assumed cos(2c
√
_) ≠ 1, we must conclude �2

1 + �
2
2 = 0, which forces �1 = 0 and �2 = 0.

So we have proved our claim. Now that we have established our claim, we would have

Θ(\) = �1 cos(
√
_\) + �2 sin(

√
_\)

= 0 cos(
√
_\) + 0 sin(

√
_\)

= 0,

which would imply that F(A, \) = '(A)Θ(\) is a trivial solution. Therefore, to find a nontrivial solution for this case, we
should assume both

sin(2c
√
_) = 0,

1 − cos(2c
√
_) = 0,

which imply 2c
√
_ = 2=c, or equivalently

_= = _ = =
2,

and so we have

Θ= (\) = �1,= cos(
√
_=\) + �2,= sin(

√
_=\)

= �1,= cos(
√
=2\) + �2,= sin(

√
=2\)

= �1,= cos(=\) + �2,= sin(=\)

and

'= (A) = �1,=A
√
_= + �2,=A

−
√
_=

= �1,=A
√
=2 + �2,=A

−
√
=2

= �1,=A
= + �2,=A

−=



for = = 1, 2, 3, . . .. Therefore, if we write U= := �1,=�1,=, V= := �1,=�2,=, W= := �2,=�1,=, X= := �2,=�2,=, then we
have

D= (A, \) = '= (A)Θ= (\)
= (�1,=A

= + �2,=A
−=) (�1,= cos(=\) + �2,= sin(=\))

= (�1,=�1,=A
= + �2,=�1,=A

−=) cos(=\) + (�1,=�2,=A
= + �2,=�2,=A

−=) sin(=\)
= (U=A= + W=A−=) cos(=\) + (V=A= + X=A−=) sin(=\).

for = = 1, 2, 3, . . .. This is a nontrivial smooth solution that is also bounded in �.

We recall that an addition of smooth solutions is again a smooth solution. So that means, as we have established already that
each F= (A, \) is a nontrivial smooth solution for = = 1, 2, 3, . . ., it follows that

D(A, \) = D0 (A, \) +
∞∑
==1

D= (A, \)

=
U0

2
ln(A) + V0

2
+
∞∑
==1

((U=A= + W=A−=) cos(=\) + (V=A= + X=A−=) sin(=\))

=
U0

2
ln(A) + V0

2
+
∞∑
==1

(U=A= + W=A−=) cos(=\) +
∞∑
==1

(V=A= + X=A−=) sin(=\)

is the general solution of the Laplace equation that is also bounded in �. Next, we will now compute the Fourier coefficients
U0, V0, U=, V=, W=, X=. We have

D(2, \) = U0

2
ln(2) + V0

2
+
∞∑
==1

(U=2= + W=2−=) cos(=\) +
∞∑
==1

(V=2= + X=2−=) sin(=\),

D(4, \) = U0

2
ln(4) + V0

2
+
∞∑
==1

(U=4= + W=4−=) cos(=\) +
∞∑
==1

(V=4= + X=4−=) sin(=\)

and the given boundary conditions

D(2, \) = 0,
D(4, \) = sin(\).

Both our expressions of D(2, \) and D(4, \) yield, respectively,

U0

2
ln(2) + V0

2
+
∞∑
==1

(U=2= + W=2−=) cos(=\) +
∞∑
==1

(V=2= + X=2−=) sin(=\) = 0,

U0

2
ln(4) + V0

2
+
∞∑
==1

(U=4= + W=4−=) cos(=\) +
∞∑
==1

(V=4= + X=4−=) sin(=\) = sin(\).

By the uniqueness of the Fourier series expansion, we can equate the terms of both sides of each of our two equations above
to find

U0 = V0 = 0,
U=2= + W=2−= = 0,
V=2= + X=2−= = 0,
U=4= + W=4−= = 0,

V14= + X=4−= =

{
1 if = = 1,
0 if = = 2, 3, 4, . . .

for = = 1, 2, 3, . . .. In particular, we have obtained two linear systems of equations

V=2= + X=2−= = 0,

V=4= + X=4−= =

{
1 if = = 1,
0 if = = 2, 3, 4, . . .

and

U=2= + W=2−= = 0,
U=4= + W=4−= = 0.



for = = 1, 2, 3, . . ., and we can simultaneously solve each one of them to obtain

U= = 0,

V= =

{
1
3 if = = 1,
0 if = = 2, 3, 4, . . . ,

W= = 0,

X= =

{
− 4

3 if = = 1,
0 if = = 2, 3, 4, . . .

for = = 1, 2, 3, . . .. Therefore, our formal solution in polar coordinates is

D(A, \) = U0

2
ln(A) + V0

2
+
∞∑
==1

(U=A= + W=A−=) cos(=\) +
∞∑
==1

(V=A= + X=A−=) sin(=\)

=
U0

2
ln(A) + V0

2
+
∞∑
==1

U=A
= cos(=\) +

∞∑
==1

W=A
−= cos(=\) +

∞∑
==1

V=A
= sin(=\) +

∞∑
==1

X=A
−= sin(=\)

=
U0

2
ln(A) + V0

2
+
∞∑
==1

U=A
= cos(=\) +

∞∑
==1

W=A
−= cos(=\)

+
(
V1A

1 sin(1\) +
∞∑
==2

V=A
= sin(=\)

)
+

(
X1A
−1 sin(1\) +

∞∑
==2

X=A
−= sin(=\)

)
=

0
2

ln(A) + 0
2
+
∞∑
==1

0A= cos(=\) +
∞∑
==1

0A−= cos(=\)

+
(

1
3
A1 sin(1\) +

∞∑
==2

0A= sin(=\)
)
+

(
−4

3
A−1 sin(1\) +

∞∑
==2

0A−= sin(=\)
)

=
1
3
A sin(\) − 4

3A
sin(\)

=
A2 − 4

3A
sin(\) ,

as desired. �

7.22. Consider the domain � = {(G, H) ∈ R2 | G2 + H2 < 36}. Let D(G, H) solve

ΔD = 0 (G, H) ∈ �,

D(G, H) =
{
G if G < 0,
0 if G ≥ 0

(G, H) ∈ m�.

(a) Prove that we have D(G, H) < min{G, 0} in �.
Hint: Prove that we have D(G, H) < G and D(G, H) < 0 in �.

Solution. Define E(G, H) := D(G, H) − G. Then E solves

ΔE = 0 (G, H) ∈ �,

E(G, H) =
{

0 if G < 0,
−G if G ≥ 0

(G, H) ∈ m�.

Notice by construction that D and E satisfy

D(G, H) ≤ 0,
E(G, H) ≤ 0

on m�. By the Weak Maximum Principle, we have

max
�
D(G, H) = max

m�
D(G, H),

max
�

E(G, H) = max
m�

E(G, H).

Also, we have of course

D(G, H) ≤ max
�
D(G, H),

E(G, H) ≤ max
�

E(G, H)



for all (G, H) ∈ �. However, if we have

D(G, H) = max
�
D(G, H),

E(G, H) = max
�

E(G, H)

at some (G, H) ∈ �, then the Strong Maximum Principle would assert that D and E are constant in �. By continuity of D
and E, we would conclude that D and E are also constant on m�, but this contradicts the known non-constant functions

D(G, H) =
{
G if G < 0,
0 if G ≥ 0,

E(G, H) =
{

0 if G < 0,
−G if G ≥ 0

on m�. Therefore, equality is not possible; in other words, we must conclude

D(G, H) < max
�
D(G, H),

E(G, H) < max
�

E(G, H)

Therefore, we have

D(G, H) < max
�
D(G, H) = max

m�
D(G, H) = 0,

E(G, H) < max
�

E(G, H) = max
m�

E(G, H) = 0

in �. This is equivalent to saying

D(G, H) < 0,
D(G, H) < G

in �, which is equivalent to D(G, H) < min{G, 0} in �. �

(b) Evaluate D(0, 0) using the mean value principle.

Solution. By the mean value principle (Theorem 7.7 of the textbook, on page 179) applied to �, we have

D(0, 0) = 1
2c

∫ 2c

0
D(0 + 6 cos(\), 0 + 6 sin(\)) 3\

=
1

2c

∫ 2c

0
D(6 cos(\), 6 sin(\)) 3\

=
1

2c

∫ c
2

0
0 3\ +

∫ 3c
2

c
2

6 cos(\) 3\ +
∫ 2c

3c
2

0 3\

=

∫ 3c
2

c
2

6 cos(\) 3\

= − 6
c
,

as desired. �

(c) Using Poisson’s formula, evaluate D(0, H) for 0 ≤ H < 6.

Solution. Note that the boundary function in polar coordinates is

ℎ(\) = F(6, \) =
{

0 if − c
2 < \ <

c
2 ,

6 cos(\) if c
2 < \ <

3c
2 .

By the Poisson formula from page 202 of the textbook applied to �, we have

F(A, \) = 1
2c

∫ 2c

0

36 − A2

36 − 12A cos(\ − i) + A2 ℎ(i) 3i

=
1

2c

∫ 3c
2

c
2

36 − A2

36 − 12A cos(\ − i) + A2 6 cos(i) 3i

=
3
c

∫ 3c
2

c
2

36 − A2

36 − 12A (cos(\) cos(i) + sin(\) sin(i)) + A2 cos(i) 3i.



In Cartesian coordinates, this is

D(G, H) = D(G(A, \), H(A, \))
= F(A, \)

=
3
c

∫ 3c
2

c
2

36 − A2

36 − 12A (cos(\) cos(i) + sin(\) sin(i)) + A2 cos(i) 3i

=
3
c

∫ 3c
2

c
2

36 − A2

36 − 12(A cos(\) cos(i) + A sin(\) sin(i)) + A2 cos(i) 3i

=
3
c

∫ 3c
2

c
2

36 − (G2 + H2)
36 − 12(G cos(i) + H sin(i)) + G2 + H2 cos(i) 3i.

On the line G = 0, we obtain

D(0, 0) = 3
c

∫ 3c
2

c
2

36 − (02 + 02)
36 − 12(0 cos(i) + 0 sin(i)) + 02 + 02 cos(i) 3i

=
3
c

∫ 3c
2

c
2

cos(i) 3i

=
3
c
· −2

= − 6
c

and, if we can employ the substitution D = 36 − 12H sin(i) + H2, which implies 3D = −12H cos(i) 3i, then we have

D(0, H) = 3
c

∫ 3c
2

c
2

36 − (02 + H2)
36 − 12(0 cos(i) + H sin(i)) + 02 + H2 cos(i) 3i

=
3
c

∫ 3c
2

c
2

36 − H2

36 − 12H sin(i) + H2 cos(i) 3i

=
3
c
(36 − H2)

∫ 36+12H+H2

36−12H+H2

1
D

(
− 3D

12H

)
= − 1

4c
36 − H2

H

∫ (6+H)2

(6−H)2

1
D
3D

= − 1
2c

36 − H2

H
ln

(
6 + H
6 − H

)
for all 0 < H < 6. In summary, we have

D(0, H) =
{
− 6
c

if H = 0,

− 1
2c

36−H2

H
ln

(
6+H
6−H

)
if 0 < H < 6

for all 0 ≤ H < 6. �



Remark. By using l’Hôpital’s rule, we see that our expression of D(0, H) satisfies

lim
H→0+

D(0, H) = − 1
2c

lim
H→0+

36 − H2

H
ln

(
6 + H
6 − H

)
= − 1

2c
lim
H→0+

ln( 6+H
6−H )
H

36−H2

= − 1
2c

lim
H→0+

3
3H
(ln( 6+H

6−H ))
3
3H
( H

36−H2 )

= − 1
2c

lim
H→0+

12
36−H2

36+H2

(36−H2)2

= − 6
c

lim
H→0+

36 − H2

36 + H2

= − 6
c
· 1

= − 6
c

= D(0, 0),

which shows that D(0, H) is continuous for all 0 ≤ H < 6.

(d) Using the separation of variables method, find the solution D in �.
Warning: This exercise is challenging!

Solution. Define F(A, \) = D(G(A, \), H(A, \)). Then the problem is transformed into

ΔF = 0 0 < A < 6, 0 ≤ \ ≤ 2c

F(6, \) =
{

6 cos(\) if c
2 < \ <

3c
2

0 if 0 ≤ \ ≤ c
2 ,

3c
2 ≤ \ ≤ 2c.

For the Laplace equation on a disk, we have already done the separation of variables method in our solution to Exercise
7.7(b). As a result of the method, the general smooth solution of the Laplace equation on a disk is given by

F(A, \) = U0

2
+
∞∑
==1

A= (U= cos(=\) + V= sin(=\)).

Next, we will compute the Fourier coefficients U0, U=, V=. We have

F(6, \) = U0

2
+
∞∑
==1

6= (U= cos(=\) + V= sin(=\))

=
U0

2
+
∞∑
==1

6=U= cos(=\) +
∞∑
==1

6=V= sin(=\)

and the given boundary condition

F(6, \) =
{

6 cos(\) if c
2 < \ <

3c
2

0 if 0 ≤ \ ≤ c
2 ,

3c
2 ≤ \ ≤ 2c.

Because the coefficients are not constant for all 0 ≤ \ ≤ 2c, we are unable to equate the terms. Instead, we need to
multiply by 1, cos(\), sin(\) in each case and integrate over 0 ≤ \ ≤ 2c in order to compute the Fourier coefficients.
That said, we have∫ 3c

2

c
2

6 cos(\) 3\ =
∫ 2c

0
F(6, \) 3\

=

∫ 2c

0

U0

2
+
∞∑
<=1

6<U< cos(<\) +
∞∑
<=1

6<V< sin(<\) 3\

=
U0

2

∫ 2c

0
1 3\ +

∞∑
<=1

6<U<

∫ 2c

0
cos(<\) 3\ +

∞∑
<=1

6<V<

∫ 2c

0
sin(<\) 3\

=
U0

2
2c +

∞∑
<=1

6<U<0 +
∞∑
<=1

6<V<0

= cU0,



which implies

U0 =
1
c

∫ 3c
2

c
2

6 cos(\) 3\

= −12
c
.

We have ∫ 3c
2

c
2

6 cos(\) cos(=\) 3\ =
∫ 2c

0
F(6, \) cos(=\) 3\

=

∫ 2c

0

(
U0

2
+
∞∑
<=1

6<U< cos(<\) +
∞∑
<=1

6<V< sin(<\)
)

cos(=\) 3\

=
U0

2

∫ 2c

0
cos(=\) 3\ +

∞∑
<=1

6<U<

∫ 2c

0
cos(<\) cos(=\) 3\

+
∞∑
<=1

6<V<

∫ 2c

0
sin(<\) cos(=\) 3\

=
U0

2
0 +

∞∑
<=1

6<U<

{
c if = = <,
0 if = ≠ <

+
∞∑
<=1

6<V<0

= 6=U=c,

which implies

U= =
1
c

61−=
∫ 3c

2

c
2

cos(\) cos(=\) 3\

=
1
c

61−=


c
2 if = = 1,
− 2
=2−1 if = = 2, 6, 10, . . . ,

0 if = = 3, 5, 7, . . . ,
2

=2−1 if = = 4, 8, 12, . . .

=


1
2 if = = 1,
− 2
c

61−=

=2−1 if = = 2, 6, 10, . . . ,
0 if = = 3, 5, 7, . . . ,
2
c

61−=

=2−1 if = = 4, 8, 12, . . . .

We have ∫ 3c
2

c
2

6 cos(\) sin(=\) 3\ =
∫ 2c

0
F(6, \) sin(=\) 3\

=

∫ 2c

0

(
U0

2
+
∞∑
<=1

6<U< cos(<\) +
∞∑
<=1

6<V< sin(<\)
)

sin(=\) 3\

=
U0

2

∫ 2c

0
sin(=\) 3\ +

∞∑
<=1

6<U<

∫ 2c

0
cos(<\) sin(=\) 3\

+
∞∑
<=1

6<V<

∫ 2c

0
sin(<\) sin(=\) 3\

=
U0

2
0 +

∞∑
<=1

6<U<0 +
∞∑
<=1

6<V<

{
c if = = <,
0 if = ≠ <

= 6=V=c,

which implies

V= =
1
c

61−=
∫ 3c

2

c
2

cos(\) sin(=\) 3\

=
1
c

61−=0

= 0.



Therefore, our formal solution in polar coordinates is

F(A, \) = U0

2
+
∞∑
==1

A= (U= cos(=\) + V= sin(=\))

=
U0

2
+
∞∑
==1

U=A
= cos(=\) +

∞∑
==1

V=A
= sin(=\)

= −U0

c
+ U1A

1 cos(1\) +
∑

==2,6,10,...

U=A
= cos(=\) +

∑
==3,5,7,...

U=A
= cos(=\) +

∑
==4,8,12,...

U=A
= cos(=\)

+
∞∑
==1

V=A
= sin(=\)

= − 6
c
+ 1

2
A1 cos(1\) − 2

c

∑
==2,6,10,...

61−=

=2 − 1
A= cos(=\) +

∑
==3,5,7,...

0A= cos(=\) +
∑

==4,8,12,...

2
c

61−=

=2 − 1
A= cos(=\)

+
∞∑
==1

0A= sin(=\)

= − 6
c
+ 1

2
A cos(\) − 2

c

∑
==2,6,10,...

61−=

=2 − 1
A= cos(=\) + 2

c

∑
==4,8,12,...

61−=

=2 − 1
A= cos(=\)

= − 6
c
+ 1

2
A cos(\) − 2

c

∞∑
==1

61−(4=−2)

(4= − 2)2 − 1
A4=−2 cos((4= − 2)\) + 2

c

∞∑
==1

61−4=

(4=)2 − 1
A4= cos(4=\),

as desired. Finally, to convert this formula back into Cartesian coordinates, we will need to invoke the trigonometric
identities
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for = = 1, 2, 3, . . ., as seen on this question posted on Mathematics Stack Exchange. In Cartesian coordinates, our formal
solution is
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where we used G = A cos(\), H = A sin(\), A2 = G2 + H2. �

Remark. By substituting G = 0 into our expression of D(G, H), we obtain
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It is possible to show that this expression is consistent with the expression
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{
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H
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obtained from part (c). Indeed, the general Fourier series representation of D(0, H) over the integral 0 ≤ H < 6 is

D(0, H) = �0

2
+
∞∑
==1

�= cos
(=c

6
H

)
+
∞∑
==1

�= sin
(=c

6
H

)
,

where �0, �=, �= are the Fourier coefficients given by
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The procedure from here would be to compute explicitly �0, �=, �=, substitute these coefficients into the Fourier series
representation of D(0, H), and finally make some algebraic and trigonometric manipulations in order to arrive at the
series expression of D(0, H) that we wrote at the beginning of this remark. Nonetheless, this entire process is extremely
tedious, and I have decided not to include it here in this remark or anywhere else in this homework solution. For what it
is worth, you may view my saved graph on Desmos in order to verify by visual inspection that the graphs of our two final
expressions of D(0, H) over the interval −6 < H < 6 almost overlap each other. Note that, because Desmos is unable to
compute the infinite series appearing in D(0, H), I had to substitute it with a finite series with a large number of finitely
many terms, such as # = 99, that approximates D(0, H). If one were able to replace # = 99 with # = ∞ on Desmos,
then the two graphs should be the same.

(e) Is the solution classical?

Remark. A solution is said to be classical if it is differentiable up to the highest-order term in the partial differential
equation. In this case, the Laplace equation is a second-order partial differential equation. So we require that the
solution D(G, H) must be at least twice differentiable for all (G, H) ∈ � in order it to be classical.

Answer. I do not know the answer to this question, but I do know that one has to inspect our answer we obtained for part
(d). A convergent sequence of smooth functions appearing as terms in a summation converges to a function that can be
smooth, continuous, or even discontinuous. �

https://www.desmos.com/calculator/n4vlmmgrzv

