MATH 146C discussion Ryan Ta
University of California, Riverside Spring 2020

Solutions to suggested homework problems from
An Introduction to Partial Differential Equations by Yehuda Pinchover and Jacob Rubinstein

Suggested problems: Exercises 9.3, 9.4,9.5,9.6,9.7

9.3. Derive the radially symmetric solution

r+ct

u(r,t) = %((r +et)f(r+ct)+(r— ct)f(r —ct)) + % / sg(s)ds (9.26)

r—ct

for the three-dimensional (radial) wave equation
U — AAu = 0,

where f and g, defined by

) = {f(r) if r >0,

f(=r) ifr <o,
3(r) = g(r) ifr >0,
sV = g(-r) ifr <0,

are the even extensions of f and g, respectively.

Remark. Portions of my entire solution below for this exercise is also outlined in your professor’s Lecture 17 (May 29) notes
or in Sections 4.2, 4.3, and 9.4 of the textbook.

Solution - Step 1: Derive the formal solution of the one-dimensional wave equation with initial conditions. We would like to
solve the Cauchy problem

2

Uy — CUxx =0 —o0 < x <oo,t>0,
u(x,0) = f(x) —o00<x < oo,
us(x,0) =g(x) —oco0o<x< o0,

Define the new variables & := x + ¢t and n := x — ct, which implies the first partial derivatives
Ex=(x+ct)y =1,
& =@x+ct)=c,
Nx = (x_Ct)x =1,
m = (x—ct) =—c.
Also set w(&,n) :=u(x(£,1),y(£,n)). Then, by the multivariable chain rule, we obtain the first partial derivatives
Ux = webx + wyllx
=We - 1+ Wy - 1

=Wweg + Wy
and

ur =weés +wyny
=wegc+wy(=c)

c(we —wy),
as well as the second partial derivatives

Uy = (Wg +Wy)x
=(we+wplebx + (e +wy)ynx
=(Wee+wey) - L+(wey+wyy) -1
=Weg+2Wey +Wyy

and

U = C(W.f - Wn)t
= C(W.f - wl])f‘fl’ + C(W§ - W7])7777t
=c(Weg —wep)c+c(Wey —wyy)(=c)

= c2(w§f —2Wen +Why).



So we have
0=ty — Putxy
2 2
= (Wege =2Wep —Wyp) = (Wee +2Wep +Wyy)
= ¢?(Weg = 2Wey = Wrif = Weg = 2W ey + W)
= —4c2w§,,,

which implies
Wegn = 0.

This partial differential equation has the general solution

W(f,n)=/(/ Wg;;dn))df

=F(&)+Gn).
where F (&), H(¢) are arbitrary functions of ¢ and G () is an arbitrary function of 5. Therefore, we have
u(x, 1) = u(x(&,n),1(&,m))
=w(&,n)

=F(&)+G(n)
=F(x+ct)+G(x —ct),

as well as one of its partial derivatives

ur(x,t) =(F(x+ct) + G(x —ct)),
= (F(x+ct)) +(G(x —ct)),
=F'(x+ct)(x+ct)y + G (x — ct)(x — ct);
=F'(x+ct)c+G'(x —ct)(-c)
=c(F'(x+ct) - G'(x —c1)).

At t =0, we have

J(x) =ux,0) = F(x) + G (x),
8(x) = ur (x,0) = c(F'(x) = G'(x)),

or equivalently the linear system of equations
F(x)+G(x) = f(x),

F(x)-G(x) = %/0 g(s)ds +C,

where C is a constant. We can solve simultaneously the system of equations to obtain

1 1 * C
Fo =375 [ ewrdse S,

1 1 X C
G = 3/() - Z/o g()ds— 5.

Therefore, our formal solution is

u(x,t) =F(x+ct)+G(x —ct)

1 1 x+ct 1 1 x—ct
=(§f(x+ct)+ZA g(s)ds+g)+(§f(x—ct)—zv/o‘ g(s)ds—g)

1 1 1 x+ct 1 0
=§f(x+ct)+§f(x—ct)+2—c/0 g(s)ds+2—c/xf”g(s)ds
X+ct

=%(f(x+ct)+f(x—ct))+21—c‘/ g(s)ds,

x—ct

which is also known as d’Alembert’s formula.



Solution - Step 2: Derive the radially symmetric solution for the three-dimensional wave equation. Given any arbitrary point

x = (x1,x2,x3) € R3, setr = |x| = 4 /x% + x% +x§ > 0. The Laplacian on R? in spherical coordinates is

AU = Uy, x, + Uxyxy T Uxzxs

1 (cos(¢) 1 )

" Ugp +u + —5——Ugg
r2 \ sin(¢) oo sin’(¢)

=Uppr + —Uy +
r

1
sin(¢)

. 1
(sin(@)uy)g + M”oe),

1, 1
:r_z(r ”r)r+r_2(

which can also be found in Section A.5 of the textbook, and we will prove it in our solution to Exercise 9.4 below. In particular,
the radial part of the Laplacian is

Upr + —Up.
r
Therefore, the Cauchy problem

ut,—czAuzo x€R3,t>0,
u(x,0)= f(x) xe€ R3,
u:(x,0) = g(x) xeR>.

is transformed into

2
ut,—cz(u,,+—u,)=0 r>0,t>0,
r

u(r,0)=f(r) r=0,
u(r,0)=g(r) r=0,

and we do not need to include the angular part of the Laplacian because we are finding a radially symmetric solution. Now
substitute v(r,t) := ru(r,t). Then we obtain the first partial derivatives

Vi = Ty,

Ve =u+ri,
and the second partial derivatives
Vir = Flye,

Vir = Fllpr + =l
r

Consequently, the partial differential equation implies

2
0=u;u— c? (urr + —u,
r

1 c?
= —rusr — _(rurr + 2”1’)
r r
1 c?
= Vit — —Vrr
r r

1
;(Vtt - Cerr),

from which we deduce the one-dimensional wave equation
Vi — czv,r =0.

So the Cauchy problem is once again transformed into

vn—czvrrzO r>0,r>0,

v(r,0)=rf(r) r=0,
ve(r,0) =rg(r) r=0.
The solution of this problem is d’ Alembert’s formula
r+ct

v(r,t) = %((r +ct)f(r+ct)+(r—ct)f(x—ct)) + 2_10 / sg(s)ds.

r—ct



Therefore, the formal radial solution is
1
u(r,t) = —v(r,1)
r

= LA enferren s (r-cnfe—cn)+ - / s ds)
r\2 r

2¢ Jr-ct
r+ct

:%((r+ct)f(r+ct)+(r—cl)f(x—ct))+ﬁ‘/ sg(s)ds.

r—ct

Finally, we note that this u(r, t) is only defined on the ray » > 0. But if we want the solution to be defined on —co < r < oo,
we need to write instead

u(r,t) = %((r +et)f(r+ct)+(r—ct)f(x—ct)) + ZLcr ‘/HC[ sg(s)ds,

r—ct

where f and g are the even extensions of f and g, respectively. O
9.4. Derive the formulation of the Laplace equation in a spherical coordinate system (r, 6, ¢).

Solution - use polar coordinates. We know already that the Laplacian is defined in the Cartesian coordinate system by
Au=uyy+Uyy+1Uz;.

To compute the Laplace equation Au = 0 in the spherical coordinate system, we need to derive the equivalent expression of
the Laplacian in spherical coordinates. Let

x =x(r,0,¢) =rsin(¢) cos(0),
y =y(r,0,¢) =rsin(¢) sin(6),
z=12(r,0,¢) =rcos(¢),
u(x,y,2) =w(r,0,¢) =u(xi(r,0,¢),x2(r,0,¢),x3(r,0, ¢)).

Set s := 4/x2 + y2. Then we have

r=\V2+y2+22= Vs2+22,

s = Vx2 +y2 = rsin(¢),

x =rsin(¢) cos(8) = scos(6),

y = rsin(¢) sin(0) = s sin(H).
We know already from Exercise 7.7(a) that the Laplacian defined in the polar coordinate systems (s, §) and (r, ¢) are given
by

1
Uxx TUyy = Wes t+ ;Ws + S_ZWGB’

1 1
Usgs T Uzz = Wyp + ;Wr + r—2W¢¢,

respectively. So the three-dimensional Laplacian can be written
Au=tiyy+Uyy +ug,

1 1 1 1
= [t —ws + =wog | + [Wrr + =W + =Wpp — Wor
s 52 r p2 0

1 1 1 1
= Wer =W+ =W+ =Weg + = Who.
T st g2 P20

Our remaining work is to find wg. From = Vs2 + z2, we obtain the first partial derivative
(Vs?+22)s
s

Va2
r sin(¢)

r

= sin(¢).

rs



Next, we see that, on the s-axis, we have y = mx, where m is the slope of y, and so we obtain

3 ><|§><|\<

tan(6)

and we can differentiate with respect to s both sides to further obtain
sec?(0)0s = (tan())s
=mg
=0,
which implies the first partial derivative
0s=0

because 0 < cos?(6) < 1 implies sec?(6) > 1 > 0. Finally, from s = r sin(¢), we obtain

1= (S)s

(rsin(¢))s

rs sin(¢) + r cos(¢)ps

= sin(¢) sin(¢) + r cos(¢) P

= sin®(¢) + r cos(¢) s,

which implies the first partial derivative

1= sin2(¢)
Ps = rcos(¢)
_ cos?(¢)
"~ rcos(¢)
cos(¢)

r

Therefore, by the multivariable chain rule, we have

Ws = Wylg + Wﬂes + W¢¢s

=w,sin(@) +weo -0+ wy cos(¢)
-
. cos
= (sin(¢))w, + r(¢)w¢.
Therefore, the Laplacian in spherical coordinates is
Aw = 1 1 1 1
W =Wy + ;Wr + ;WS + S—ZW()Q + r—2W¢¢
1 1 . cos(¢)
= + W+ ——— + + + =
Wrr rWr rsin(4) ((Sln((m)wr - Wo 2 Sin2(¢)W90 r2W¢¢

1 (1 1 cos(¢) ) 1 1

=Wert+ —We+ | —w, + = — w Wog + =W
o r " r2sin(¢) ¢ rzsin2(¢) P2 00

=w +%W +l w +COS(¢)W + ! w
= Wprr - r 2 dP sm(q)) ¢ Sin2(¢) 00

1
(sin(@)w g +cos(P)wge) + Siz—weg

n”(¢)

1, 11

= rr"‘2 )t —=|—7<
rz(r v rwr) r2 (sm(¢)
1 1

1 1
2 .
== + — | ——=(sin +— ,
r2 (rowr)y r? (sin(¢) (sin(#)we)g sin’(¢) Wge)
which agrees with the last one of the five formulas written in Section A.5 of the textbook. This means that the Laplace equation
Au = 0 in spherical coordinates is written

1 1 1 . 1
r_z(rzwr)r ) (W(SIH(¢)W¢)¢ + mwee) =0,

as desired. O



Alternate solution - use Cartesian coordinates. We know already that the Laplacian is defined in the Cartesian coordinate
system by
Au=uyy +Uyy+Uz;.

To compute the Laplace equation Au = 0 in the spherical coordinate system, we need to derive the equivalent expression of
the Laplacian in spherical coordinates. Let

x =x(r,8,¢) =rsin(¢) cos(6),
y =y(r,0,¢) = rsin(¢) sin(6),
z2=2(r,0,¢) =rcos(¢),
u(x,y,z) =w(r,0,¢) =u(x(r,0,¢),x2(r,0, ), x3(r, 0, ¢)),

the first three of which imply

r= Vx2+y2+22,

6 = tan™! (X) s
X
¢ = cos™! (E) .
r
We obtain first partial derivatives
'x = (m)x = a = )_C’
VxZ+y24z2 T
ry= (V2 4y r )y = =2 = 2,
[Zyi+2 T
rZ:(Vx2+y2+Z2)z: < 253
VxZ+y2+z2  r
-1 (Y y
=o' (), =~
* x//x x2 +y?
y X
o=l () =
Y xlly  x2+y?
0, = (tan_1 (X)) =0,
X//z
¢x = (cos" (E)) = = ,
s (24 92+ 2) X2+ )2
_1(2 yz
by = (o™ (7)), = —
g "y (24 yr+ ) x4+ y?
6o = (eost (2)) =t
¢ rllz  xX2+y2+ %

and the second partial derivatives

o X T a2
XX — - -
(2 +2+22) a2 + 2 . (2 +y2 +22)3 r3
L y T 2422
yy = = . ,
(2492 +22) VX2 + 2 ; (X2 +y2 +272)3 r3
I z o xPeyr X +y?
zz = - - ’
(2 +y2+22) 2+ 32 (2 +y2 +72)3 r
XX — - ’
4y2) T Pyl
0, = (") -2 _
Yy x2+y2 y (x2 +y2)2’
0:. =(0), =0,
b = Xz _. 20t 4yt — a2y + 22
XX — - )
(X2 +y2 +72) 2 + )2 . (x2+y2+z2)2(x2+y2)%
bo = ¥z _, xt = 2y* — x%y? + X272
yy — - b}
(22422 4)2) a2y 4 ) (2 4y
oo = |- VX2 +y? _, 24/x% 4+ y?
22 Zrylig? (Z+y2+ 222
z



So, by the multivariable chain rule, we obtain the second partial derivatives

Uxx = (W(r’ 0, ¢))xx
= (W, rx +weby + W¢¢x)x
(Wrrx)x + (Wobx)x + (W¢¢x)x

Wrr (rx)z +WrFxx + WGB(GX)Z +wgblxx + W¢¢(¢x)2 + W¢¢Xx
2 2

X N y2 +72 N y . 2xy
=Wy +Wr——— +Wao wo
2 3 (x2 +y2)2 (x2 +y2)2
272 ot 4 y4 _ x2y2 " y2z2

+Wee +tWeZ
(2 +y2+22)2(x2 + y?) (X2 +y2+22)2(x2 + yz)%

and
Uyy = (w(r,0))yy

= (wyry + wally + wgdy)y

= (wrry)y + (WG’Qy)y + (W¢¢y)y

= Wrr("y)2 TWrlyy Wae(gy)z +woblyy + W¢¢(¢y)2 +Wedyy

2 X2+ 72 2 2xy
B P PRt
g 272 e x4 22yt X2y g 222
(x2 +y2 +22)2(x2 + y2) (X2 +y2 + 722)2(x2 + yZ)%

and

Uzz = (W(r,0))zz
= (W,rg +wol; +Wedy),
(Wrrz)z + (Wﬂez)z + (W¢¢z)z
= Wrr (rz)2 T Wplzz + WHH(Gz)z +webz + W¢¢(¢z)2 +Wodz,

ZZ x2+y2 x2+y2 2 x2+y2

=Wrr— +W,—=— +wgg-0-2wge -0+w + Wz
e s PP 24 y2 4222 " TP (X2 4 y2 4 2)2

2 224y K24 y? 22+ y?

=Wrr— +W +w +Wgz .
a3 PP 24y 4202 T TP (2 4 y2 + 2)2




Therefore, the Laplacian in spherical coordinates is

Au=tixy +Uyy +uz,
( x2 y2 + 72 2 2x

Yy
Wrr— + Wy +Woo +Wwe
r2 3 (x2 +y2)2 /@[4_ y2)2

%272 4 +y4 _x2y2 +y212 )

Wepo +WeZ
2P ) T 2y 22 (x4 y2)

N y? N X2+ 22 N x? 2x y*z?
Wrr= +Ww w -w
e T3 00 (32 +y2)2 %+ yz)z Weoo (X2 +y2 + 22)2(x2 + y2)

x* =2y — x2y? + X222 )

+ Wel
(xz + y2 + 12)2()62 + y2)§

N ( 72 x> +y? 2 2x* + 4x2y? + 2y* )

Wyp— + W, +W¢¢ +W¢Z
r2 r3 (X2 +y2+22)2(x2 +y?) (2 +2 +22)2(x2 + y2)3

xz+yz+z2 (y2+z2) +(x2+z2)+ (x2+y2) M
) +w, 3 +ng—2 5 ¢1
r r (x* +y?)
222 +y22 2 4y?
(2 +y2+22)2(x2+y2)  (xZ+y2+72)2

+W¢¢(

.\ (=2x* + 9" = x292 + 222 + (x* = 2y* = x2y? +x%2%) 24/x2 +y2
Wel
(62432 +22)2(x2 +y2)3 (x* +y2 +2%)?

x2+yr+ 72 o 2 +y*+2%) 1 x4+ 22+ (2 +yH) (22 +y?)

=w +w +w
rr 2 r 3 00 2 T T ey 4 2)2(x2 + y2)

%‘(+y — 27+ + (2 = 2 - 277 42220 + (T + 420 + 20

(2 +y2 +22)2(x2 +y2)3

+WwWy

7~ 257 1 MLM x+yt 202y 4 22 + 22
z

=W —+W,— + Wgg

7

2 1
= Wppr + =W, +Wgg +w
Tt X2ay2 P

24y F ) (2457

+W¢
e (2 432+ 2P (62 )

2
=Wrrt —W,r +Woe
r

1 1 z
-+ Woop— + We
r2sin®(¢) r? (2 +2+22) 2 + 2

_ % 1 1 Y cos(¢)

=Wpr t+ rWr + W80r2 Sl_—n2(¢) + W¢¢ ¢—2(/Sln(¢))

_ 2 1 1 COS(¢)

= Wy + rwr + r2 Sin2(¢)W99 + We s1n((/>) We
1 1 . 1

= r—z(rZWrr +2rw,) + = (m(sm(qﬁ)wtw +cos(P)wgy) + wa;g)
1 1 1 . 1

= r_z(rzwr)r 3 (m(sm(éﬁ)wcp)(ﬁ + mwee) ,

# 9x2+y2+ 2 2)% "¢ 24002 0 22052 4 23
r (x+y+Z)M (x2 +32 +22)2(x2 +)?)?

which agrees with the last one of the five formulas written in Section A.5 of the textbook. This means that the Laplace equation

Au = 0 in spherical coordinates is written
1, 1 1 1
> r)r ) . 1 = 0
r2 (rwe)r + r2 (sm(¢) (sin(g)wp)o + sin2(¢)wgg)

as desired.

9.5. Find the radial solution to the Cauchy problem
u,t—czAuzo r>0,t>0,
u(r,0) =2 r>0,

u(r,0)=1+r> r>0.

Solution. We have already derived in Exercise 9.3 the radially symmetric solution

r+ct

u(r,t) = %((r +et)f(r+ct)+(r—ct)f(r—ct)) + ﬁ / sg(s)ds.

r—ct

(9.26)



9.6.

Based on the given initial conditions, we have

which are even functions. So their even extensions are

fr)=2,
g(r)=1 +r2,
fr)=fr) =2,

g =gl =1+

Therefore, our radially symmetric solution is

as desired.

u(r,t)

r+ct

=%((r+ct)f(r+ct)+(r—ct)f(r—ct))+%/ sg(s)ds

—ct
1 1 r+ct '
:—((r+ct)2+(r—ct)2)+—/ s(1+sz)ds
2r 2cr Jr—et
1 r+ct

=2+ — s+s°ds
2er Jreer

1

=2+ — ((%(?’+Ct)2 + Z—ll(r +ct)4) - (%(r —ct)’ + é—ll(r - ct)4))

2cr

1
=2+ —2crt(c2t2 +ri+ 1)
2cr

=’2+t(c212+r2+1) ‘

Find the radial solution to the Cauchy problem

where a and b are constants.

Uy —Au=0 r>0,r>0,
u(r,0) —ae” r >0,

u,(r,0) = be ™ r> 0,

Solution. We have already derived in Exercise 9.3 the radially symmetric solution

With ¢ = 1, we have

u(r,t) = %((r +et)f(r+ct)+(r—ct)f(r—ct))+ 2%1” /r_r::t sg(s)ds.
u(r,t):%((r+t)f~(r+t)+(r—t)f(r—t))+%‘/_ sg(s)ds.

Based on the given initial conditions, we have

f(r) = ae"z,
g(r) = be"z,

which are even functions. So their even extensions are

Fr)=f(r)=ae™",
2 =g(r)=be™".

Therefore, our radially symmetric solution is

as desired.

u(r,t) =

r+t

1 - ~ 1 .
5((r+t)f(r+t)+(r—t)f(r—t))+E‘/ sg(s)ds

r—t

1 1 r+t
2—((r + t)ae_<r+’)2 +(r - t)ae_(r_')z) + % / s(be_sz) ds
r rJ,

-t
1 b r+t :
2—((r + t)ae_<r+t)2 +(r— l)ae_(r_t)z) + > / se™ ds
- r

r—t

1 b 1
—((r+0ae ™" 4 (r—ae "y ¢ — [—ze ) 4
2r 2r\ 2

4i((2a(r +1) =b)e " 4 Qa(r —1) + b)e ") |,
r

1
—e
2

—(r-1)?

(9.26)



9.7. Let h be a differentiable function in R>. We define its spherical mean M, (a) over the sphere of radius a around the point ¥ to
be

1 >
My(a,%) = h(é)dse. 9.31
R ) LG ©31)
Derive the Darboux equation
? 20 S .
— +—— | Mp(a,X) = AxMp(a,X). (9.32)
da®  ada

Solution. Consider the vectors & = (£1,&,&3), 7 = (171,72,m13) € R3. Apply the change of variable & := ¥ + a7j, which implies
dé = a*dn (keep in mind that @ is the Jacobian corresponding to the change of variable & := ¥ + aij) and dS &= azdS,]. Also,
|€ - X| = a implies
a=I¢-%|
= &~ (£ +ai)]
= |-all7|
= alfl,

which yields |77] = 1 since a is positive. So (9.31) is equivalent to

1
My (a.5) = / h(E +aif) dS,). 9.35)
4 Jjijl=1
So we have the first partial derivative
0 0 (1
—My(a,X) = —|— h(X + afj) dS
da n(a. %) da (47r/|,7|_1 (X +ai) n)
1 0
=—_— h(X + afj) dS
o (/m:1 (& -+ ai) 77)
1 0
=— —h(X +an)dS
An Jyijj=1 0a (F+aip dSy
! Vh(X + af) 6( i7) dS
= — X+an) - —I(a
4r |77]=1 g da g "
1
= — Vh(X + afj) - 7dS,.
4 Jyjii=n !

We recall the Divergence Theorem, which states
[vi@a-[ i@-nas
D oD

for any domain D c R3. Applying the Divergence Theorem with & := X + afj, ¢ := Vh, /i := ij (because the unit radius vector
ij is orthogonal to the sphere 9D = {fj € R | |ij| = 1}), and D := {ij € R | |ij| < 1}, we have

/ V~Vh()?+aﬁ)d()?+aﬁ)=/ VA(E +ai) - 7S,
l77l<1 [7]=1

Therefore, we have

0 1
—My(a,X) = 4—/ Vh(X +an) -1jdS,
lij|=1

da T
1
= — V- Vh(X +an) d(X + ar)
4r Jyjji<i
1
= — Ah(X +aff)a dij
4r Jyiji<i
. dE
= - Axh(‘f)a )
4r |.§7}\<a a3

1 / L.
= Axh(€)d
rrrd) BEERGL

1 N
= A, ( /g_;.w h(@ df)

1 a -
= s ( /O /@-m:a n(@) dé da) ,



which is equivalent to, upon multiplying both sides by a?,

, 0 | @ >
a %Mh(a,x) = EAX (‘/0 [é—fc:a h(¢)dé dcx).

Now, we can differentiate with respect to a both sides of the equation, writing

9 (,0 L) a1 @ 2 2
g (3000 9) = 3 e ([ e, 0 28]

Using the product rule for derivatives, the left hand side is

0 (,0 . 0, , 0 o 20 (0 .
a _M b = _M b} a_ _M b
Oa (a Oa nla x)) da (a )(9(1 w(a. %) +a Oa (6a n(a x))
=202 My (.5 + @ My (a5
=2a- My(a,X) +a” - My(a,X

> 24
— 42 M 2
- (8a2+a8a) n(a.%).

Using the differential version of the Fundamental Theorem of Calculus, the right hand side is
0 (1 /“/ > = 1 0 @ > =
—[—A h(é)déda )| = ———A / / h(¢) dé¢ da
da (47‘1’ x( 0 |E-%|=a 4r da” " 0 |E-%|=a
lAa(/a/ h(E)de)
=—A,— fo'
4 “0a\Jo J\E-31=a
1 > o
— ([ w@a]
g |£-X|=a

_ 2 1 2 12
- A, ( — /| G df)
= a’A My (a,%).

Equating both sides, we conclude
(3% 20 o, .
a’ | — +——|Mp(a,X) =a"AxMy(a,X),
da®  ada

from which we can divide both sides by a? to obtain the Darboux equation

9 20
— + = | My(a,%) = Ay Mp(a,X),
(6a2 + aaa) n(a,x) n(a,x)

as desired.



