MATH 146C discussion Ryan Ta
University of California, Riverside Spring 2020

Solutions to suggested homework problems from
An Introduction to Partial Differential Equations by Yehuda Pinchover and Jacob Rubinstein

Suggested problems: Exercises 7.2,7.3,7.4,7.7,7.8,7.11, 7.14(a), 7.15, 7.20, 7.22

Note: Almost all steps for solving an ordinary differential equation (for example, any material from MATH 046 at UC Riverside)
are omitted from my solutions for purposes of brevity.

7.2. Prove uniqueness for the Dirichlet and Neumann problems for the reduced Helmholtz equation
u—ku=90
in a bounded planar domain D C RZ, where k is a positive constant.

Solution. Consider the Dirichlet problem

Au—ku=0 (x,y) € D,
u(x,y)=g(x,y) (x,y)€dD.

Let u; and u; be two solutions of the Dirichlet problem, and let w; := 1 — u». Then w; solves

Awy —kw; =0 (x,y) € D,
wi(x,y)=0 (x,y) €0D.

Now, we recall Green’s third identity (also known as integration by parts),

[/Vu-Vvdxdyz/ ua—uds—// ulAvdxdy.
D op On D

Substitute # = w; and v = w; into Green’s third identity in order to obtain

0
//le-ledxdyzf wlﬂds—// wiAw; dx dy.
D oD on D

The definition of the dot product of two vectors implies in particular Vw; - Vw; = |Vw|?. And the partial differential equation
Aw;| — kwy = 0 is of course equivalent to Aw; = kw;. So we obtain, in fact,

// |Vw1|2dxdy=/ wlmds—k”//(wlfdxdy.
D oD on D

Finally, as we have w; = 0 on dD, we obtain

// |Vw1|2dxdy=/ 0—3(;}l ds—k[/(wl)zdxdy,
D oD n D
[/ |Vw1|2dxdy=—k//(w1)2dxdy
D D

Observe that, for any k > 0, the left hand side and right hand side satisfy

// Vw12 dx dy > 0,

D

—k// (w)*dxdy <0,
D

respectively. The only way these inequalities hold true simultaneously is only when they satisfy

// Vw2 dx dy = 0,

D

—k//(w1)2dxdy=0.
D

—k//D(wl)zdxdy =0

or more succinctly

In particular, as k > 0, the equality



7.3.

implies (w;)?> = 0, which in turn gives w; = 0, or equivalently u; = u,. This establishes the uniqueness of the Dirichlet
problem. Next, consider the Neumann problem

Au—ku=0 (x,y) € D,
Onu(x,y) = g(x,y) (x,y) €dD.

Let u3 and u4 be two solutions of the Dirichlet problem, and let wy := u3 — u4. Then w, solves

Awy —kwp, =0 (x,y) € D,
Owa(x,y) =0 (x,y) € dD.

Now, we will establish w, = 0 in D. As established previously for wy, we obtain

[/ Isz|2dxdy=/ wz—ds— ‘/](wz) dxdy.
D oD
w2 _

Finally, as we have 86 =0 on dD, we obtain

/ |sz|2dxdy=/ W20ds—k/ (w2)? dx dy.
D oD D
// Iszlzdxdyz—k/ (w2)? dx dy
D D

Following the rest of our proof for w;, we conclude w, = 0, or equivalently u3 = u4, in D. This establishes the uniqueness of
the Neumann problem. O

or more succinctly

Solve the problem

Au+ku=0 O<x<nm0O<y<m,
u0,y)=1 0<y<mn,
u(m,y) =u(x,0)=ux,7) =0 0<x<n.

Solution. We want to find a solution of the form

u(x,y) = X(x)Y(y).
Our partial derivatives are
Uxx (X, 1) = Xax (XY (y),
“yy(xa )= X(X)Yyy )

So the partial differential equation
Uyx +Uyy —ku=Au—ku=0
becomes
Xux ()Y () + X (x)Yyy (y) = kX (x)Y (y) =0

which we can algebraically rearrange to write

Xxx(x) = kX (x) _ Yyy(y) _
X (x) Y(y)

where A is a constant in both x and y. This produces the system of two ordinary differential equations

-1,

d*X
— - (1+kX=0
dx?
2
d—Y + 1Y = 0.
dy2

This system is decoupled, which allows us to solve each one independently and obtain the general solutions

Cicos(/—(A+k)x) + Cysin(r/—(A+ k)x) ifA+k <O,

X(x)z Cix+C ifA+k=0,
Ce VWkx 4 €, VA+kx ifl+k >0,
Die V- 4 Dy~ V- if 1 <0,

Y(y)=1Diy+D, if1=0,

D cos( VAy) + Dy sin( Vy) ifd >0,



where Cy, C,, D1, D, are constants. Now, the boundary conditions
u(m,y) =u(x,0) =u(x,7) =0
are equivalent to
X(m)Y(y) = X(x)Y(0) = X(x)Y(n) =0,

which imply either X (x) = Y(y) = 0or X(r) = Y(0) = Y (xr) = 0. If we assume either X(x) = 0 or Y(y) = 0, then in either
case we would have a trivial solution. But we are really interested in finding a nontrivial solution. So we should assume

X(r)=Y(0)=Y(m) =0,
which will impose constraints on the constants Cy, C,, depending on A. This motivates us to break this down into cases.

e Case 1: Suppose 4 < 0. Then

Y(y) = DieV + Dye VU,
Y(0)=0
implies D> = —D1, and so we have
Y(y) = Dle\gy +Dze_\f’ly
=Dlemy —Dle_\ﬁ’ly
= Dl(eﬁy - e‘ﬁy).

Now, if 1 < 0, then e V=dr _ pN=Ax # 0. This means
Y(y) = Di(e V™ = Dy V),
Y(r)=0
implies C; = 0, and so we have
X(x) = Dy(e V™V — = V=)
= O(eﬁy - e_my)
=0.
Therefore, we have

u(x,y) = Xx)Y(y)
=0Y(y)
= 0’

which is a trivial solution.

e Case 2: Suppose A = 0. Then

Y(y) = D1y + D>,
Y(0) =0

implies D, = 0, and so we have

Y(y)=D1y+D,

= Dly +0
=Dyy.
Next,
Y(y) =Dy,
Y(r)=0
implies D = 0, and so we have
Y(y) =Dy

=0.



Therefore, we have

u(x,y) =Xx)Y(y)
=0Y(y)
= 0,

which is a trivial solution.

e Case 3: Suppose A > 0. Then
Y(y) = D cos( VAy) + Dy sin( Vay),
Y(0)=0
implies D = 0, and so we have
Y(y) = D; cos( VAy) + D, sin( V2y)
= 0cos( VAx) + D sin( VAy)
= D; sin( VAy).
Next,
Y(y) = Dasin(Vay),
Y(r)=0
implies sin( VAy) = 0, which in turn implies VAx = nx, or equivalently
A, =A=n
and so we have
Ya(y) = Do, sin(Aay)

= Dy, sin( Vn2y)
= D2,n Sin(ny)'

Also, as we are in the case of 4 > 0 and we are given k > 0 from the problem statement, it follows that we have A+k > 0.
Therefore, we get

Xn (X) — Cl,ne VA, +kx + Cz’ne—\//ln+kx
2 _ 2
— Cl,ne Vn?+kx + C2,ne Vn?+kx

forn=1,2,3,.... Therefore, if we write A, = C; ,D1 , and B, = C3,,,D> p, then we have
un(x,y) = Xn(x)Yn(y)
= (Cine V7 1 Cy e VRN (D, sin(ny))
= (C1 Dape " 4 Cy uDy e VY sin(ny)
= (Ape Vil Bye” m") sin(ny)
forn=1,2,3,.... This is a nontrivial solution, as desired.

We recall that an addition of solutions is again a solution. So that means, as we have established already that each u,, (x, ) is
a nontrivial solution forn = 1,2, 3, .. ., it follows that

(o]

w(x,y) = ) un(x,y)
n=1
= Z(Ane Nni+kx 4 B e~ VWYY gin(ny)
n=1
is also a nontrivial solution of the problem. Next, we will compute the Fourier coefficients A, B,,. We have

1=u(0,y) = )\ (An+By)sin(ny),
n=1

0=u(my) = Z(Ane Vnt+kz 4 B,e” VPRI sin(ny).

n=1



Now, recall
ifn=m,

if n £ m.

/7r sin(ny) sin(my) dy = {%
0 0

Consequently, we obtain

/0 1sin(ny) dy = /0 ;(Am + B,,) sin(my) sin(ny) dy

- & Vm? + kn Vm? + kn
= Z(Am + By) / sin 5 x| sin 5 x| dx
m=1 0

T
= (Ap+Bn)>
(An+ B3

and
/ 0sin(ny) dy = / Z (Ae Vi ke B, 2J“k”) sin(my) sin(ny) dy
0 0

= Z(A Vimekn B, 2+k”) /n sin(my) sin(ny) dy
0

= (Ape Vnl+knw +B.e Vn2+k7'r)z
- n n

In other words, we have the system

0 ifn=2,4,6,...,

2 T
Ape VKT 4 B o Nrkn —/ Osin(ny) dy =0,
7 Jo

2 (™ £ ifn=1,3,5,...
A,,+B,,=—/ lsin(ny)dyz{”" 1n
T Jo

which we can solve simultaneously to obtain the coefficients

2 ™ Vn2+kn

A=t
" 7 nsinh(nr)’

2 e Vn2+kn
T an sinh(nm)’

So our formal solution is

u(x,y) = Z(Ane mitkx B,e” "2+kx) sin(ny)

n=1

_ z : 1,11 e Vn2+k7re Vn2+kx Vn2 km - Vn? +kx) sin(ny)
R 5, msin (nn)

— z : }11 (e m(nfx) _ ef‘/m(nfx)) sin(ny)
5%, nsin (nn)
4 1 e Vn2+k(m—x) _ eV 24k (m—x) in(ny)

=— . sin(ny
TGk smh(mr) 2
4

=— m sinh( Vn? + k(7 — x)) sin(ny)
T =iz, Snnt

|4 i ] sinh(v/(2n — 1)2 + k( ))sin((2n - 1)y)
7 Z4sinh((2n - D7) " TR SImEn = Y

as desired.

7.4. Solve the problem

Au=0 O<x<m0<y<m,
u(x,0)=u(x,m)=1 0<x<m,
u(0,y) =u(m,y)=0 0<y<m.



Solution. We want to find a solution of the form
u(x,y) = X(x)Y(y).
Our partial derivatives are
Ux (X, 1) = Xux ()Y (¥),
tyy (x,1) = X(x)Yyy(y)

So the partial differential equation
Uxy +Uyy =Au=0

becomes
Xax ()Y (y) + X(X)Yyy()’) =0,

which we can algebraically rearrange to write

Xxx(x) — _Yyy(y) -
X(x) Y(y) ’

where A is a constant in both x and y. This produces the system of two ordinary differential equations

2
d—X +1X =0
dx?

d*y

—2 —/lY = O
dy

This system is decoupled, which allows us to solve each one independently and obtain the general solutions

Cre V=A% 4 Cye~ V-1 if1<0,
X(x)= Cix+C if1=0,
C1 cos( VAx) + Gy sin( VAx) if A > 0,

Djcos(V=1y) + Dysin( V-21y) if 1 <0,
Y(y)=4Diy+D> if1=0,
DieVV 4 Dy V- if 1> 0,

where C1, Cp, D1, D, are constants. Now, the boundary conditions
u(0,y) =u(m,y)=0
are equivalent to

X(0)Y(y) =0,
X(mY(y) =0,

which imply either Y (y) = 0 or X(0) = X(xr) = 0. If Y(y) = 0, then we would have

u(x,y) = X(x)Y(y)
=X(x)0
= O,

which would be a trivial solution. But we are really interested in finding a nontrivial solution. So we should assume
X(0)=X(n) =0,
which will impose constraints on the constants Cy, C,, depending on A. This motivates us to break this down into cases.

e Case 1: Suppose A < 0. Then

X(x) = Cleﬁx + Cze_ﬁx,
X(0)=0
implies C; = —C1, and so we have
X(x) = Cre V™ 4 Crem VA
=Cle\/jx_cle—\/jx
— Cl(e\/jx _ e—ﬁ)r).



Now, if 1 < 0, then e V=17 — ¢~ V=17 % (. This means
X(x) = Cp(e VT — e Vo),
X(n)=0
implies C; = 0, and so we have
X(x) = C (e V¥ — o= Vi)
- O(eﬁx —e” —/lx)
=0.

Therefore, we have

u(x,y) = X(x)Y(y)

=0Y(y)
=0,
which is a trivial solution.
Case 2: Suppose A4 = 0. Then
X(x) =Cix+ (s,
X0)=0
implies C; = 0, and so we have
X(x)=Cix+Cy
=Cix+0
= C])C.
Next,
X(x) =Cix,
X(mr)=0
implies C; = 0, and so we have
X(x)=Cx
=0x
=0.

Therefore, we have

u(x,y) = X(x)Y(y)
=0Y(y)
= 0’

which is a trivial solution.

Case 3: Suppose A4 > 0. Then

X(x) = Cy cos( VAx) + C, sin( VAx),
X(0)=0

implies C; = 0, and so we have

X(x) = C; cos( Vax) + Cy sin( VAx)

=0 cos( VAx) + Cy sin( VAx)
= C, sin( VaAx).

Next,

X (x) = C, sin( Vx),
X(m)=0



implies sin( VA7x) = 0, which in turn implies YAz = nz, or equivalently
Ap=A=n?%

and so we have

X, (x) = Ca.p sin( [4,x)
= Cy,p sin( \/}?x)

= Cy, sin(nx)

and
Yo(y) = Dine V1 + Dy e Vi
=D e Viry | Dj e Vi2y
=D e + Dy e
forn=1,2,3,.... Therefore, if we write A,, = C> ,D1,, and B, = C» ,D> ,, then we have

Mn(x’ y) = Xn(x)Yn(y)
= (Cy,n sin(nx))(Dy,ne"™ + Dy ne™™)

= sin(nx)(ngnDl,ne”y + CzynDz,nefny)

=sin(nx)(A, e + B,e )

This is a nontrivial solution, as desired.

forn=1,2,3,....
We recall that an addition of solutions is again a solution. So that means, as we have established already that each u,, (x, t) is
a nontrivial solution forn =1, 2, 3, .. ., it follows that

u(e,y) = Y un(x,3)

n=1

= Z sin(nx)(A,e™ + B,e™™)
n=1

is also a nontrivial solution of the problem. Next, we will compute the Fourier coefficients A,,, B,,. We have

(o)

1 =u(x,0) = Z sin(nx) (A, + B,),

n=1
(o)

l=u(x,n)= Z sin(nx) (A,e"™ + B,e ™).
n=1
Now, recall
bg Z ifn=m,
/ sin(nx) sin(mx) dx = { 2 1 n=m
0 0 ifn+#m.

Consequently, we obtain
T T X
/ 1sin(nx) dx = / Z sin(mx) (A, + By,) sin(nx) dx
0 0 =
sl Fg
= Z(Am + By,) / sin(mx) sin(nx) dx
m=1 0

/s
= (An+B)5
(Au+Ba)

and
Fg T X
/ 1 sin(nx) dx = / Z sin(mx)(Ae™”™ + Be ™) sin(nx) dx
0 0 =l

0 b/ g
= Z(Amem’r + Be™™) / sin(mx) sin(nx) dx
m=1 0

(A By



In other words, we have the system

2 7 41 fp=1,3,5,...
An+Bn:—/ Isin(nx)dx=<7" 1n
T Jo 0 ifn=2,4,6,...,
2 (7 41 ifp=1,3,5,...
Ane””+Bne_””=—/ Isin(nx)dx =4 7" 1 "
T Jo 0 ifn=2,4,6,...,

which we can solve simultaneously to obtain the coefficients

2_1 —nmn T —
A = s (L—e) ifn=13,5,...,
"o ith=246,...,

B, = %nsinl:(nn)(enﬂ_l) ifn:1’3,5,---,
"o ifn=246,. ...

So our formal solution is

)

u(x,y) = Z sin(nx)(A,e™ + B,e™™)

n=1

2 1 2 1
= sin(nx) | ————(1—-e")e™ + —————— (""" = 1)
7 nsinh(nr) 7 nsinh(nn)
n=1,3,5,...
2
== Z —— sin(nx)((1 = e )e™ + (" = 1)e™™)
b n sinh(nr)
n=1,3,5,...
4 ) eM(7=y) _ pmn(m=y)  pny _ ,—ny
== —_— +
bis n sinh(n) sin(nx) ( 2 2 )
n=1,3,5,...
4 . . .
=— ——— sin(nx)(sinh(n(z — y)) + sinh(ny))
ToGh sinh(nr)

= ;ir Z =D sinkll((Zn ) sin((2n — 1)x)(sinh((2n — 1) (7t — y)) + sinh((2n — 1)y)) |.
n=1

as desired. |

7.7. (a) Compute the Laplace equation in a polar coordinate system.
Solution. We know already that the Laplacian is defined in the Cartesian coordinate system by
Au=uyy +uyy.

To compute the Laplace equation Au = 0 in the polar coordinate system, we need to derive the equivalent expression of
the Laplacian in polar coordinates. Let

x =x(r,0) =rcos(0),
y =y(r,0) = rsin(0),
u(x,y) =w(r,0) =u(x(r,0),y(r,0)),

the first two of which imply

We obtain first partial derivatives

rxz(\/x2+y2)x: 2x+ 2=
VX©t+ Y

ryz(\/)m)y: 2y+ 5 =
VX t+Yy

1 (Y Yy Yy
b= (s (2)) =g =
. x/)x x2 +y? r2

1(y X X
Y x!y  x2+yr 2

>

bl

N v I=



and the second partial derivatives

y ) . 2xy  2xy
2) T GZey22 T A

X 3 2xy 2xy
2

y x2 x2
T = = = —,
” ), PeynE

- (x2 +y2)2 T
So, by the multivariable chain rule, we obtain the second partial derivatives

Uxx = (W(r, 0))xx
= (W,rx + wobx)x
= (Wrrx)x + (Wobx)x
= (Wrr(rx)? + Wprax) + (Wog (05)> + wobix)
2 3 3 2xy

=Wpr— tW,r— +Wgg— + Wog——
r2 73 4 4

and

Uyy = (w(r,0))yy
= (W,rx + woby)y
= (wyry)y + (wobly)y
= (Wrr(ry)? +wrryy) + (waa(0y)” +wobyy)

2 x2 x2 2xy

=Wyppr—= +tWpr— +Wgg— — Wog—.
r2 r3 ré ré
Therefore, the Laplacian in polar coordinates is

Au=uxy+uyy

x_2 + _y2 + _y2 + 2 + _y2 + x_2 + x_2 2
=[(w w Woe w w w Weg— —
L) "3 4 ! L) T3 ! 74

K24 y? K24 y? 22432
= Wyr 2 + Wy 3 +Woo 4
r2 r2 r2
= Wrrr_z +Wrr_3+W99r_4
1 1

= Wpp + =W, + —2W99.
r r
This means that the Laplace equation Au = 0 in polar coordinates is written

1 1
Wrr + =W, + _2W6)H =0,
r r

as desired.

(b) Let D c R? be the disk D = {(x,y) € R? | x*> + y?> < 6}. Solve the problem
Au=0 (x,y) € D,
ulx,y)=y+y> (x,y) € dD.
Write your answer in the Cartesian coordinate system.
Solution. Define w(r, 8) = u(x(r, 0), y(r,8)). Then the problem is transformed into
Aw =0 0<r<V6,0<60<2n
w(V6,0) = V6sin(0) +6sin*(8) 0<6<2r

We want to find a solution of the form
w(r,0) = R(r)0(0).



Our partial derivatives are
w,(r,0) = R, (r)©(0),

wrr(r,0) = Rer (r)0(0),
woo(r,8) = R(r)®gq(6).
So the partial differential equation
Wy + %wr + rizw‘m =Aw=0
becomes 1 {
Ry (r)O(6) + Ry (r)0(6) + 5 R(r)@g0(0) =0,

which we can algebraically rearrange to write

rZRrr(r)"'rRr(r) _ Bpe(0) -2
- R(r) el

where A is a constant in both r and 6. This produces the system of two ordinary differential equations

2dzR+ R _R=0
r'—st+r—— =
dr? dr
2
40 L e-o.
dr?

This system is decoupled, which allows us to solve each one independently and obtain the general solutions

C1 cos( V=A1n(r)) + C sin( V=21In(r)) if 1 <0,

R(r)=3CiIn(r) + C, if1=0,
Cyr VA4 Cyr~ V2 if 1> 0,
Die V=10 4 pye=V-10 if1 <0,

0(0) ={D16+ D> if1=0,

D1 cos(VA0) + D, sin( VA6) if A > 0,

where Cy, C, D1, D, are constants. Now, according to page 196 of the textbook, the equation for ® holds at the interval

(0, 27). In order for ®(0) to be twice differentiable (so that 21127(? makes sense, after all) for all § € R, we need to impose
the periodic boundary conditions

0(0) =0(2n1),
d d
EG(O) = %(’)(Zﬂ'),

which will impose constraints on the constants D1, D,, depending on A. This motivates us to break this down into cases.

e Case 1: Suppose 4 < 0. Then we have

O(6) = D1e VA9 4 Dye= V10,
0(0) = ©(2n),

which implies D + D, = D1e*™ V=1 4+ Dye~27V=1 We also have
d
%6(9) = V=A(D1e V™% — Dye™ V%),
d d
—0(0)=—06(012n),
7920 = —,0(21)

which implies D|—D, = D 1e27 ‘Q—Dze‘”r V=1 Now we will solve for the constants D 1, D>. We have formulated
the linear system

D+ D, = D1€2ﬂﬁ + Dge_zﬂﬁ,
D, -D, = D]€2ﬂﬁ—D2€_2”ﬁ,
and we can algebraically rearrange each equation in the system to write
Dl(l _ eZﬂﬁ) — —Dz(l _ 8_27{@),
Dl(l _ eZﬂﬁ) — Dz(l —6‘_27{@).



We can combine the two equations in the system to deduce
Di(1- ¥V = Dy (1 - 27V
— —Dl(l _ e—27r\/j)'

Since we are currently in the case 4 < 0, we have 1 — e V-1 # 0, and so we can divide 1 — ez”ﬁ from both
sides of our previous equation to conclude C; = —Cy, or C; = 0. Likewise, we can combine the two equations in
the system to deduce

Dy(1— e 27V = (1 - V1)

= —Dz(l - e—2n\/§).

Since we are currently in the case 4 < 0, we have 1 — e2m V=1 # 0, and so we can divide 1 — 6‘2”‘5 from both
sides of our previous equation to conclude D, = —D5, or D, = 0. So we have

0(6) = Cre V10 4 Cre V10
— 0e V-0 4 gp= V-0
=0.

Therefore, we have

w(r,0) = R(r)®(0)
=R(r)-0
= ()’

which is a trivial solution.
e Case 2: Suppose A = 0. Then we have

@(9) = D]9 + Dz,
0(0) = ©(27),

which implies D = 0, and so we have

@(0) =D0+ D,

= D1 ~0+D2
=D,.
The derivative is
d d
—0(0) = —(D
250(0) = £-(D2)
=0,

which clearly satisfies %@(O) =0 = %@(271). Next, observe that In(r) is undefined at the origin (at r =

0). Following page 197 of the textbook, we only consider smooth solutions and disregard any solutions that are
undefined at the origin, and so we shall impose the condition C; = 0. So we have

R(r)=CiIn(r) + C;
=0In(r) + C,
= C,.

Therefore, if we write 5% = C2D, then we have

wo(r,0) = R(r)®(6)
=)Dy
@
==

which is a nontrivial smooth solution on a disk.
e Case 3: Suppose A > 0. Then we have

0(6) = D cos( VA6) + D, sin( VA6),
0(0) = 0(2n),



which implies
Dy = D cos(2r VA) + Dy sin(27 V). (1)

We also have

%@(9) = VA(-D sin( VA6) + D5 cos( V26)),

d d

7520 = —,0(n),

which implies
D, = —Dj sin(2x V) + D5 cos(2r V). 2)

Now, we claim that, if either sin(27 V) # 0 or cos(27 V) # 1, then we have D = 0 and D, = 0.

— Subcase 1: Suppose sin(27 V) # 0. Multiply both sides of (1) by —cos(27 V1) and both sides of (2) by
sin(27r V) to obtain

—D; cos(2r V) = =D cos?(2r VA) — D, sin(27 VA) cos(2x V),
D, sin(2r VA) = =D sin? (27 V) + D, cos(27 V) sin(27 V),
from which we can add up both sides of the two equations to get
~Dj cos(2m V) + D5 sin(21 VA) = -D. 3)
We equate (1) and (3) to get
Dicost2m V) - Dysin(2n VA) = Dyeost2rVA) + Dy sin(2r V),

which simplifies to
—D>sin2r V) = Dosin2V2A).

Since we assumed sin(27 V1) # 0, we can divide both sides by sin(27 V) to get —D> = D5, which means
D, = 0. Substitute D, = 0 into (2) to obtain

0=-D;sin(27 \//_l),

which implies D = 0 because, once again, we assumed sin(27x \//_l) # 0.
— Subcase 2: Suppose cos(27x \//_l) # 1. Then we can rewrite (1) and (2) as

D1 (1 - cos(2m V) = Dy sin(27 V), ()]
D>(1 - cos(2n VA)) = =Dy sin(27 V), . )
Multiply both sides of (4) by D; and both sides of (5) by D, to obtain
D3(1 - cos(2n V1)) = DD, sin(27 V),
D3(1 - cos(2n V1)) = =D D sin(27 V),
from which we can add up both sides of the two equations to get
(D% + D%)(l —cos(2r V) = 0.

Since we assumed cos (27 \/z) # 1, we must conclude D% + D% = 0, which forces D; = 0 and D, = 0.
So we have proved our claim. Now that we have established our claim, we would have

©(0) = D cos( V) + D, sin( VA6)
= 0cos( VA0) + 0sin( V26)
= 0,

which would imply that w(r,8) = R(r)®(0) is a trivial solution. Therefore, to find a nontrivial solution for this
case, we should assume both

sin(2r \/71) =0,
1 = cos(2r V) = 0,

which imply 27 VA = 2n7, or equivalently
Ay =A=n,



and so we have

©,(0) = D1, co8(\1,60) + D1, sin( Y1,0)

=Dy, cos( \/n_20) + D>, sin( \/;9)
=D, cos(n) + D3, sin(nf)

and

R, (r) =Cyur Vin 4 Cz,nr_m

Va2 Vi

2
= C],nr + Cz,nr

=Cipr" + Copr™
forn=1,2,3,.... Observe that ¥ ™" for n = 1,2, ... is undefined at the origin (at » = 0). Following page 197 of the

textbook, we only consider smooth solutions and disregard any solutions that are undefined at the origin, and so we
shall impose the condition C, , = 0. So we have

Ry(r) =Ciur" + Cyppr™

=Cypr"+0r™"

=Cy "
Therefore, if we write @, := C1 ,D1,, and B8, := Cy , D>, then we have

Wn(r» 0) = Rn(r)G)n(g)
= (C1.ur") (D1, cos(nb) + Dy, sin(nb))

r"(Cy.nD1, cos(nf) + Cy Dy p, sin(nb))
r"(a, cos(nf) + B, sin(nd)).

forn=1,2,3,.... This is a nontrivial smooth solution on a disk.

We recall that an addition of smooth solutions is again a smooth solution. So that means, as we have established already
that each w,,(r, 6) is a nontrivial smooth solution for n = 1,2, 3, .. ., it follows that

w(r,0) = wo(r,0) + i wy(r,0)
n=1

= % + > r'(a, cos(nb) + B, sin(no))

n=1

is a general smooth solution of the Laplace equation on a disk. Next, we will compute the Fourier coefficients ag, @;, B,.
We have

0

NYPS

+ Z 67 (@, cos(nf) + By sin(nh))

n

w(Ve6,6)

I
—_

@
=—+
2

Ms

62 ey cos(nf) + Z 6'71,8,l sin(nd)
n=1

]
—_

n

and the given boundary condition
w(V6,0) = V65in(8) + 6 sin’(0)
= \/asin(é’) +3(1 = cos(26))
=3 —3cos(20) + V65in(8).
Both our expressions of w( V6, §) yield

63 ay cos(nd) + Z 6%ﬁn sin(n6) = 3 — 3 cos(20) + \/gsin(e).

n=1

Me

Qo
—+
2

1l
—_

n

By the uniqueness of the Fourier series expansion, we can equate the terms of both sides of our above equation to find
the Fourier coeflicients

ap =6,
1
ay = —E,

a,=0



forn=1and forn =3,4,5,...and

Br1=1,
Bn=0
forn =2,3,4,.... Therefore, our formal solution in polar coordinates is

00

w(r,0) = % + Z r"(a, cos(nd) + B, sin(nh))

n=1

a o0 o0
=24+ ) aurt cos(n@) + Z,Bnr" sin(né)
2 n=1 n=1

:%+ aar? cos(26) + Z a,r" cos(nd) +(ﬂ1rlsin(19)+ Z B Sin(n@))

n=1 n=2,3,4,...
n=3,4,5,...

_ 6 1 2 n 1o n
=—+ —57 cos(20) + Z 0r" cos(n@) +(lr sin(160) + Z 0r" sin(n0)

2 n=2,3,4,...

n=

1
n=3,4,5,...

1
=|3- Erz cos(26) + rsin(0) |.

In Cartesian coordinates, our formal solution is

u(x,y) =u(x(r,0),y(r,0))
=w(r,0)

1
=3_ Erz cos(26) + r sin(0)
1
=3- Erz(cosz(e) — sin®(0)) + r sin(0)

=3- %((rcos(ﬂ))z — (rsin(0))?) + r sin(6)

1
=370 =y +y )

where we used x = r cos(6) and y = r sin(6).
7.8.  (a) Solve the problem

Au=0 O<x<m0O<y<mn,
u(x,0) = u(x,7)=0 0<x<m,
M(O’y) ZO,M(iT,y) = Sln(y) 0< y < 7.

Solution. We want to find a solution of the form

u(x,y) = Xx)Y(y).

Our partial derivatives are

Ux (X, 1) = Xux (0)Y (¥),
Uyy(x,1) = X(x)Yyy ()
So the partial differential equation
Uyx +Uyy =Au=0
becomes
Xex ()Y (y) + X (x)Yyy,(y) = 0,
which we can algebraically rearrange to write

X Yy
X~ YO T

where A is a constant in both x and y. This produces the system of two ordinary differential equations

d*x
——-1X=0
dx?

2

Y
Y v =o.
dy?



This system is decoupled, which allows us to solve each one independently and obtain the general solutions

Cjcos( V=Ax) + Gy sin( V=Ax) ifA <0,

X()C)Z Cix+C if 1 =0,
Cre VA 4 Cpe= VAx if 1> 0,
Die V-V 4 Dye VU if1 <0,

Y(y)=4D1y+ D> if1=0,

D cos(YAy) + Dy sin( Vy) if 1> 0,
where Cy, Cp, D1, D are constants. Now, the boundary conditions
u(0,y) =u(x,0) =u(x,7) =0
are equivalent to
X(0)Y(y) = X(x)Y (0) = X(x)Y (1) = 0,

which imply either X (x) = Y(y) = 0or X(r) = Y(0) = Y(r) = 0. If we assume either X(x) = 0 or Y(y) = 0, then in
either case we would have a trivial solution. But we are really interested in finding a nontrivial solution. So we should
assume

X(0)=Y(0)=Y(m) =0,

which will impose constraints on the constants C, C,, depending on A. This motivates us to break this down into cases.
e Case 1: Suppose A < 0. Then
Y(y) = Dlemy + Dze_ﬁy,
Y(0)=0
implies D> = —D1, and so we have

Y(y) = DieV™V 4 Dy VU
— Dleﬁy _Dle—\/qy
=Dy (e V"V — V),

Now, if 2 < 0, then e V=am _ - V-ax # 0. This means
Y(y) = Di(e V™ — Dye™ V),
Y(r)=0
implies D1 = 0, and so we have
X()C) — Dl(eﬁy _ e—ﬁ)’)
= O(e‘my - e_ﬁy)
=0.

Therefore, we have

u(x,y) = Xx)Y(y)
=0Y(y)
= O,

which is a trivial solution.
e Case 2: Suppose A = 0. Then

Y(y) = D1y + Dy,
Y(0) = 0

implies D, = 0, and so we have

Y(y) =Dy +D>
= Dly +0
=D1y.



Next,

Y(y) =Dy,
Y(r)=0
implies D = 0, and so we have
Y(y) =Dy
= Oy
=0.

Therefore, we have

u(x,y) = X(x)Y(y)
=0Y(y)
= 0,

which is a trivial solution.
e Case 3: Suppose A > 0. Then

Y(y) = Dy cos(Vay) + Dy sin( Vay),
Y(0)=0

implies D1 = 0, and so we have
Y(y) = D cos( \//_ly) + D5 sin( \//_ly)

= 0 cos( VAx) + D, sin( V)
= D, sin( \//_ly).

Next,
Y(y) = Dasin( Viy),
Y(r)=0
implies sin( VAy) = 0, which in turn implies VA7 = nx, or equivalently
Ay =A=n%
Also,
X(x) = Cleﬁx + Cze_‘ax,
X(0)=0
implies C; = —C1, and so we have
X(x) = Cleﬁx + Cze_ﬁx

= Cle\ﬁx —C]e_\ax

Vax _ ,—Vax
=2C1%

=2 sinh( Vix).
Therefore, we have

X, (x) = 2C}  sinh(y2,x)

=2}, sinh( Vn2x)
= 2C) , sinh(nx).

and

Ya(y) = Doy sin(2,y)

= Dy, sin( \/;y)
= D; ,, sin(ny)



forn=1,2,3,.... Therefore, if we write A, = 2C ,D1 5, then we have

un(x,y) = Xn(x)¥n(y)
= (2€4,, sinh(nx)) (D, sin(ny))
=2Cy D>, sinh(nx) sin(ny)
= A,, sinh(nx) sin(ny)

forn =1,2,3,.... This is a nontrivial solution, as desired.

We recall that an addition of solutions is again a solution. So that means, as we have established already that each

u,(x,1) is a nontrivial solution for n = 1,2, 3, .. ., it follows that
u(x,y) = ) tn(x,y)
n=1

= Z A, sinh(nx) sin(ny)
n=1
is also a nontrivial solution of the problem. Next, we will compute the Fourier coefficients A,,. We have

sin(y) = u(n,y) = i Ay, sinh(nr) sin(ny).

n=1

Now, recall
ifn=m,

if n # m.

/” sin(ny) sin(my) dy = {%
0 0

Consequently, we obtain

‘/0 sin(y) sin(ny) dy = ./0 ; A, sinh(mr) sin(my) sin(ny) dy

©0 b4
= Z A, sinh(mr) / sin(my) sin(ny) dy
m=1 0
=A, sinh(nﬂ)g,

which implies

2 T
Ap=——7F— / sin(y) sin(ny) dy
zsinh(nm) Jo

1 e
_ Jsmhim ifn=1,
0 ifn=2,3,4,....

So our formal solution is

u(x,y) = i A, sinh(nx) sin(ny)

n=1

= Aj sinh(1x) sin(1y) + Z A,, sinh(nx) sin(ny)

n=2
sinh(1x) sin(1y) + » Osinh(nx) sin(ny)
~ sin h( ) HZZ
! sinh(x) sin(y)
= X
sinh(r) Y
as desired. O

(b) Is there a point {(x,y) € R? | 0 <x < 1,0 < y < &} such that u(x, y) = 0?

Answer No, there does not exist a point in {(x,y) € R*> | 0 < x < 7,0 < y < x} such that u(x, y) = 0. Because we
have -+ 45 (sinh(x)) = cosh(x) > 0 for all 0 < x < , it follows that sinh(x) is an increasing function of x, which implies
in particular sinh(x) > sinh(0) = 0 for all 0 < x < 7. Also, we have sin(y) > 0 for all 0 < y < 7. So we conclude

u(x,y) = ﬁ sinh(x) sin(y) > 0,

which implies u(x,y) # Oon all of {(x,y) eR* |0 <x < 7,0 <y < 7}. o



7.11. Let D c R? be the domain D = {(x,y) € R? | x2 + y*> > 4}. Solve

Au=0 (x,y) €D,
ulx,y)=y (x,y) €D,
lim u(x,y)=0.
x| +|y|—eo

Solution. Define w(r, 0) = u(x(r, 0), y(r,0)). Then the problem is transformed into

Aw =0 0<r<V6,0<0<2r
w(2,0) =2sin(d) 0<60<2rx

lim w(r,8) = 0.
r—oo

We want to find a solution of the form
w(r,0) = R(r)©(6).

Our partial derivatives are

w,(r,0) = R (r)0(0),
Wi (r,6) = R, (r)O(6),
wag(r,0) = R(r)@ga ().

So the partial differential equation

1 1
Wer + —Wp + —=wgg =Aw =0
r r2

becomes | :
Rer(r)O(6) + ~R-(NO(0) + 5 R(1)©40(6) = 0,

which we can algebraically rearrange to write

rerr(r)"'rRr(r) _ B0 (0) -
- R(r) Tew 7

where A is a constant in both r and 6. This produces the system of two ordinary differential equations

d’R  dR
2 _
r W'l'rﬁ—/lR—O
d’e
— +10 =0.
dr?

This system is decoupled, which allows us to solve each one independently and obtain the general solutions

C; cos(V=2A1In(r)) + Co sin( V=21n(r)) if1 <0,

R(r)=3CiIn(r) + C, ifA1=0,
Cir V4 Cyr VA if 1> 0,
Dle‘ﬁ’w+D2e‘ﬁ9 if 1 <0,

©#) ={D16+ D, if 4 =0,

D cos(VA0) + Dy sin(VA6) if A > 0,

where Cy,Cy, D1, D, are constants. Now, according to page 196 of the textbook, the equation for ® holds at the interval
(0,27). In order for ®(0) to be twice differentiable (so that % makes sense, after all) for all 6 € R, we need to impose the
periodic boundary conditions

0(0) =0(2n),
d d
—0(0) = —06(2n),
2620 = —,6(n)
which will impose constraints on the constants D1, D, depending on A. This motivates us to break this down into cases.
e Case 1: Suppose 4 < 0. Then we have
©(0) = D1e V1 4 Dye V1O,
0(0) =0(2n),



which implies D| + D, = D1e2* V=1 + Dye=27 V-1, We also have

%@(9) = VA(D1e V"% — Dye= V-1,

d d
= =002
d9®(0) d9®( ),

which implies D| — D, = Dle2’”ﬁ’l - Dze‘z”ﬁ. Now we will solve for the constants D, D,. We have formulated
the linear system

Dy + Dy = DV 4 Dye VA,
D,-D, = D1e2”ﬁ—D2e‘2”ﬁ,
and we can algebraically rearrange each equation in the system to write
Dy(1 =V = =Dy (1 - 27V,
Di(1 = &2V = Dy(1 — 27 V-1,
We can combine the two equations in the system to deduce
Di(1 =™V = =Dy (1 - 27V

= —D (1 — 27 V=2),

Since we are currently in the case 4 < 0, we have 1 — 27N # 0, and so we can divide 1 — €27 V=1 from both sides of
our previous equation to conclude C; = —Cj, or C; = 0. Likewise, we can combine the two equations in the system to
deduce

Dy(1-e 2"V = py(1 - 27V
_ —D2(1 _ 6‘_2”@).

Since we are currently in the case 4 < 0, we have 1 — e’z”ﬁ # 0, and so we can divide 1 — e’z”‘g from both sides
of our previous equation to conclude D, = —D>, or Dy = 0. So we have

0(8) = Cre V10 1 Cye V10
= 0e V10 4 0= V-1¢
=0.

Therefore, we have
w(r,0) = R(r)0(6)
=R(r)-0
=0,
which is a trivial solution.
Case 2: Suppose A4 = 0. Then we have
©(0) = D16 + D>,
0(0) =06(2n),
which implies D; = 0, and so we have

@(9) =D16+D,

=D;-0+D;
=D,.
The derivative is
d d
—0(0) =—(D
—50(0) = 2=(D2)
=0,

which clearly satisfies %@(O) =0= %@(ZH). Therefore, if we write 52 = C3D, then we have
wo(r,0) = R(r)©(0)
= (CiIn(r) + C2) D>
=CD;yIn(r) + C,D»
)

Bo
= > 111(7‘) + ?,

which is a nontrivial smooth solution that is also bounded in D.



o Case 3: Suppose A4 > 0. Then we have

©(0) = D cos( VA0) + D, sin( VA6),
0(0) = 0(27),
which implies
Dy = Dy cos(2 VA) + Dy sin(27 V). (1)

We also have

%@(9) = VA(=D; sin( VA6) + D, cos( V20)),
d

d9®(27r),

d
—0(0) =
76200
which implies
D, =—D;sin(2rx \//_l) + Dy cos(2m \//_l). 2)
Now, we claim that, if either sin(27 V1) # 0 or cos(27 V) # 1, then we have D = 0 and D, = 0.

— Subcase 1: Suppose sin(27 V) # 0. Multiply both sides of (1) by — cos(2z V) and both sides of (2) by sin(27 V)
to obtain

—D; cos(2r V) = =D cos®(2r V) — D5 sin(27 V) cos (27 V),
D, sin(27 VA) = —Dy sin® (27 V) + D cos(2r VA) sin(27 V),
from which we can add up both sides of the two equations to get
—D; cos(2r V) + Dy sin(27 VA) = -D;. 3)

We equate (1) and (3) to get

Dicost2rVA) — Dy sin(2r V) = Dycost2rVA) + D; sin(27 V),

which simplifies to
—D>sin2r V) = Dosing2r V).

Since we assumed sin(27 VA1) # 0, we can divide both sides by sin(27 V) to get —D» = D,, which means D5 = 0.
Substitute D, = 0 into (2) to obtain
0 = —D; sin(27 V),

which implies D = 0 because, once again, we assumed sin(27 \/ﬁ) # 0.
— Subcase 2: Suppose cos(2x \/5) # 1. Then we can rewrite (1) and (2) as

D (1 - cos(2 VA)) = Dy sin(27 V), 4)
D5 (1 - cos(2r V) = =Dy sin(27 V), . (5)
Multiply both sides of (4) by D; and both sides of (5) by D, to obtain
D3(1 - cos(2n VA)) = DD, sin(2r V),
D%(l —cos(2r YA)) = =D D, sin(2n V),
from which we can add up both sides of the two equations to get
(D? + D2)(1 - cos(2n V) = 0.

Since we assumed cos (27 \/Z) # 1, we must conclude D% + D% = 0, which forces D; = 0 and D, = 0.

So we have proved our claim. Now that we have established our claim, we would have

() = D; cos( VA6) + D sin( VA6)
= 0cos( V10) + 0sin( Va6)
= 0,

which would imply that w(r, ) = R(r)®(0) is a trivial solution. Therefore, to find a nontrivial solution for this case, we
should assume both

sin(2m \//_1) =0,
1 —cos(2r VA) =0,



which imply 27 VA = 2nm, or equivalently
Ay =A=n7%

and so we have

01 (6) = D14 coS(VA48) + D2, sin(vA,,6)

=Dy, cos( \/EG) + D>, sin( \/;0)
=D\, cos(nf) + D, , sin(no)

and

R, (r) = Cl,nrm + Cz,nr_m

Vn2 -Vn2

2
= Cl,nr + Cz,nr

n

= Cl,nr" + Co ™

forn =1,2,3,.... Observe that r" for n = 1,2,... is unbounded as r — oo. Following page 197 of the textbook, we
only consider bounded solutions and disregard any solutions that are unbounded as r — oo, and so we shall impose the
condition C; ,, = 0. So we have

Ry(r) =Ciur" + Cypyr™
= Or" + Cz,nr_"

=Cypr™".

Therefore, if we write @, := C>,,D1,, and B, := C3 D> ,, then we have
wn(r,0) = Rn(r)(an(g)
= (Cour ") (D1 ncos(nd) + Dy, sin(n6))

=r""(CpnD1 ncos(nd) + Cy D>, sin(nh))
=r"(a, cos(nb) + B, sin(ndh)).

forn =1,2,3,.... This is a nontrivial smooth solution that is also bounded in D because we also have the assumption
lim w(r,0) = 0.
r—oo

We recall that an addition of smooth solutions is again a smooth solution. So that means, as we have established already that
each w,(r, 8) is a nontrivial smooth solution forn = 1, 2,3, . . ., it follows that

w(r,0) =wo(r,0) + Z wy(r, 6)
n=1

- % + ; r (@ cos(nf) + B, sin(nf))

is the general solution of the Laplace equation that is bounded in D. Next, we will compute the Fourier coefficients ag, @, 8.
We have

w(2,0)

C;_O + Z 27" (ay, cos(nb) + B, sin(nh))

n=1

(;—0 + Z 27", cos(nf) + Z 27" B, sin(no)
n=1 n=1

and the given boundary condition

w(2,0) = 2sin(0).

Both our expressions of w(2, 6) yield
% + Z 27"a, cos(nf) + Z 27" B, sin(nd) = 2sin(6).
n=1 n=1

By the uniqueness of the Fourier series expansion, we can equate the terms of both sides of our above equation to find the
Fourier coefficients
a,=0

forn=0,1,2,...and

Br1=4,
Bn =



forn =2,3,4,.... Therefore, our formal solution in polar coordinates is

00

w(r,0) = % + 3 (@ cos(n8) + By sin(nh))

_ @

n=1
=% + HZ; a,r " cos(nd) + ;ﬁnr" sin(n@)

= % + Z a,r " cos(nf) + (ﬂlrl sin(16) + Bur™" sin(n@))
n=1

n=2,34,...

o

+ i 0r" cos(n) + (4r_1 sin(10) + Z or™" sin(n@))

n=1 n=2,3,4,...

4
=|—sin(6) |.
,

In Cartesian coordinates, our formal solution is

u(x,y) =u(x(r,0),y(r,0))
=w(r,0)

= 4 sin(0)
,
_ 4rsin(0)

72

4y
x2+y2 |

where we used y = r sin(6) and r2=xr+ y2. O

7.14. Consider the domain D = {(x, y) € R? | x? + y? < 4} and the Neumann problem
Au=0 (x,y) €D,
Z—Z =ax’+By+y (x,y) €dD,
where a, 3, y are real constants.

(a) Find the values of a, 8,y for which the problem is not solvable.

Solution. Lemma 7.4 of the textbook states that a necessary condition for the existence of a solution to the Neumann
problem

Au=f(x,y) (x,y)€D,

u
“n =g(x,y) (x,y)€eaD,
n

/aDg(x(S),y(s))ds://Df(x,y)dxdy,

where (x(s), y(s)) is a parameterization of dD. For this specific exercise, we have f(x,y) = 0and g(x,y) = ax?>+8y+y.

So the necessary condition becomes
/ a(x(s)>+By(s) +yds = // 0dxdy.
oD D

Now, the domain D = {(x,y) € R? | x*> + y* < 4} implies the specific parameterizations

is

x(s) =2cos(6),
y(s) = 2sin(6)

along the boundary dD. The necessary condition therefore becomes

2r
/0 a(2cos(9))2+ﬁ(2sin(9))+yd9=//Ddedy,



or equivalently
2
/ 4a cos?(6) +2Bsin(0) +y db = 0.
0

But we can also rewrite the left hand side as
2n

2r 2n 2
/ 4a cos*(0) +2Bsin(0) +y do = 4a’ / cos?(6) df + 2/3/ sin(6) d6 + 7/ 1do
0 0 0 0

= 40? -n+2B8-0+y-2m

=27(2a° +).
So the necessary condition finally becomes

2122 +v) =0,
which implies
202 +y =0,

ory = —2a2. We conclude that, if the solution to the Neumann problem exists, then we must have y = —2a2. In other
words, this problem is not solvable if we have y # —2a?. O

7.15. Let D = {(x,y) € R? | 0 < x < 7,0 < y < «}. Denote its boundary by dD.

(a)

(b)

Assume Vyx + Vyy + XV, +yvy, > 0in D. Prove that v has no local maximum in D.

Solution. We will prove by contradiction. Suppose instead that v has a local maximum at some (xg, yp) € D. Then all
the first partial derivatives of v at (xg, yo) are zero and the second partial derivatives are nonpositive (negative or zero);
that is, we have
v (x0,y0) =0,
vy (x0,y0) =0,
Vxx (X0, y0) <0,
Vyy(XO» vo) < 0.

So, at (xg, yo) € D, we have

Vax FVyy +XVx +yVy = Vyx +Vyy +x-0+y -0
=Vix +Vyy
<0+0
=0,

which contradicts the assumption vy + vyy + XV + yv, > 0in D. We conclude that v has no local maximum in D. O

Consider the problem
Uxx +Uyy + XUy + YUy =0 if (x,y) € D,
u(x,y) = f(x,y) if (x,y) € 4D,

where f is a continuous function. Show that, if u is a solution, then the maximum of u is achieved on the boundary dD.
Hint: Use the auxiliary function v (x,y) = u(x, y) + ex* for any € > 0.

Solution. Following the given hint, define v (x,y) = u(x,y) + ex? for any € > 0. Then we have the first and second
partial derivatives
(ve)x(x,y) = ux(x,y) + 2ex,
(ve)y(x,y) = uy(x,y),
(Ve)xx (%, y) = uxx(x, ) + 2€,
(velyy(x,y) = uyy(x,y).

So we have

Vedxx + (Ve)yy +X(ve)x +y(Ve)y = (txx +2€) +uyy +x(ux +2€x) + yu,
= Uy +Uyy + XUy + Yy +2€(1 +x2)
=0+2¢e(1+x%)
=2¢(1 +x?)
> 2e(1+0?)
=2e
>0



in D. Note that we have just obtained exactly the partial differential equation described in part (a). Since f is continuous
on D and u = f on dD, it follows that u is continuous on D and smooth in D. Consequently, v, = u + ex? is also
continuous on dD and smooth in D. This rules out the possibility that v does not have a maximum on either D or dD;

in other words, m%x Ve exists. But part (a) asserts that v has no local maximum in D. So we conclude that the only
DUSD

place on which the maximum of v exists is dD. This implies that, for all € > 0, we have
max v, = max v,
DUOD oD
= max(u + ex?)
oD
= max u + e(max x?)
oD oD

=maxu + E7T2.
oD

In other words, we have
2
vel(x,y) <maxu(x,y)+en

for all (x, y) € D. Finally, we can send € — 0* both sides of our latest equation, writing
li ,y) < i ,y) +en’),
Jim ve(x,) El_{g(rg%xu(x y) +en”)

to COIlClU.de
u\x,y < maxu X,y

for all (x, y) € D. In other words, we conclude that the maximum of « is achieved on dD. O
(c) Show that the problem formulated in part (b) has at most one solution.

Solution. Suppose u;(x,y) and uy(x,y) are two solutions of the problem formulated in part (b). First, define w(x, y) =
ui(x,y) —us(x,y). Then w and —w solve

Wxx +Wyy +xwy +yw, =0 if (x,y) € D,
w(x,y) =0 if(x,y) € dD.

By the Weak Maximum Principle, we have
<
mDaxw(x, y) < nl;?)xw(x, y),
— < —
max w(x,y) < max w(x,y),
which implies
,y) <ma ,y) =max0 =0,
W, ) < maxw(r,y) = max
-w(x,y) < -w(x,y) = 0=0
w(x,y) rg?)x w(x,y) Ig%x
for all (x, y) € D. Note that —w(x, y) < 0 is equivalent to w(x, y) > 0. So we conclude
0<w(x,y) <0,

which forces w = 0, or 1 —up = 0 in D. In other words, we have u; = u, in D, meaning that the problem in part (b) has
at most one solution in D. It also goes without saying that the problem in part (b) also has at most one solution in D
because we have been dealing with w = 0 on dD. O

7.20. Consider the domain D = {(r,0) e R x [0,27] |2 <r < 4,0 < 8 < 2x}. Find u(r, 6) that solves
Au=0 2<r<4,0<6<2n,
u(2,0) =0,u(4,0) =sin(f), 0<6 <2nm.
Solution. We want to find a solution of the form
u(r,0) = R(r)0(6).
Our partial derivatives are

ur(r,0) = Ry (r)0(0),
urr(r’ 0) =Ryr (7‘)@(9),
uge(r,0) = R(r)®g0(0).



So the partial differential equation
1
+ —ugg=Aw =0

Uypr + ;I/tr 2
becomes | |
R, (r)©(0) + ;Rr(r)®(9) + = R(r)®g¢(0) =0,
r

which we can algebraically rearrange to write
_rerr(r) +7rR-(r) _ B4 (0) -

R(r) O
where A is a constant in both r and 6. This produces the system of two ordinary differential equations
d’R  dR
2
—+4+r——-AR=0
"arr T ar
d’e
— +10 =0.
dr?

This system is decoupled, which allows us to solve each one independently and obtain the general solutions

Ci cos( V=A1n(r)) + Cy sin( V=21n(r)) if 1 <0,

R(V)Z C]h’l(r)+C2 if 1 =0,
Cir V4 GV if 1> 0,
Die V=10 4 Dye=V-10 if1<0,
if1=0,

0(0) =3D10+ D,
D cos( VA0) + D, sin(VA6) if A > 0,

where Cy, Cp, D1, D, are constants. Now, according to page 196 of the textbook, the equation for ® holds at the interval
d’0 makes sense, after all) for all 6 € R, we need to impose the

(0,27). In order for ®(6) to be twice differentiable (so that T

periodic boundary conditions
©(0) =0(2n),

d d

= =092

7520 = -,6(n),

which will impose constraints on the constants D, D,, depending on A. This motivates us to break this down into cases.
e Case 1: Suppose A4 < 0. Then we have
©(6) = D1e V1% 4 Dye V19,
0(0) =06(2n),

which implies D| + D, = Dlez’“m + Dze_z”‘m. We also have

%@(9) = \/—_A(Dleﬁx - D2€_ ﬁx),

a4
do

which implies D| — D, = D e V-1 _ Dye 27 V=1 Now we will solve for the constants D, D,. We have formulated

d
—50(0) = —6(2x),

the linear system
Dy+D) = D]eznﬁ + Dze_znﬁ,

D] —D2 — DleZH‘/j_Dze*Zﬂ'ﬁ’

and we can algebraically rearrange each equation in the system to write
Dy(1= V) = =Dy (1 = 27V,
D](l _ e27r\/§) — D2(1 _ 6—271\/3).

We can combine the two equations in the system to deduce
Dl(l _ eZﬂ\/j) — —Dz(l _ e—27f \/j)
Dl(l _ 6_2”‘/3).



Since we are currently in the case 4 < 0, we have 1 — e V=1 # 0, and so we can divide 1 — €27 = from both sides of
our previous equation to conclude C; = —Cj, or C; = 0. Likewise, we can combine the two equations in the system to

deduce

Dy(1-e V1) = Dy (1 -2V

— —Dz(l _e—27r\/j).

Since we are currently in the case 1 < 0, we have 1 — e V=1 # 0, and so we can divide 1 — e~27 V=1 from both sides

of our previous equation to conclude D, = =D, or D, = 0. So we have

0(0) = Cre V1 1 Cyem V10
— 0e V10 4 0o~ V10
= 0.

Therefore, we have

w(r,0) = R(r)®(0)
=R(r)-0
= 0,

which is a trivial solution.

Case 2: Suppose A4 = 0. Then we have

@(9) = D]9 + Dz,
0(0) = ©(27),

which implies D; = 0, and so we have

©(0) =D 0+ D>
=D ‘0+D2
=D>.

The derivative is

d

d
E@(Q) = E(DZ)

=0,
which clearly satisfies %@(O) =0= %@(ZH). Therefore, if we write 5 = C;D; and % = Cy D5, then we have

uo(r,0) = R(r)©(0)
= (CiIn(r) + C2) D>
= C1D2 ln(r) + C2D2

Bo

_(Z
2,

= 20 In(r) +

which is a nontrivial smooth solution that is also bounded in D.

Case 3: Suppose A4 > 0. Then we have

@(0) = D cos( VA0) + Dy sin( VA6),
0(0) = ©(2n),

which implies
D = D cos(2x V) + D5 sin(2r V).

‘We also have

%@(9) = VA(=D; sin( VA6) + D, cos( V20)),

d d
= =02
d9®(0) d9®( ),

which implies
D; = =Dy sin(2r VA) + D cos(2r V).

Now, we claim that, if either sin(27 V1) # 0 or cos(27 V) # 1, then we have D = 0 and D, = 0.

ey

2



Subcase 1: Suppose sin(27 V) # 0. Multiply both sides of (1) by — cos(2x V1) and both sides of (2) by sin(27 V)
to obtain

—D; cos(2r V) = =D cos? (2 VA) — D, sin(2x V) cos(27 V),
D, sin(2x V) = =Dy sin®(2x V) + D5 cos(2r V) sin(27 V),

from which we can add up both sides of the two equations to get
—Djcos(2nm \//_l) + Dy sin(2r \//_l) =-Dj. 3)
We equate (1) and (3) to get
Dicost2mNA) — Dasin(2n VA) = Dyeost2rVA) + Dy sin(2n V),

which simplifies to
—D1sina V) = Dosin@2r V).

Since we assumed sin(27 \/z) # 0, we can divide both sides by sin(2x \/5) to get —D; = D;, which means D, = 0.
Substitute D, = 0 into (2) to obtain
0 = —D, sin(27 V),

which implies D; = 0 because, once again, we assumed sin(27w \//_1) # 0.
Subcase 2: Suppose cos(27 VA) # 1. Then we can rewrite (1) and (2) as

D (1 - cos(2r V) = D, sin(27 V), 4)
D5 (1 - cos(2r V) = =Dy sin(27 V), . (5)

Multiply both sides of (4) by D; and both sides of (5) by D, to obtain

D3(1 - cos(2n V) = DD, sin(2r V),
D%(l —cos(2r YA)) = =D D, sin(2n V),

from which we can add up both sides of the two equations to get
(D? + D2)(1 - cos(2r V) = 0.

Since we assumed cos(27 VA) # 1, we must conclude D% + D% = 0, which forces D; = 0 and D, = 0.

So we have proved our claim. Now that we have established our claim, we would have

©(0) = D cos( V) + D, sin( VA6)
= 0cos( V20) + 0sin( V6)
= 0,

which would imply that w(r, ) = R(r)®(0) is a trivial solution. Therefore, to find a nontrivial solution for this case, we
should assume both

sin(27 VA) = 0,
1 —cos(2m \//_1) =0,

which imply 27 VA = 2nx, or equivalently

A, =4 =n%

and so we have

and

©,(0) = D1, co8(\1,0) + Dy sin( y2,0)

=Dy, cos( \/n_ze) + Dy, sin( \/;9)
=D\ ,cos(n) + D, sin(nod)

Ru(r) = Cpyr V1 + Cppr™ V0

3 )
= Clynl’\/ni + Co 1 Vn?

=Cipr" + Copr™"



forn =1,2,3,.... Therefore, if we write @, := Ci nD1n, Bn = C1.nD2.n, Yn := CouD1.n, 6n := C2.4,D2 5, then we

have
un(r’ 9) = Rn(r)®n(9)
= (Cypr" + Conr ) (D, cos(nb) + Dy, sin(nh))
= (Cl’nDl’nrn + Cz’nDl’nr_n) COS(I’l@) + (Cl’an,nr” + Cg,an’nr_") sin(né?)
= (apr" +yr™") cos(n) + (Bur" + 8,r7") sin(nd).
forn =1,2,3,.... This is a nontrivial smooth solution that is also bounded in D.

We recall that an addition of smooth solutions is again a smooth solution. So that means, as we have established already that
each w, (r, 0) is a nontrivial smooth solution forn = 1, 2,3, .. ., it follows that

u(r,0) = ug(r,0) + > un(r,6)

n=1

= C;_O In(r) + % + Z((anr" +yur ") cos(nf) + (Bur" + 8,r7") sin(nd))

n=1
= C;_O In(r) + % + ;(anr" +y,r ") cos(nb) + ;(ﬁnr" +0,r") sin(nf)

is the general solution of the Laplace equation that is also bounded in D. Next, we will now compute the Fourier coefficients
@0, Bo> @, Bn, Yn, On. We have

w(2,0) = L1n2) + Po, Z(anZ” + 9227 cos(nb) + Z(ﬁnZ" +0,27") sin(nd),
2 2 n=1 n=1

u(46) = Lin(ay + 20 4 D (@nd" +7,47") cos(n6) + > (Bad" + 65,47") sin(nf)
2 2 n=1 n=1

and the given boundary conditions

u(2,0) =0,
u(4,0) = sin(0).

Both our expressions of u(2, 6) and u(4, 6) yield, respectively,

(e7)] Bo R n -n N n AT -
S @)+ 2+ Z(anZ +y227") cos(nb) + Z(,BnZ +6,27") sin(né) = 0,

n=1 n=1

% In(4) + % + Z(an4" +v,47") cos(nb) + Z(,B,A" +6,47") sin(nd) = sin(6).

n=1 n=1

By the uniqueness of the Fourier series expansion, we can equate the terms of both sides of each of our two equations above
to find

@y =pPo=0,
a2" +y,27" =0,
Bn2" +6,27" = 0,
a4 +y, 47" =0,

1 ifn=1,
I e
0 ifn=2,3,4,...
forn =1,2,3,.... In particular, we have obtained two linear systems of equations
B2 +6,27" =0,
1 ifn=1
4" 45,47 = ’
Pn " {0 ifn=273,4,...

and

a2 +y,27" =0,
apd" +y, 47" = 0.



forn=1,2,3,..., and we can simultaneously solve each one of them to obtain

a, =0,

8, = 1oifn=1,

"o ifn=23,4,...,
Yn =0,

-1 ifn=1,
Op = .
0 ifn=2,3,4,...

forn=1,2,3,.... Therefore, our formal solution in polar coordinates is

u(r,0) = 0;—0 In(r) + % + Z(anr” +v,r ") cos(nb) + Z(ﬁnr” +6,r ") sin(no)
n=1

n=1

= % In(r) + '% + ; a,r" cos(nf) + ; Ynr " cos(nb) + ;ﬁn"n sin(n6) + ; Snr”" sin(nb)

= C;—O In(r) + ’% + ; a,r" cos(nd) + Z vur " cos(nb)

n=1

+ (,Blr1 sin(16) + Zﬁnr" sin(n@)) + ((51r1 sin(16) + Z Onr ™" sin(n@))
n=2

n=2
O O [oe] " (o) n
=3 In(r) + > + Z 0r" cos(nf) + Z 0r~" cos(nf)
n=1 n=1
+ lr1 sin(16) + i 0r" sin(nd) | + —ir_1 sin(16) + i 0r~" sin(n@)
3 n=2 3 n=2

1 4
= gr 51n(9) - 5 sm(H)

2

’
= in(6) |,
3 sin(60)

as desired.

7.22. Consider the domain D = {(x,y) € R? | x> + y? < 36}. Let u(x, y) solve
Au=0 (x,y) € D,

x ifx<O,
- D.
u(x. ) % ifxso ®WEI

(a) Prove that we have u(x, y) < min{x, 0} in D.
Hint: Prove that we have u(x, y) < x and u(x,y) < 0in D.
Solution. Define v(x,y) := u(x,y) —x. Then v solves

Av=0 (x,y) € D,

0 ifx <0,
- D.
vee) {ﬂfﬁxzo (. ed

Notice by construction that u and v satisfy

u(x,y) <0,
v(ix,y) <0

on dD. By the Weak Maximum Principle, we have
max u(x,y) = r%%xu(x, y),
ma ,y) = ma ,y).
1ax v(x,y) nax v(x,y)
Also, we have of course
u(x,y) < max u(x,y),

v(x,y) < max v(x,y)



for all (x, y) € D. However, if we have
u(x,y) = max u(x,y),
vix,y) = max v(x,y)

at some (x, y) € D, then the Strong Maximum Principle would assert that # and v are constant in D. By continuity of u
and v, we would conclude that # and v are also constant on 9D, but this contradicts the known non-constant functions

x ifx<O,
M(x,y)={

0 ifx>0,
(r.y) = 0 ifx<O,
VY= —x ifx>0

on 0D. Therefore, equality is not possible; in other words, we must conclude
u(x,y) < mlglx u(x,y),

v(x,y) < max v(x,y)

Therefore, we have
N < max N = ma s = 0,
u(x,y) Da u(x,y) BDX“(X y)

,y) < ma ,y) = ma ,y)=0
v(x.y) < maxv(x.y) = maxv(x,y)

in D. This is equivalent to saying

u(x,y) <0,
u(x,y) <x

in D, which is equivalent to u(x, y) < min{x,0} in D. O
(b) Evaluate u(0, 0) using the mean value principle.

Solution. By the mean value principle (Theorem 7.7 of the textbook, on page 179) applied to D, we have

1 2
u(0,0) = EA u(0+ 6.cos(0),0+ 6sin(0)) do

2
= % / u(6.cos(6), 6sin(9)) do
0

s

1 2 5 27
= — 0d9+/ 6cos(9)d9+/ 0do
2r 0 % 3n

2

3

:/ ’ 6 cos(0) do

2

6

as desired. O
(c) Using Poisson’s formula, evaluate u(0, y) for0 <y < 6.
Solution. Note that the boundary function in polar coordinates is

0 if -2 <60<7,
: 3
6cos(0) if T <6< .

h(6) = w(6,6) ={

By the Poisson formula from page 202 of the textbook applied to D, we have

1 [ 36 - r?
,0)=— h(p)d
wir.9) 2 ,/0 36 — 12r cos(8 — @) + 12 (p)dy
3n
1 [z 3612
=— 6 d
2r Jz= 36— 12rcos(f — ¢) +r? cos(p) de

2
3

_3/; 36-r cos(¢) d
o z 36— 12r(cos(6) cos(¢) +sin(6) sin(y)) +r? I




In Cartesian coordinates, this is

u(x,y) = u(x(r,0),y(r,6))

= W(r7 9)
_3/32" 36 - r2 s
= z 36— 12r(cos(6) cos(p) +sin(6) sin(yp)) +r2 p)ag
—3/‘32” - cos(yp) d
= z 36— 12(rcos(0) cos(y) + rsin(6) sin(yp)) + 2 p)ay
3n

317 36— (x2 +)?)
T de.

4 [ 36— 120 cos(p) + ysin(g)) #2432 A 4

On the line x = 0, we obtain

3

3 2 36 — (02 + 02)
0,0) = = : J
“0.0 n /;r 36 — 12(0cos(¢) + 0sin(p)) + 0% + 02 cos(p) dy

3

3 7
= —/ cos(p) dy
nJz

2

and, if we can employ the substitution u = 36 — 12y sin(¢) + y2, which implies du = —12y cos(¢) d, then we have

3
3 7 36 — (0% + y2)
0,y) == : J
“(0.7) g /g 36 — 12(0 cos(¢) + y sin(g)) + 02 + y2 cos(p) de
3n
3 7 36 — y?
7z d
n /2 36— 12ysin(g) 42 W) 4
3 36+12y+y? 1 du
= 2(36-y?) ! (__)
d 36-12y4y2 U\ 12y
1 36— y2 (6+y)? 1
=Tas Y / —du
oy Jeyp u
1 36— 12
- 36 y ln 6 + y
2y 6-y

for all 0 < y < 6. In summary, we have

6 .
-2 if y=0,
u(0,y) = { | 362 1 (64
7= =—=-In (—i

forall0 <y <6.



(d)

Remark. By using I’Hopital’s rule, we see that our expression of u(0, y) satisfies

T =
L
27 y—0* 36Zy2
1 AEn(E))

2 1m+ d y
T y—0 i ( %657 )

12

1 362
= o s e
(36-y?)?

6 _ 2

_ 6y, 302
7T y—0* 36 + y?
6
T

: 6

B T

=u(0,0),

which shows that u(0, y) is continuous for all 0 < y < 6.
Using the separation of variables method, find the solution « in D.
Warning: This exercise is challenging!

Solution. Define w(r, 8) = u(x(r, 0), y(r,0)). Then the problem is transformed into

Aw =0 0<r<6,0<6<2r
: 3
W(6.6) = 6 cos(6) ?f§<9<7”3
0 if0<6< 7,5 <60<2n

For the Laplace equation on a disk, we have already done the separation of variables method in our solution to Exercise
7.7(b). As aresult of the method, the general smooth solution of the Laplace equation on a disk is given by

w(r, ) = % + 3@y cos(n6) + iy sin(nf)).
n=1

Next, we will compute the Fourier coefficients ay, a;,, 8,,. We have

w(6,0) ‘;—0 + 6" (ay cos(nf) + B, sin(nf))
n=1

O;—O + Z 6", cos(nf) + Z 6" B, sin(nd)
n=1 n=1

and the given boundary condition

: 3
6cos(f) if 3 <6<

0 if0<6<%, 3% <0<

w(6,0) = {

Because the coefficients are not constant for all 0 < 6 < 2, we are unable to equate the terms. Instead, we need to

multiply by 1, cos(6), sin(6) in each case and integrate over 0 < § < 2x in order to compute the Fourier coefficients.
That said, we have
3

2r
/2 6cos(9)d9=/ w(6,0) do
z 0

2

2 & ks
= /0 (;—0 + W; 6™ a,, cos(mb) + Z 6B, sin(m0) do

m=1
2r

°° 2 S 2
@0 .
=— 1do+ ) 6"ay, / cos(m@)do+ » 6"B, / sin(m@) do

0 m=1

- %m + i 6" a0 + i 6" B,,0
m=1 m=1

=T,



which implies

3n
aoz—/ ’ 6cos(0) do
TJz

12

Ve

‘We have

W

27T
2

= 2
/ 6 cos(0) cos(nb) do = / w(6, 8) cos(nf) do
z 0

2r sl 0
= /O (% + Z 6™a,, cos(mb) + Z 6" B sin(me)) cos(nf) do

m=1 m=1

2 ad 2n
=% cos(nf) do + Z 6mam/ cos(m@) cos(nf) df
2 Jo 0

m=1

sl 2r
+ Z 6" Bm / sin(m@) cos(n6) do
m=1 0
g - r ifn=m, <«
=—0+ ) 6" + > 6"B,0
2 ;; am{o itn#m 2; Fm

— n
=6"a,n,

which implies

3

1 7
a, = —6'" cos(0) cos(nd) do
T z
2
z ifn=1,
_ L -2 ifn=2,6,10,...,
™ 0 ifn=3,5,7,...,
== ifn=48,12,...
i ifn=1,
=28 iftn=2,6,10,...,
o ifn=3,5,7,...,
260 ifn=4,812,....

We have

3

= 2
f 6 cos(6) sin(nf) do = / w(6, 0) sin(nd) do
z 0

2
2n s 0
a ) .
= ./0 (70 + mEZI 6" a,, cos(m0) + E 6" B sm(mH)) sin(nf) d6

m=1

@ 2 o0 2r
= — / sin(n0) do + Z 6"a,, / cos(m@) sin(nd) do

2 Jo m=1 0

sl 2n
+ Z 6" B / sin(m0) sin(nf) d6
= 0

2 — - n ifn=m,
=—0+ 6" a0+ 6" Bm

2 W; « ; F {o ifn#m
= 6nﬁnﬂ,

which implies

W

3n

Bn = l61_"‘/ i cos(6) sin(nd) do
/s z
2

= Leing
T
=0.



Therefore, our formal solution in polar coordinates is

w(r,0) = 0;—0 + " (@ cos(n6) + B, sin(n6))
n=1

= 0;—0 + 2, a,r" cos(n) + Zﬁnr” sin(n6)
=2 ot cos(16) + Z a,r" cos(nf) + anr" cos(nf) + Z ar" cos(nf)
T n=2.6.10,... n=3,51,... n=4.8,12,...
+ Z Br" sin(nd)
6 1 2 6" 2 6"
=+ Erl cos(19) — = Z S— 1" cos(nf) + 0r" cos(n@) + Z ————r" cos(nb)
T L T n=3,5.1,... peds1a, TN 1
+ Z 0r" sin(n)
n=1
6 1 2 6! 2 6"
=——+5r cos(f) — = Z 5 1”" cos(nf) + — Z 71" cos(nb)
T T =610, "~ T a5, W1
6 1 61 (4n-2) 4 61 —4n n
= —; + Er COS(@) Z ( 2)2 I" COS((4n - 2)9) +— Z (4 )2 COS(4n0)’

as desired. Finally, to convert this formula back into Cartesian coordinates, we will need to invoke the trigonometric
identities
[7]
cos(nf) = Z(—l)k( " ) cos" 2k (9) sin?* (),
o 2k
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sm(n@) = Z (—l)k (2kn+ 1) COSn_(2k+l) (9) sin2k+1 (9)
k=0

forn=1,2,3,..., as seen on this question posted on Mathematics Stack Exchangel In Cartesian coordinates, our formal
solution is

u(x,y) =u(x(r,0),y(r,0))
w(r, 9)

6 61 (4n-2) , 2 © 61—4n .
= + rcos(Q) Z an 2)2 4n=2 cos((4n —2)0) + - HZ:; (471)—2—1r " cos(4nd)

n-2

L452)
6 1 61 (4n-2) 4n ) 2
- + Ercos(e) Z @n_27 - 1 Z (-1) (

k=0
x  gl-4 1]
%z:: @n)2 = kZ ( )0054"_2]‘(0) sin?k ()
61— (4n-2) - L4452) _5 2\ 2kl 3 k
e S (E

L%

2 sl 14n . 2 2n-k 2 k
;Z:: 4n)? — (x %) Z( b ( )(xz)irﬁ) (x2y+y2)

) cos 41722k (g) sin* ()

n

2n-1 o 2n
(=D k34 (4” 2)x4n 22,2k | ZZ (—Dke!=n (4”)x4n 2 2k

200
- 2 _;; 16n2 — l6n+3\ 2k len2 -1 \2k

k=0 nlkO

where we used x = r cos(6), y = rsin(f), r> = x> + y%. O
Remark. By substituting x = 0 into our expression of u(x, y), we obtain
( 1)211 163 —4n 4n -2 _— 2 R (_1)2n61—4n 4n )
0. -y 2 EDTO (2n)
u(0.y) = Zmn 2 Ten+32m-1) n; 16n2—1 \22m))”

6 2 > 63—4—n > 61—4n n
=——+= —_— — :
7 Z(l6n —16n+3> 16217 )


https://math.stackexchange.com/questions/92695/proving-formulas-for-cosnx-and-sinnx

It is possible to show that this expression is consistent with the expression

6 .

- lfy_o’
0,y) =4 " 36
u(0,) {—ﬁ“’yyzln((‘%) 0 <y <6

obtained from part (c). Indeed, the general Fourier series representation of u(0, y) over the integral 0 < y < 6 is

w(0,y) = ="+ ZA cos (—y) ZB” sin (—y)

where Ay, A,, B, are the Fourier coefficients given by

2 [ 1 [%36-y> (6+y
A = - 0, d = - 1 d’
0 6/0 w0y dy 67r/o y n(é-Y) g
2 [° nm 1 636 - y2 6+y
An_g‘/o u(O,Y)COS(?y) dY——& 0 y ln((,_ )COS(6y) a4,

2 [f 1 [%36-y2 (6+y)\ . (nn
B"_E/ u(0, y)sm(gy) dy——a y ln(6_y)sm(zy) dy.

The procedure from here would be to compute explicitly Ao, An, By, substitute these coefficients into the Fourier series
representation of u(0,y), and finally make some algebraic and trigonometric manipulations in order to arrive at the
series expression of u(0,y) that we wrote at the beginning of this remark. Nonetheless, this entire process is extremely
tedious, and I have decided not to include it here in this remark or anywhere else in this homework solution. For what it
is worth, you may view lmy saved graph on Desmos in order to verify by visual inspection that the graphs of our two final
expressions of u(0, y) over the interval —6 < y < 6 almost overlap each other. Note that, because Desmos is unable to
compute the infinite series appearing in u(0, y), I had to substitute it with a finite series with a large number of finitely
many terms, such as N = 99, that approximates u(0, y). If one were able to replace N = 99 with N = oo on Desmos,
then the two graphs should be the same.

(e) Is the solution classical?

Remark. A solution is said to be classical if it is differentiable up to the highest-order term in the partial differential
equation. In this case, the Laplace equation is a second-order partial differential equation. So we require that the
solution u(x, y) must be at least twice differentiable for all (x,y) € D in order it to be classical.

Answer.


https://www.desmos.com/calculator/n4vlmmgrzv

