MATH 146C discussion Ryan Ta
University of California, Riverside Spring 2020

Solutions to suggested homework problems from
An Introduction to Partial Differential Equations by Yehuda Pinchover and Jacob Rubinstein

Suggested problems: Exercises 8.5, 8.6, 8.7, 8.8, 8.11
8.5. (a) Show that the function
G, y;é,m) =T(x=&y—n)-Tx-&y-17)
L [NG=e2+ G-
270 \VGa =92+ (y+n)?

is indeed the Green function in R2, and that its derivative in the y direction for y = 0 is the Poisson kernel which is given
by

(8.23)

K(x,0;¢,n) = (8.24)

n
m((x = €)% +n?)
for all (x,0) € OR? and (&,7) € IR2.

Solution. Recall that the fundamental solution of the Laplace equation with a pole at (£, 1) is given by

D=y =) = == (VG =87+ (- 1))

= (=8 + = 0)?)
and satisfies
AT =-6(x-&,y—n)
for all (x,y) € R2 with (x,y) # (£,7), where

o if (x,y) = (£.m),

o(x—&y—n):= {0 if (x,y) # (£,1).

Given the upper half plane R2, the inverse point of (x, y) with respect to the real line is

(X7y) = (x’_y)'

By combining (8.13) with the boundary condition of (8.11) from the textbook, the possible expressions of the given
function are

Gx,y;&,m) =T(x-&y-n)-Tx-&y-7)
=lx-&y-n)-Tx-§&y+n)

= 5 (V=87 (=) + 5= (VG = 8 + )

__1 m( V-2 + (- '7)2) . (8.23)
-\ Jx =82+ (y+n)?
So we have
AG(x,y;&m) =AT(x-&y-n)-Tx-£&y+n)
=AT(x-&y—-n) - AC(x—&y+n)
=-0(x—&y-n)-0
=-0(x—&y—-n)
and

N B B A Ol
G(x,0:¢,m) = _Eln( \/(x_§)2+(0+71)2)

"\ Vo erer
1

= —Z 11’1(1)
1

=0.



In summary, G (x, y; &, 1) solves

AG=-6(x—&y-n) (x,y) €RZ,

5 (8.14)
G(x,0;¢6,7) =0 (x,y) € R,
meaning that G is indeed the Green function. And the derivative of G in the y direction is
0 1
Gy(xyim = 5o (=7 (V& =2+ (v =1 = In(V(x =7 + &+ 1))
1 9 5 5 1 0 5 5
=~ (I(Vr =62+ (y =) + 5= = (In(V(x = &)+ (y +7)?)
2 dy 21 dy
__ 1 y-n L L y+n
2r(x=€2+(y-m? 2r(x-&?+(y+m?
Aty =0, we obtain
1 0-n 1 0+7n
G 70; ) = - + —
) = e T 0= T =+ (04 )
_ 1 n L1 n
C2a((x =92 +n)  2m((x =82 +1P)
_ n
m((x = €)? +n?)
=K (x,0;¢,1)
for all (x,0) € 9R? and (£,7) € IR2, as desired. o

(b) Using a reflection principle and part (a), find the Green function of the positive quarter plane {(x, y) € R> | x > 0,y > 0}.

Solution. Given the positive quarter plane D := {(x,y) € R?> | x > 0,y > 0}, the inverse points of (x, y) with respect to
0D are

(x1, y1) = (x, =),
(x2,¥2) = (=x, ),
(x3,y3) == (=x, —y).
Using the reflection principle, we have the function
G,y;&m) =T(x=&y-n) T =&,y -m) —Tx =&,y -m) +T(x =&,y —mn3)
=l -&y-n-Th-&y+n) -Ta+&y-n)+Tx+&,y+n)

= (VG 2P+ G =) + 5 (V=8P + 5+ 7)

+ oo (VG874 (=1 — 5= (VG + 2+ (7))
n n
1 1
==+ (=) + - In((x =€)+ (y+1)?)
1 1
I+ &)+ (=) = I+ 6+ (1))
L ({692 =+ + 0+
dr - (k=82 + O +)H((x+2+ (y-m)?)
Now, it remains to show that this function is indeed the Green function. We have

AG(x,y;é,m) =AT(x =&, y—n) —AT(x =&,y —m) —AT(x = &2,y —m) + AT (x = &3,y —13)
=-0(x—-&y-n-0-0+0
=—6(x—-&y-m).

We also have, for all x > 0,

1 [ =8+ 0 - ((x + )2+ (0+ 7))
G(x’o’f’")‘_Eln(((x—§>2+(0+n>2><(x+§)2+(0—n)2))
=_iln(((x—§)2+772)((X+§)2+n2))

i\ (= R+ (462 +1P)

1
=—-—1n(1
ar n(1)

1
=-——0
4r
=0



and, forall y > 0,

L (0= + (=)0 +EP + (v + 1))
G(O’y’f””‘_E1“(((0—§>2+(y+n)2><<0+§)2+<y—n)2))

L ( (E+(-DHE+(y+ n)z))

dr o \(E2+ (y+m)2)(E2+ (y—n)?)
= —ﬁln(l)

1
= _EO
=0.

In summary, G (x, y; &, 1) solves

AG(x,y;f,U)z—é(X—fsy—U) (X,Y)GD,

(8.14)
G(x,y:&,m) =0 (x,y) €D,
meaning that G is indeed the Green function. O

8.6. Let R be the upper half-plane. Find the Neumann function of R2.

Solution. Given the upper half-plane R2, the inverse point of (x, y) with respect to the real line is
(i’ y) = (-x7 _y)

The possible expressions of the given function are

N(x’y;f,fl) = F(X—f»y—ﬂ)"'r(X—é‘:,y—ﬁ)'*C
=Fx-&y-m+lx-&y+n)+C

= (NGB (7 1P) - 5= (V8 (r+1) +.C
bis 2n

= 5 (NGB (- P V=B () +C,

where C is a constant. This expression is based on the fact that one must place another positive charge (instead of negative
charge for Dirichlet case) on the image point (£,77) = (&£, —1), in order to satisfy the Neumann condition 9, N (x, y; &,77) =0 =
—% with L = co. We have

AN, y;Em) =AT(x-&y-n)-Tx-£&y+n)+C)
=AT(x-&y—-n) -AT(x =&, y+n) - AC
=—0(x—-&y-n)-0+0
=—0(x—&y—mn)

and, for all (x,0;&,n) € 6R3,

00(5,056,m) = 3 (=5 (VT = 87 + (0= V= €7 + 0+ 7)) 4 C

= 5o (VG &7+ PG 874 ) - 34C
= 5 In((x = £ + 1)
/8

= 5 Vln((x = &) +17)

1 (o 0
=7 (g (n(G =& +0%). o (n((x =£)* +77)) | - (0.-1)

1 0
= E@ln((x -6 +n?)

1
=—0
2

=0



with L = co. In summary, N(x, y;&,1n) solves

AN(x,y;6,m) = =6(x =&,y —n)  (x,y) € RZ,

1 5 (8.29)
0N (x,0;¢,m) = ~T (x,y) € ORY,
meaning that G is indeed the Neumann function. O
8.7. (a) Let u be a smooth function with a compact support in R?. Prove
lim / o (Du(E) di = u() = / 5% - §)u(@) d. (8.9)
e—0* Y R?

Proof. Recall from page 212 of the textbook that p (X) has compact support in B(0, €) and satisfies
/ pe(F) di = / pe(B)di =1,
R2 B(0,¢)
which implies
[Lpeccucai-ui)= [ peoudi-ut) [ petiaz
R2 R2 R2
- [ petu@di- [ poGue)az
R2 R2
= [ peGu) - pe GG i
= [ peu) -t d.

Since u is smooth in R2, it is continuous at y € R2. So we can invoke the e-6 definition of continuity, which states: For
all € > 0, there exists § > O that satisfies |u(x) — u(y)| < € for all y € B¢(x). Applying this definition and using the
triangle inequality for integrals, we have

[ peu i -u)

| [ D - un ax
< [ e -t az
= [ o ~uaz

</ pe(X)edx

R2

<e/ pe(X)dx
R2

as € — 07. This implies
[ peout di = u(y)
as € — 07, as desired. O
(b) Find the constant ¢ in

—L ) iR <,
@) {cexp(xz_l) if || 5.10)

0 if |X] > 1,
and verify directly that p. is an approximation of the Dirac delta function.

Solution. We need to find the constant ¢ that satisfies

/ p(X)dx = 1.
R2



‘We have

1
1=/ p()?)d)?zc/ exp(T) dx
R? B(0,1) Ix|> -1
2n
w7 ool
1
—27rc/ exp( 5
0 re—

~ 0.466512c,

)rdrd@
)rdr
1

where the approximate value is taken from this computation on WolframAlpha, We find ¢ = m =12.143566| O
Remark. Although the integral
1
1
/0 exp(rz_])rdr

is convergent, we are unable to evaluate it analytically. We can try to invoke the Taylor series of the exponential function

to obtain 1
‘/0 exp( )rdr—zn‘/ (r2—l)"

but the Taylor series entails an antiderivative that contains a divergent term. Our only recourse is to resort to numerical
methods or advanced calculators in order to approximate the integral, which means we can only approximate the value
of ¢ at best.

8.8. Let k # 0. Show that the function G (x; &) = ﬁe‘k‘x‘f lis a fundamental solution of the equation
—u” +ku=0

for all —o0 < x < o0,

Hint: Use one of Green’s identities.

Proof. Given the function

| P
Gi(x;¢) := % K¢l

_ et ifx 2 €,
ek ifx < £,

we obtain its first and second derivatives

—3e7 k=8 ifx > ¢

G (x;¢) = {1 k(x—£&) ifx<§:

ke‘k(" & ifx > &,

G/ (x;é) = {k k(x=8) jfx < &.

For all x # &, we have

>~

ko-k(x-&) if L o=k(x-8) if
P 2 e )2e ifx > ¢, 2 | 3pe ifx > ¢,
G (x:6) +K°Gi(x6) = {k kx=6) jfx < & Hh ﬁe =& ifx <&,

Lo hx=8)  kok(x=8) ifx > ¢,
__ek(x &) + kek(x £) ifx < é‘:,

ifx > &,
ifx < ¢,
=0,

which implies in particular -G/ (x; €) + k>Gj(x;€) = 0 forall x € (—co,x — €) U (x + €, ), where € > 0 is arbitrary. By


https://www.wolframalpha.com/input/?i=2pi*integrate+from+0+to+1+of+exp(1/(r^2-1))+r+dr

using Green’s third identity (integration by parts), we have

[y §+E
[ 676 412Gy i) dr - L W) (=G (x:6) + G (x:€)) d
v f W) (=G (x:€) + G (x: ) d
(—00,x—€)U(x+€,00)
E+e
=/ M(X)(—G;'(x;f)+k2Gk(x;§))dX+/ u(x) - 0dx
&E-€ (—00,x—€)U(x+€,00)
E+e
- L W) (=G (:6) + G (x:€)) d
» E+e E+e
:-/ u(x)G;('(x;f)dx+/ kK2u(x)Gr (x; &) dx
144 §+E §+E ’ ’
=— (u(x)Gk (x,f))f_6 +./§_E u' (x)G(x;€) dx)
E+e
+/ kKu(x)Gp (x; &) dx
=—(u(é+e)G(é+€&) —u(¢ -G (& -€¢))
E+e
+/ —u’ (X)G} (x;€) + kP u(x) Gy (x; €) dx
=: A¢ + Be.
‘We have

Ae=-(u(E+€)Gr(+€8) —ul§ - )G (& - €¢))
=-u(E+e)Gr(E+e6) +uld - e)Gi(¢ -€é)

=—u(é +e) (_%e—k((§+6)—§)) +u(é—e) (%ek((g—e)—g))

_l —ke l _ —ke
= 2u(§+e)e +2u(§ €)e

1 1
- 5”(5) + Eu(f)
=u(§)
as € — 07, As u(x) and G (x; ¢) and their first derivatives are bounded, we have

lu(x)| < Ci,
' (x)] < Ca,
|Gi(x:6)| < Dy,
G (x;:6)] < Do,

where Cy, C», D1, D, are constants, and so, by the triangle inequality and the triangle inequality for integrals, we have

E+e
|Be| = ‘/ —u'(x)G (x5 €) + k2u(x)Gr (x; &) dx

—€

E+e
< / ' ()G, (x:€) + K2u(0) G (x: 6)| dx
£

—€

E+e )
< / -t ()G, (x: )] + | (x) G ()|

—€

—€

E+e
- L W NG, ()] + K2 lu(x) G (x: £)] d

E+e
< / C2D2+k2C1D1dx
3

—€
=2(CyDy + k*C1Dy)e

— 0,



8.11.

which implies B — 0, as € — 0*. Therefore, we conclude

[ uGrme sikGiena= tim [ u0(-6{x:6) + FGuxie) s

00

lim (Ae¢ + Be)
e—0*

lim A + lim B,
e—0* e—0*
u(é)+0

=u(f),
and so, according to Definition 8.3(b) in pages 212-213 of the textbook, G (x; &) satisfies

~G}(x;€) + k*Gr(x;€) = 6(x = &)

for all —oo < x < oo, which means that G (x; &) is a fundamental solution of the equation —u" + ku = 0. O

Let Dg := R2 \ Bp be the exterior of the disk with radius R centered at the origin. Find the (Dirichlet) Green function of Dg.

Remark. For my solution below, I am following Example 8.14 of the textbook with necessary modifications for DRg.

Solution. Let (x,y) € Dg. The point
RZ

s R? R?
(%,5) = m )

x,y)=|——x, ———
(x,y) (x2+y2 el

is the inverse point of (x, y) with respect to the circle dDg. Define the function

FEE

Gr(x,y;&€,n) =T (x=&,y-n)-T — R

(x_g’y_ﬁ))

and set

r=V@x-8+ (-2

R2 \? R? \?
=\ -]

p=VE +1.
Then we have
2 2
Grlx.y:gm) =T(x =gy =) ~T —“‘f;”(x—é,y—ﬁ))
CT(— iy —p) T W(x_ R g) J§2+—nz( R )
= Y= R 2+2°]" 7 R Yo
R? R?
iera-rfie-8 5 6-50)
1 1 2 R2 \? 2 R2 \?
= -V =7+ =)+ 5-In \/%(x—pg) +%(y—;n))

1 1 2 \2 2 \2
=—Eln(\/(x—§)2+(y—n)2)+Eln(%\/(x—%f) o= 50) )

for all (x, y) # (£,n). Now, it remains to show that this function is indeed the Green function. We have

2 2
AGR(x,y;é,m) = A (F(x—f,y—n) —F(% (x— %f),% (y— R—zn)))

R2 R2
:AF(x—f,y—T])—AF(%(x—? )’%(y_?”))
=—0(x-&y-0)-0
=-6(x - &,y -0).



For all (x,y) € dDg (that is, x> + y> = R?), we have

R? R?
59) = ——x, ——

R? R?
(5
= (x,y),

and so we have

GR(X,)Cf,’Y) ZF(X—§7)’—77) _F(T(-x—g’y—ﬁ))

=F(x—§,y—n)—F(%(x—f,y—n))

=Ix-&y-n-Tx-&y-n)
=0.

In summary, G (x, y; &, 1) solves

AG=-6(x-¢&y-m) (x,y) €D,

(8.14)
G(x,y;¢,m) =0 (x,y) € 4D,

meaning that G is indeed the Green function. O



