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Chapter 1

1.1 (a) Write u, = af’, u, = bf’. Therefore, a and b can be any constants such that
a+3b=0.

1.3 (a) Integrate the first equation with respect to = to get u(z,y) = 23y +zy + F(y),
where F'(y) is still undetermined. Differentiate this solution with respect to y and
compare to the equation for u, to conclude that F' is a constant function. Finally,
using the initial condition «(0,0) = 0, obtain F(y) = 0.

(b) The compatibility condition wu,, = u,, does not hold. Therefore, there does not
exist a function u satisfying both equations.

1.5 Differentiate u = f(x + p(u)t) by ¢:
up = f'(z + p(u)t) (p(u) + tp'(w)uy) = (1 = P )us = pf’.

The expression 1 — ¢ f'p’ cannot vanish on a t-interval, otherwise, pf’ = 0 there. But
this is a contradiction, since if either p or f’ vanishes in this interval, then ¢ f'p’ =
there. Therefore, we can write

R
T
Similarly,
!/
Uy = L?
1—tp' f!

and the claim follows.

(a) Substituting p = k (for a constant k) into u = f(z + p(u)t) provides the explicit
solution u(z,t) = f(x + kt), where f is any differentiable function.

(b), (¢) Equations (b) and (c) do not have such explicit solutions. Nevertheless, if
we select f(s) = s, we obtain that (b) is solved by v = x + ut that can be written
explicitly as u(z,t) = x/(1 — t), which is well-defined if ¢ # 1.

1.7 (a) Substitute v(s,t) = u(z,y), and use the chain rule to get
Uy = Vg + Uy, Uy = —,

and
Ugr = Vgs + Vgt + 2Ust7 Ugy = —Vtt — Ust, Ugyyy = Vtt-

Therefore, Uz, + 2uyy + Uy, = vss, and the equation becomes vgs = 0.

(b) The general solution is v = f(t)+sg(t), where f and g are arbitrary differentiable
functions. Thus, u(z,y) = f(x —y) + zg(x — y) is the desired general solution in the
(x,y) coordinates.



(¢) Proceeding similarly, we obtain for v(s,t) = u(x,y):

Uy = Vs~ 20, Uy = Vg,

Uz Uss + 4Utt + 4U$t7 Uqpyy = Vit Ugy = Vss + 2vst-

Hence, uy; — 2uyy + Sy, = 4(vss + vyt), and the equation is vgs + vy = 0.



Chapter 2

2.1 (a), (b) The characteristic equations are

dw d du
==L d—i{:L =0
Therefore, the characteristics are y = x+ ¢, and the solution is u(z,y) = f(z —y) +y.
2.3 (a) The characteristic equations are
Ty =T, Y=Y, U =Dpu.
The solution is

x(t,s) = xpe’, y(t, s) = yoe', u(t, s) = uge.

Thus, the projections on the (z,y) plane are the curves x/y = constant.

(b) The solution is u(z,y) = (z?+y?)%. It is a unique solution since the transversality
condition holds.

(c) The initial curve (s,0,s?) is a characteristic curve (see the characteristic equa-

tions). Thus, there exist infinitely many solutions of the form u(z,y) = z? + ky?,
where k£ € R.

2.5 (a) The projection on the (z,y) plane of each characteristic curve has a positive
direction and it propagates with a strictly positive speed in the square. Therefore, it
intersects the boundary of D at exactly 2 points.

(b) Suppose that u is positive on 9D, and suppose that v < 0 at some point in D.
Consider the characteristic line through this point. Since u on each characteristic line
equals u(t) = f(s)e™, it follows that u < 0 at the two points where the projection of
this line intersects the boundary of the square, but this contradicts our assumption.
(c) Let (xo,yo) be the point in D where u attains a minimum. Since Vu(zo, ) = 0,
it follows from the PDE that u(zo, yo) = 0.

(d) If u(z,y) # m for all (z,y) € D, then u attains its global minimum in D at some
(x0,Y0) € D, and by part (c), u(xo,yo) = 0. But this contradicts part (b).

2.7 Solving the characteristic equations together with the initial condition we find

(x(t,s),y(t,s),u(t,s)) = (t+s,t,1/(1 —1)).

Therefore u = 1/(1—y). Alternatively, since the the initial condition does not depend
at all on x, one can guess that the solution does not depend on x either. The problem
is then reduced to the ODE du/dy = u?, «(0) = 1, whose solution is indeed 1/(1—y).
Since the transversality condition holds, the uniqueness is guaranteed.

2.9 (a) The vector tangent to the initial curve is (1,0, cos s).



The characteristic equations are
Ty = U, Y =1, Up = —§u.

The direction of the characteristic curves on the initial curve is (sins, 1, —%Sin s).
Since the projection of these directions on the (z,y) plane are not parallel for all
—00 < § < o0, we conclude that the transversality condition holds, and there exists
a unique solution near the initial curve.

(b) Solving the characteristic equations we obtain

x(t,s) =s—2sins (e_t/2 — 1) o ylt,s)=t, ult,s) =sinse /2.

(¢) To find the solution passing through T'y, we solve the characteristic equations
together with the initial curve (s, s,0). We obtain:

x(t,s)=s, ylt,s)=s+t,  ults)=0,
namely, u(x,y) = 0.

(d) Notice that the required curve must be a characteristic curve. Since it passes
through the origin z = y = u = 0, we obtain from the characteristic equations

Thus, the curve is exactly the y axis.

2.11 The characteristic equations and the initial conditions are given by

n=y tu, y=y, w=0, (12.4)
and
2
z(0,s) = 5 y(0,s) =s, u(0,s) =0, (12.5)

respectively. Computing the Jacobian we find that J = 0. It is easy to check that
u = 0 solves the problem. Therefore, there exist infinitely many solutions. We
compute for instance another solution. For this purpose we define a new Cauchy
problem

1
(v* + wu, +yu, =0, u(z,1)=1z— 3

Now the Jacobian satisfies J = 1. The parametric form of the solution is

1 1 1
ts) = (s—=)t+-e?+s—=
z(t,s) = (s—Z)t+ge" +s—3,
y(t,s) = €,

1
u(t,s) = s—=



It is convenient in this case to express the solution as a graph of the form

1
z(y,u) = 53/2 +ulny + u.

2.13 The characteristic equations are
ry=u, Y=2x, U =1L (12.6)

First, verify that the transversality condition is violated at every point, and that
the problem has infinitely many solutions. We obtain one such solution through an
“intelligent guess”. We seek a solution of the form u = u x). Substituting u(z)
into the equation and the initial data we obtain u(x) = 1/2(x — 1). To find another
solution we define a new Cauchy problem, such that the new 1n1t1a1 curve identifies
with the original initial curve at the point s = 1.

37

26)

wiy, + zuy =1, u(x +

The parametric representation of the solution to the new problem is given by

1 3
t = P4t+d+=
x(t,s) 5 +t+ +2,
1 1 3 7
t = B4+ -P+t+d+t+ -

u(t,s) = t+1.

We can eliminate now

t = u—1,
—1)?
d — x_§_M_(U_1)‘
2 2

Thus, the solution to the original problem is given by

y(:L‘,u):%(u—l)?)—{—%(u—lf_’_(u_l) [x—%(u—1)2—(u—1)} +’é'

2.15 (a) We write the characteristic equations:

9 x
v=r+y, Y=y, w=l—|—-—ylu,
where the initial conditions are given by

z(0,s) =s, y(0,s)=1, u(0,s)=0.



Notice that the first two equations can be solved independently of the third equation.
We find
y(t,s) = e, z(t,s) = se' +e'(e' — 1),

and invert these relations to get
x
t=Iny, s=——y+ 1
Y

Substituting this result into the third equation gives

w=—(s—Du+1,

implying
(t ) B 1 e(s—l)t
ult,s) = ——7
and then
(2.1) 1 —y®/vy
u(z,y) =y——"—5—
) =Y 2

(b) and (d). The transversality condition is equivalent here to (s+1)x0—1 = —1 # 0.
Therefore, this condition holds for all s. The explicit solution shows that u is not
defined at the origin. This does not contradict the local existence theorem, since this
theorem only guarantees a solution in a neighborhood of the original curve (y = 1).

2.17 (a) The characteristic equations are
=z, yY=1 u =1
The solution is
x(t,s) = zpe’, y(t,s) =yo+t, ult,s)=uy+t.

The characteristic curve passing through the point (1,1,1) is (ef, 1 +¢,1 4 ¢).

(b) The direction of the projection of the initial curve on the (z,y) plane is (1,0). The
direction of the projection of the characteristic curve is (s,1). Since the directions
are not parallel, there exists a unique solution. To find this solution, we substitute
the initial curve into the formula for the characteristic curves, and find

x(t,s) = se', y(t,s)=t, wu(t,s)=sins+t.

Eliminating s and ¢ we get s = 2:/e¥. The explicit solution is u(z,y) = sin(z/e¥) + y.
It is defined for all z and y.
2.19 The characteristic equations and their solutions are

2 2 2
Ty =T, =Yy, Uy =u,

N 1 —Uot.

Yo

=0 t
Tt

y(t, s)



The projection of the initial curve on the (x,y) plane is in the direction (1,2). The
direction of the projection of the characteristic curve (for points on the initial curve) is
s*(1,4). The directions are not parallel, except at the origin where the characteristic
direction is degenerate.

Solving the Cauchy problem gives:

s 25 52
t.§) = — t.s) = t.s) = .
Eliminating s and ¢ we find
22y

ule,y) = 4y — ) — ay(y — 22)

Notice that the solution is not defined on the curve 4(z —y)? = zy(y — 2x) that passes
through the origin.

2.21 The characteristic equations are
Ty =T, Y=Y, Uy = u + ry.

The curve (1,1,2s) is tangent to the initial data. On the other hand, the character-
istic direction along the initial curve is (s, —s,2s?). Clearly the projections of these
direction vectors on the (z,y) plane are not parallel for 1 < s < 2, and thus the
transversality condition holds.

To construct a solution we substitute the initial curve into the characteristic equations,
and find that

w(t,s) = se', y(t,s) =se!, wult,s)=2s%"—s°
Eliminating s* = zy, €' = \/x/y, we get
u(z,y) = 22%2y'? — xy.

This solution is defined only for y > 0.

2.23 The characteristic equations and the initial conditions are

tr=1, z,=¢, u,=—u%

and
t(0,s) =0, x(0,s)=s, u(0,s)=s.

Let us check the transversality condition:

1 ¢

J:‘O ) =1#0. (12.7)
We solve the equations and get
t(r,s) =, x(7,8) = T + s, u(r,s) = i

1+7s



Therefore, the solution is

( t) x —ct
ulr,t) = ——.
’ 1+t(x —ct)

The observer that starts at the point x, sees the solution

Zo

u(zo + ct,t) = T ot
0

Therefore, if xqg > 0, the observed solution decays, while if z; < 0 the solution
explodes in a finite time. We finally remark that if 2y = 0, then the solution is 0.

2.25 The transversality condition is violated identically. However the characteristic
direction is (1,1, 1), and so is the direction of the initial curve. Therefore the initial
curve is itself a characteristic curve, and there exist infinitely many solutions. To find
solutions, consider the problem

up +uy =1, u(x,0) = f(z),

for an arbitrary f satisfying f(0) = 0. The solution is u(z,y) = y + f(x —y). Tt
remains to fix five choices for f.

2.27 (a) Use the method of Example 2.13. Since (a,b,c¢) = (u, 1,1), identify P =
(=1,0,u) and P, = (0,1,—1). Therefore, ¢(x,y,u) = —x + u%/2, and ¢(z,y,u) =
u — v, and the general solution is f(u —y) = u*/2 — x for an undetermined function
f. The initial condition then implies

6y — y* — 2z
2(3—y)

(b) A straightforward calculation verifies u(3z,2) =4 — 3.
(c) The transversality condition holds in this case. Therefore the problem has a
unique solution. From (b) we obtain that the solution is the same as in (a).

u(z,y) =



Chapter 3

3.1 (a) We know that the equation is parabolic. Therefore, it is easy to see that the
required transformation satisfies
s—t

=t x= .
Y 3

(b) Integrating twice with respect to ¢, we get

R SOV EL
v(s,t) = 324st 540t +to(s) +(s),

where 1, ¢ are integration factors. Returning to the original variables, we obtain

1 1
u(@,y) = 352 Br+ )y’ — 59" +ydBr +y) + (B3 +y).

(c) Using the initial conditions we infer that

u(z,0) = ¥(3z) =sinx = P(z) = sin(z/3),
uy(x,0) = ¢(3z) +¢'(3x) = cosx = ¢(z) = cos(x/3) — %cos(x/B).

Substituting 1, ¢ into the general solution which was obtained in (b), we get

1 1 1 .
u(m,y):@(3x+y)y4—%y5+y Cos(x+y/3)—§cos(:v—|—y/3) +sin(z +y/3).

3.3 (a) Compute A =4 > 0. Therefore the equation is hyperbolic. We need to solve
v2 + 4v,v, = 0. This leads to two equations: v, = 0 which implies s(x,y) = y, and
vy + 4v, = 0 which implies t(z,y) = y — 4z. Writing w(s,t) = u(x,y), the equation
is transformed into wg + iwt =0.

(b) Using W := wy, the general solution is found to be u(z,y) = f(y—4x)e ™¥/*+g(y),
for arbitrary functions f,g € C*(R).

(©) u(z,y) = (—y/2 + dz)e v/

3.5 (a) The equation’s coefficients are a = x, 20 = 0, ¢ = —y. Thus, b* — ac = zy,
implying that the equation is hyperbolic when xy > 0, elliptic when zy < 0, and
parabolic when xy = 0 (but this is not a domain!).

(b) The characteristic equation is 2y’ —y = 0, or 3> = y /.

(1) When xy > 0 there are two real roots y' = ++/y/x. Suppose for instance that
z,y > 0. Then the solution is \/y & /= = constant. We define the new variables
S(2.) = i+ VT and (z,y) = v/ — V7.

(2) When zy < 0 there are two complex roots y = ii\/|y/—x|. We choose ¢y =
iy/]y/z]. The solution of the ODE is 2sign(y)+/|y| = i2sign(z)+/|x| + constant.
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Divide by 2sign(y) = —2sign(z) to obtain \/|y| 4+ i\/|x| = constant. We thus define

the new variables s(z,y) = v/|z| and t(x,y) = /|y|.

3.7 (a) Here a = 1, 20 = 2, ¢ = 1 — ¢; thus b* — ac = ¢, and, therefore:
The equation is hyperbolic for ¢ > 0, i.e. for y > 1.
The equation is elliptic for ¢ < 0, i.e. for y < —1.
The equation is parabolic for ¢ = 0, i.e. for |y| < 1.
(b) The characteristics equation is (y')* —2y'+ (1 —q) = 0; its roots are y| , = 1 £,/q.
(1) The hyperbolic regime y > 1: We have two real roots y; , = 1 = 1. The solutions
of the ODEs are
Yy = constant, 1y = 2x + constant.

Hence the new variables are s(z,y) =y and t(z,y) = y — 2z.

(2) The elliptic regime y < —1: The two roots are imaginary: y; , = 1 +1. Choosing
one of them ¥y = 1 41, we obtain y = (1 + i)z + constant. The new variables are
S(.CL',y) =y—- t<$>y) =T

(3) The parabolic regime |y| < 1: There is a single real root ¥’ = 1; The solution of the
resulting ODE is y = x+ constant. The new variables are s(z,y) = z, t(x,y) = x—y.

3.11 (a) The general solution is given by v(s,t) = f(s) + g(t), or

u(x,y) = F(cosz +x —y) + G(cosz — x — y). (12.8)
The first condition implies
fly) =uw(0,y) = F(1 —y) + G(1 - ), (12.9)
while the second condition gives
9(y) = ux(0,y) = F'(1 —y) = G'(1 —y). (12.10)
Integrating both sides of (12.10) we get
/Oyg(s)dS: —F(l—y)+ F(1)+G(1—y) —G(1). (12.11)

By summing up equations (12.9) and (12.11) we obtain

/O " g(s)ds + Fly) = 2G(1 — y) + F(1) - G(1),

that is, G(z) = 1 [fol‘”g(s)ds Ff1—a) - F(1) + G(l)] This implies

Fla)= f(1—2) -+ [/Ol_mg(s)ds bl —2)— FO) 4+ G(l)} |

Therefore,
l—cosz+x+y

5 5 9(s) dS} :

u(z, y)zl [f(1—cosz—x+y)+ f(l—cosz+x+y)| + 1 [/1

—COos T—T+Y

(b) The solution is classic if it is twice differentiable. Thus, one should require that
f would be twice differentiable, and that g would be differentiable.



11

Chapter 4
4.3 (a)
2 -9 1 T+2
u(x,1):f(x+ )+ flr—=2) _/ o(s)ds
2 4 r—2
(0 x <=3,
21— (z +2)? —-3<z< -1,
r+1 -1 <z <0,
u(z,1) = 1 0<z<1,
M= (z=2%+1 1<z<3,
4—x 3< <4,
0 x> 4.

(b) lim; o u(b,t) = 1.
(c) The solution is singular at the lines: x + 2t = +1,2.
(d) The solution is continuous at all points.

4.5 (a) Using d’Alembert’s formula:
1 1
u(z,t) = 5 [ug(x —t) + uo(x + )] + 3 [Up(x +t) — Up(z —1)],

where ug(z) = u(z,0) = f(z), Up(z) = [ w(s,0)ds = [ g(s)ds. Therefore, the
backward wave is 1
up(z,t) = 5 [ug(z +t) + Up(x + t)],

and the forward wave is

up(z,t) = % [up(x — t) — Up(z —1)] .

Hence
(12(x+t)— (z+1)? 0<z+t<4,
up(z,t) =40 x4+t <0,
(32 r+1>4.
Similarly:
(—d(z—t)—(z—t)2 0<z—t<d4,
up(z,t) =10 x—1<0,
—32 x—1t>4.

\

(d) The explicit representation formulas for the backward and forward waves of (a)
imply that the limit is 32, since for ¢ large enough we have 5+t >4 and 5 —t < 0.
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4.7 (a) Consider a forward wave u = u,(z,t) = ¢»(x — t). Then

up(ro—a, to—b)+u,(zo+a,to+b) =1 (xg—to—a+b)+1(xg—to+a—0b)
=u,(xo—b,to—a)+uy(ro+b, to+a).

Similarly, we obtain the equality for a backward wave u = u,(x,t) = ¢(z + t). Since
every solution of the wave equation is a linear combination of forward and backward
waves, the statement follows.

(b) u(zo — ca,ty — b) + u(xg + ca, to + b) = u(xg — cb, tg — a) + u(xo + cb, to + a).

()

(ac—l—t)—i—f(:c t) + fx-l-t 8 dS t<$,

u@,t) = Flatt)—f(t—z -+t
—+ L[ g(s)ds +h(t—x) t>w

) The corresponding compatibility conditions are h(0) = f(0), h'(0) = g(0), h”(0) =
”(0). If these conditions are not satisfied the solution is singular along the line
—t=0.

e)

f(:Jchct) (z—ct) + L f:r+ct 8 ot < 1

— )

u(m,t) - f(:):Jrct) fct—z) z+ct z
flatet) f(ct—z) = [0 g(s)ds + h(t — %) ¢t > .

The corresponding compatibility conditions are h(0) = f(0), h'(0) = ¢(0), A"(0) =
2 f"(0). If these conditions are not satisfied the solution is singular along the line
x —ct=0.

4.9 To obtain a homogeneous equation, we use the substitution v(x,t) = u(x,t)—t%/2.
The initial condition is unchanged. We conclude that v solves the problem

Vg — Vae = 0, v(z,0) = 2%, v (x,0) = 1.
Using d’Alembert’s formula we get
1
v(x,t) = 5 [(z+t)+ (x—t)°] +t =2+ 2 +1,
that is, u(z,t) = x* + t + 3t%/2.
4.11 d’Alembert’s formula implies
1 1
P(x,t) = 5 [f(x +4t) + f(z —4t)] + 3 [H(x+ 4t) — H(x — 4t)],
where H(z) = [; g(s)ds. We get
x|z <1,

H(z) = 1 x> 1, (12.12)
-1 < —1.
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Let us look at the solution at the point xy = 10; notice that
fFA0+4t) =0, f(10—4t) <10, |[H(t)| <1, t>0.

Therefore,

1 21
P(10,t) <54 -=—<6
( 7)— _'_4 4 ?

and the structure will not collapse.
4.13 We use the transformation
v(z,t) = u(x,t) —e”
to obtain for v a homogeneous problem:
U — Ay = 0, v(z,0) = f(x) — €, vu(z,0) = g(z).

d’Alembert’s formula implies

o(e,t) = & [flx+26) — "+ + fla—26) + "] + i (H(z +2t) — H(z — 28)],

N | —

where H(z) = [ g(s)ds. Thus,
r—23/3 || <1
H(z)={ 2/3 z>1 (12.13)
—2/3 x < —L.

Returning to u:

u(z,t)= [f(:v+2t)—ex+2t+f(x—2t)—ex*2t} +411 [H(x+2t)— H(z—2t)]|—e".

DO | —

(a) The solution is not classical when = +2t = —1,0,1,2, 3.
(b) u(1,1) =1/3+e—¢*/2 —e71/2.

4.15 Denote v = u,. We obtain for v(z,t) the following Cauchy problem:
Vg — Ve = 0, v(z,0) =0, v(z,0) =sinz.

Therefore,

1o 1
v(x,t) = 5/ sinsds = 5 [cos(x — t) — cos(x + t)],

—t

and the solution is
u(z,t) = /v(a:,t) de + f(t) = % [sin(x — t) — sin(x + )] + f(¢),

where f(t) is an arbitrary function.
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4.17 (a) Change variables to obtain the canonical form of the wave equation:

C_m—i—t _t—x
B =g

We get
Uey = €OS 2(.

The general solution is given by

u(C.m) = 3 sin 2 + ¢ (n) + v (C):

where 11, 1o are arbitrary functions. Returning to the original variables we find

t _
u(z,t) = v

sin(x +1t) + ¢1(x +t) + ¢o(z — 1).

To find the required solution we substitute the initial conditions into the above solu-
tion: .
u(z,0) = —y sinz+ ¢1(z) + ¢ga(z) = ,

uy(x,0) = 1 sinx — % cosx + ¢’ (x) — ¢’ (x) = sinz.

Integrating the last equation:

1
O1(z) — ¢o(x) — 5 cosT — Zsinx = —CosZ.
Eliminating ¢;, ¢, yields
r oz cos & T Ccosx
¢1(x):§+zs1nz— T and ¢2(x):§+ 1

which implies

t ¢ ;
u(m,t) =x + 5 Sin(m + t) i COS(Z ) - Cos(z+ )

(b) Similarly, we obtain the equations

_z sinz + ¢1(x) + ¢o(x) = 0,

1
—5 COST — % sinz + ¢1(x) — ¢a(x) =0,
which imply that
1 1
o1(x) = % sinx + 7 08T, ¢o(x) = —7 Cos .

Solving the equation together with the initial conditions gives

t 1 1
v(z,t) = 2 sin(z +t) + 1 cos(x +1) — 1 cos(x — t).
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(¢) The function w(x,t) = % cos(z+t)— 3 cos(z—t) — solves the homogeneous wave
equation wy—w,, = 0, and satisfies the initial conditions w(z,0) = z, w(x,0) = sinz.
(d) w is an odd function of x.

4.19 The general solution of the wave equation is
u(z,t) = F(x+1t)+ Gz —1t).

Hence,
ug(z,t) = F'(x+t) + G'(x — ).

Substituting x — t = 1 into the above expression implies

ug(x, )|, ,_, = F'(2t + 1) + G'(1) = constant.
Thus, F'(s) = constant, implying F(s) = ks. We are also given that

1 =u(z,0) = F(z) + G(z) = kx + G(x).

Therefore, G(x) = 1 — kz. On the other hand,

3=u(l,1)=F(2)+G0) =2k + (1 -0 x k),
i.e. k=1. We conclude

Flz)=2z, Gx)=1-—z, u(x,t)=1+2t.

Thanks to the method in which the solution was constructed we can infer that it is
unique.
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Chapter 5

5.1 The solution has the form

u(@,t) = Bue ™" sinna. (12.14)

n=1
Substituting the initial conditions into (12.14) gives

o0

u(z,0) = ZB” sinnz = f(z).

n=1
To find the coefficients B,, we expand f(x) into a series in the eigenfunctions:
2 [T 2 [T 4
Bn——/ f(zx) sinn:vdx——/ 2sinnx dr=— [cos <@> —(—1)”] :
™ Jo T J 2 ™ 2
It follows that the solution is

_ 4 = 1 nw n| —17n2t _:
u(x,t) = - Z - [COS( 5 ) —(-1) } e sin nz.

n=1

5.2 Using trigonometric identities we express the solution in the form

A
U(l‘,t) = U1<£Ij',t) + u2($7t> + 707

where u; is a forward wave, and us is a backward wave (the constant Ay/2 can be
considered either a forward wave or a backward wave):

ur(r, )= 2z - "y {% cos {M} ~Tn i [M} } ,

C
n=1

u2(x,t):%(x + ct)+§ {% cos {w} +% sin {M] } :

5.3 (a) Separating variables we infer that there is a constant, denoted by A such that

T;ft Xxx
ke = —\. 12.1
T X ( )

Equation (12.15) leads to the coupled ODE system

d?X
2T
— = -\T t>0. (12.17)
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Since u is not the trivial solution, the boundary conditions imply X (0) = X (L) = 0.
Thus, the function X must satisfy the eigenvalue problem

d*X
L2 +AX = 0 O<z <L, (12.18)
X(0)=X(L) = 0. (12.19)

We already saw that the solution to the problem (12.18)—(12.19) is the infinite se-
quence

nmwx nm\ 2
X, () = sin 2% /\n:(—) 12,
(x) = sin 7 7 n

We proceed to equation (12.17). Using the eigenvalues obtained above we find

To(t) = ynsin(v/ Anc® t) + 0pcos(V Ac?t) n=1,23,.... (12.20)

We have thus derived the separated solutions

t t
up(z,t) = Xp(2)T,(t) = sin ? <An cos Cﬂ; + By, sin c7an > n=1,23,....

Superposing these solutions we write

. t t
u(z,t) = ; (An cos an + B, sin %) sin ? (12.21)
as the (generalized) solution to the problem of string vibrations with Dirichlet bound-
ary conditions. It remains to find the coefficients A,,, B,,. For this purpose we use the
initial conditions

2 [t 2 ("
A, = Z/o f(z)sin (?) dz, B,=— [ g¢g(z)sin (?) dz n>1.

ent Jo

5.4 We substitute the initial conditions into the general solution (12.21), where L = 7
and ¢ = 1:

u(z,t) = Z (A, cosnt + By, sinnt) sin nz. (12.22)
n=1
We get
u(z,0) = iA sinnz = sin®r = ! sin 3z + 3 sin x (12.23)
7 n=1 ! 4 4 ’ '
aug, 0 _ Y 0B, sinnz = sin2z. (12.24)

n=1
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Hence,
Al - —1/4, A3 = 3/4, BQ == 1/2,
and A, =0ifn # 1,3, B, =0 if n # 2. We conclude that the formal solution is

1 3 1
u(z,t) = —=sin 3z cos 3t + 2 sinx cost + 3 sin 2z sin 2t.
This is a finite sum of smooth functions and therefore is a classical solution.

5.5 (a) The eigenfunctions and eigenvalues of the relevant Sturm-Liouville system

are ,
nwx nm
X, (z) = <—> n:(—) —0.1,2,....
(x) = cos 7 A 7 n=20

Therefore, the solution has the form
(z,t) Ao + i Ape kL o (mm)
u\x - 4 n —F |
7 2 L

where .
2
An:z/o f(z) cos <?> dz n > 0.

(c¢) The obtained function is a classical solution of the equation for all ¢ > 0, since if
f is continuous then the exponential decay implies that for every € > 0 the series and
all its derivatives converge uniformly for all £ > ¢ > 0. For the same reason, the series
(without Ag/2) converges uniformly to zero (as a function of ) in the limit ¢ — oo.
Thus,

lim u(z,t) = é.

t—o00 2

It is instructive to compute Ay by an alternative method. Notice that

a4 [t L L
—/ u(z,t)dx —/ w(z,t)de = k;/ Uz (2, 1) dx
dt Jo 0 0

= klu,(L,t) —ug(0,t)] =0,

where the last equality follows from the Neumann boundary condition. Hence,

/OLu(x,t)dx:/OLu(x,O)dx:/OLf(x)dx

holds for all ¢ > 0. Since the uniform convergence of the series implies the convergence

of the integral series, we infer
AO 1 L
— == dz .
5 =T /0 fz)dz

A physical interpretation: We have shown that the quantity fOL u(z,t)dz is con-
served in a one-dimensional insulated rod. The quantity ku,(x,t) measures the heat
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flux at a point x and time ¢. The homogeneous Neumann condition amounts to stat-
ing that there is zero flux at the rod’s ends. Since there are no heat sources either
(the equation is homogeneous), the temperature’s gradient decays; therefore the tem-
perature converges to a constant, such that the total stored energy is the same as the
initial energy.

5.7 To obtain a homogeneous equation write u = v + w where w = w(t) satisfies
wy — kwy, = Acosat, w(z,0) = 0.

Therefore,

t) = —sinat .
w(t) ~sina

Note that w satisfies also w,(0,t) = w,(1,t) = 0. Therefore, v should solve

VU — kv, =0 O<z<l1, t>0,
v(0,t) = v (1,8) =0 t>0,
v(x,0) = 14 cos® 1w 0<z<1.

Thus,
o oo
2.2 2.2
v(x,t) = E Bpe * ™ cosnrr = By + g Bpe F ™ cosnr.

n=0 n=1

The coefficients B,, are found to be

1 1
3
By = / [1 + cos®(mz)] dz = 3 B, = 2/ [1 + cos®*(mz)] cosnrzdr n > 1.
0 0

We obtain

1 1
3 3
BQZ/ (§—|—cos 27r:£)cos 2rxdr=1/2, Bn:/ (§+COS 27ra)cosn7rxd:v:0, n=0, 2.
0 0

Finally,

A
w(z, t)=3/2 + 1/2cos 2mrze ™t 4 Zsinat .
o

Compare this problem with Example 6.45 and the discussion therein.

5.9 (a) The associated eigenvalue problem is

2

X

o +hX +AX =0, X(0)=X(m)=0,

while the ODE for T'(¢) is

d*T

— 4+ AT =0.
dt *

The solutions are
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Tn (t) N e(_”2+h)t.

Hence the problem’s solution is

u(x,t) = Z Bem I gin g,
n=1
where
N
—

B, = —/ z(mr —x)sinnxdr = —
0

™ ™

(b) lim; . u(z,t) exists if and only if A < 1. When h < 1 the series converges
uniformly to 0. If h = 1, the series converges to Bjsinx which is the principal
eigenfunction (see Definition 6.36 and the discussion therein).

5.10 (a) The solution has the form

u(z,t) = Z A, sin nrpe” T o)t
n=1

The coefficients A,, are given by expanding f(x) = z into a generalized Fourier series
in the functions sin nmx.
(c) Let us rewrite the solution in the form

u(z,t) = Ay sinmae” (T 4 Z A, sinnrae” (T -t

n=2

The condition on « implies that the infinite series decays as t — oco. In addition,
because a > 72, it follows that a necessary and sufficient condition for the limit to
exist is A; = 0.

5.11 (a) The domain of dependence is the interval [1/3 —1/10,1/3 4+ 1/10] along the
T axis.

(b) Part (a) implies that the domain of dependence does not include the boundary.
Therefore, we can use d’Alembert’s formula, and consider the initial conditions as if
they were given on the entire real line, and not on a finite interval. We obtain at once

165 13

3L = o x — = ———.
u@BL 107 = =5 X 15 =~ 1555

(¢) The formal solution is

u(z,t) = Z A, cos nmx cos nrt.

n=0

Substituting the initial data into the proposed solution yields

Z A, cosnmr = 2sin*(2rx) = 1 — cos 4.

n=0



21

Therefore,
Ap=1, Ay=-1, A, =0 V¥Yn#£1,4.

We conclude that the solution is given by

u(z,t) =1 — cosdnx cos 4t.

5.13 The eigenvalue problem is

d2X
A-1)X =0 X0)=X'(1)=0
IrO-DX =0 X0 =X(1)=0
while the ODE for T'(¢) is
dr
— + AT =0.
dt+
Thus,
2 1)272 2 1
AHZWH, Xn(a:):anin<n+ m) n=012,....

This leads to a solution of the form

- 2n + 1
u(z,t) =e™ Z Bpe~ Cr+DAm /4 iy ( n2—1— mc) :

n=0
Computing B,, explicitly we get

1
. [(2n+1 32
Bn:2A .1'(2—.’13)SH1( 5 7T.I'> dl‘zm

This solution is clearly classical.

5.14 Let us compute

au t t
i v(x, t,t) + / vz, t,s)ds = v(x, t,t) +/ Vee (2,1, 8) ds,
0 0

92 t
8_;; = /0 Ve (T, t, 5) ds,
(use Formula (5) of Section A.2). Therefore,

Up — Ugy = F(2,1).
The initial and boundary conditions for u are obtained at once from those of v.
5.15 Let uy, us be a pair of solutions for the system. Set v = u; — us. We need to

show that v = 0. Thanks to the superposition principle, the function v solves the
homogeneous system

Uy — gy = 0 O<x<L,t>0,
v:(0,8) =0, v(L,t)=0 t>0,
v(z,0) = v(2,0) =0 0<z<L.
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Define now
1

L
E(t) = 5/0 (vf + *v2) da.

From the homogeneous initial conditions E(0) = 0. We proceed to compute:

dE

L
- = /0 (vpvs + Vg05¢) da,

Integrating by parts and using the boundary conditions we compute

L L L
/ VpUp A = —/ Uz A + vy (L, ) v (L, t) — v(0, )0, (0, 1) = —/ VyUze A,
0 0 0

hence .
dE
' = /0 Vg (vtt — CQUM) dx = 0.
This gives FE(t) = E(0) = 0 for all 0 < t < oo. Therefore, v; = v, = 0, ie.
v(x,t) = constant; but v(z,0) = 0, implying v(z,t) = 0.

5.17 Let u; and uy be a pair of solutions. Set v = u; — us. We need to show that
v = 0. Thanks to the superposition principle v solves the homogeneous system

Uy — gy +ho =0 —o0o < x <oo,t>0,
mgrinoo v, t) xl—lgloo v (1, 1) ml—l>r:iloo v(z,t) =0, t>0,
v(z,0) = v (z,0) =0 —00 < & < 00.

Let E(t) be as suggested in the problem. The initial conditions imply E(0) = 0.
Differentiating formally F(t) by t we write

dFE o
o= / (vive + Vpv + hovy) da,

assuming that all the integrals converge (we ought to be careful since the integration
is over the entire real line).

We compute
[e.e] o0 [e.e] a
/ VU dx = —/ VpUpy A + / (vevr) dzx.
oo oo oo Oz

Using the homogeneous boundary conditions

agj' T—00 T——00

) .
/ de = lim v, (x,t)ve(z,t) — lim v, (z,t)ve(z,t) =0,
hence, [7° v,vpde = — [7° vypvda. Conclusion:

dE o
E:/ Uy (Utt—czvm—l—hv) de=0.
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We verified that FE(t) = E(0) = 0 for all t. The positivity of h implies that v = 0.

5.18 Let v = u; — uy where uy, us are two solutions. Clearly v satisfies
v — kvg, =0 O<z<L,t>0,
v(0,t) — av,(0,t) =0, w(L,t)+ Bu.(L,t) =0 t>0,
v(z,0) =0 0<z<L.
Set

The equation vy = kv, gives
dE L L L
— :/ v(z, t)v(z, t) dx:k/ v(x, ) g (z, t) do = —k/ v2(,t) dz
dt 0 0 0
e 0(L, )oa(L, 1) — 00, 50, (0,8)].
From the boundary conditions, v(0,t) = av,(0,t), v(L,t) = —Buv,(L,t). Therefore,
dE b 2 2
P —k [ vi(z,t)dr — kav;(0,t) — kfvi(L,t) < 0.
0

Therefore, E(t) < E(0) for all ¢ > 0. Since E(t) > 0 and E(0) = 0, we obtain
E(t) =0 for all t > 0, and thus v = 0.

5.19 (b) We consider the homogeneous equation

(Y*02)e + (2°0,), = 0 (z,y) € D,
v(z,y) =0 (x,y) €I

Multiply the equation by v and integrate over D:

//DU [(*v2)0 + (2%0y),] dzdy = 0.

Using the identity of part (a) we obtain

// (V20,)2 + (2%, dxdy = // (yve)? xvy)Q] dzdy
—l—// div (y%vz,x%vy) dxdy.
D

Using further the divergence theorem (see Formula (2) in Section A.2):

// div (vyzvx,:v%vy) dzdy :/ [vyzvxdy — vxzvydx} =0,
D r

where in the last equality we used the homogeneous boundary condition v =0 on I'.
We infer that the energy integral satisfies

E[v] :== [(yv2)? + (2v,)?] dady = 0,
hence v, = v, = 0in D. We conclude that v(z,y) is constant in D, and then the
homogeneous boundary condition implies that this constant must vanish.
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Chapter 6

6.1 (a) It is easy to check that 0 is not an eigenvalue. Assume there exists an
eigenvalue A < 0. Multiply the equation by the associated eigenfunction u and

integrate to obtain
1 1
/ uumdx—i-)\/ w?dz = 0.
0 0

Integrating further by parts:

0= —/01 u? dx + )\/01 u? dz + g (1)u(1) — ug(0)u(0).

Using the boundary conditions one can deduce u,(1)u(1) — u,(0)u(0) = —u(0)? —
u(1)? < 0. We reached a contradiction to our assumption A < 0.
(b) Using part (a) we set A = p? (say, for positive p). The general solution to the
ODE is given by

u(z) = Asin ux + B cos p.

The boundary conditions dictate
uw(0)=B=1/(0) =uA, u(1)=Asin pu+ B cos p=—u'(0) = —pA cos p+pB sin .
We obtain the transcendental equation

21
pr—1

=tanpy .

To obtain a better feeling for the solutions of this equation, we can draw the graphs of
the functions ui’j 7 and tan p. The roots p; are determined by the intersection points
of these graphs, and the eigenvalues are \; = p?.

(c) Taking the limit A — oo (or u — 00), it follows that p, satisfies the asymptotic
relation p, ~ nmw, where nm is the root of the n-th branch of tanu. Therefore,

A\ & n2m? as n — oo.

6.2 (a) Since all the eigenvalues can be seen to be positive, we set A = y? > 0. Using
Formula (3) of Section A.3, it follows that the general solution of the corresponding
ODE is given by

u(z) = asin(|p|Inz) + beos(|u|Inx),

and the boundary condition implies
u(1) = b= /(e) = alp] cos(|uf) = 0.

We conclude that |u| = (n+ 1/2)7,

1 Hr]?
up(z) = sin [Wlnx] : An = {@} n=0,1,....
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(b) It is convenient to use the variable ¢ = Inz. The inner product becomes
°1 2n+1 2 1

/ — sin [W In x} sin {Wln x} dx
1

= /1 sin {Mt} sin {Mt} dt =0 n # m.
0 2 2

6.3 (a) We examine whether the function
v(z) = 272 sin (aInx)

indeed satisfies the ODE:

2 .
(22 0') + Ao = (1440 —4))sin (alnx) 0,

4V

and in order for the ODE to hold, we require

1+40®> -4 =0 = a=+/A—1/4, A>1/4.

Thus, the function
v(z) =2z ? sin (/A —1/4 Inx)

indeed solves the equation. This function vanishes at = 1 since In1 = 0. To deter-
mine the eigenvalues, we substitute the solution into the second boundary condition:

v(b) =b 2 sin(y/A=1/4Inb) =0 = /A —1/4Inb=nw n=1,2,3,...,

implying that the eigenvalues are
nmt\2 1 1
)\n:<—> sz —1,2.....
me) "1 1 "

The eigenfunctions are

Un(z) = 272 sin (ﬂlnx> n=123,....
Inb

Since vy(x) > 01in (1,b) it follows from Proposition 6.41 that A; is indeed the principal
eigenvalue.

(b) We apply the method of separation of variables to seek solutions of the form
u= X(z)T(t) # 0. We obtain for X the Sturm-Liouville problem from part (a). For
T we obtain

T,(t) = Che™ n=123,...

where )\, are given in (a). Therefore, the solution has the form

u(x,t) = Z Cre Mtz ™12 gin (% In x) :
n=1

n



26

The constants C), are determined by the initial data:

u(z,0) ZC % sin (lnblnx> :

This is a generalized Fourier series expansion for f(z), and

(fsvn)

(Uns Un)

Cp =

)

where (-,-) denotes the appropriate inner product.
6.5 (a) Notice that under the substitution y = 1+ z, v(y) = u(y — 1) we obtain
(y*v") + Av =0,

where the boundary conditions are

From here we get (see the solution of Exercise 6.3) that A > 1/4,

19 . (nmlny n2m?
vn(y):ymsm(v), Ap = 122—|—1/4 n=12....
Therefore,
nmln(z + 1) n’n?

(b) Substitute the eigenfunctions that were found in (a) into the inner product

<un,uk>:/12(1—|—x)_1sin [%} ' {%} dz.

Changing variables according to ¢ = In(x + 1), we find that for n # k
In2
nmt kmt
s = in [ — | si dt = 0.
(Un, Ug) /0 sm(ln2>sm (ln?)

6.7 (a) We first verify that all the eigenvalues are positive. For this purpose we
multiply the equation by u and integrate by parts using the boundary conditions:

0= / u [(#*u) + Au] dz = —/ 2 (u)2dr + )\/ u?da.
1 1 1

Thus, u = 0if A < 0. If A =0, then v’ = 0 and the boundary conditions imply u = 0.
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Assume 0 < A < 1/4. The general solution is

u(z) = -1/ (a:r;‘/l_‘”‘/z I bx_‘/l_‘”‘/z) '

The boundary conditions imply again u = 0.

Let us check the possibility A = 1/4. In this case the general solution is u(x) =
2712 (a4 blnz). We can then verify that indeed 1/4 is not an eigenvalue.

If A > 1/4, the general solution is

u(x) = 212 {a sin (# In :c> + bcos (# lnx)] :

Using the boundary conditions we obtain
u,(z) = 272 sin(nrln z), Ay =02 +1/4  n=1,23,....

Since uy(z) > 0 in (1,e), it follows from Proposition 6.41 that A; is indeed the
principal eigenvalue, and therefore there are no eigenvalues A satisfying A < 1/4.
(b) Substitute the eigenfunctions that were found in (a) into the inner produce

(Up, ug) = / ' sin(nm Inz) sin(kr In x) dz.
1
Changing variables according to t = Inx, we find that for n # k

1
(U, ug) = / sinnnt sin k7t dt = 0.
0

6.9 (a) We perform two integration by parts for the expression f_llu” vdx, and use
the boundary conditions to handle the boundary terms.

(b) Let u be an eigenfunction associated with the eigenvalue A. We write the equation
that is conjugate to the one satisfied by w:

@'+ \i=0.

Obviously u satisfies the same boundary conditions as u. Multiply respectively by u
and by u, and integrate over the interval [—1, 1]. Using part (a) we get

)\/11 lu(z)[? dz = A/ll u(z) [ da.

Hence A is real.
(c) Let A be an eigenvalue. Multiply the ODE by the eigenfunction u, and use the
boundary conditions to integrate by parts over [—1,1]. We find

B fjl (v)? dz
o [hwzde
Jo
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Therefore, all the eigenvalues are positive (this can also be checked directly since
A < 0 is not an eigenvalue). For A > 0 one can readily compute A, = [(n + %)7‘(]2
and the eigenfunctions are

1 1
un () = a, cos (n + 5) X + by sin (n + 5) .

(d) Tt follows from part (c) that the multiplicity is 2, and a basis for the eigenspace is

1 1
{COS (n + 5) mx, sin (n + 5) m:} .
(e) Indeed the multiplicity is not 1, but this is not a regular Sturm—Liouville problem!

6.11 We represent the solution as u = v + w where w is a particular solution of the
inhomogeneous equation

Wy — Way +w = 2t + 15 cos 2z 0<z<7/2,
w,(0,t) = w,(7/2,t) =0 t>0.

We write w as w(z,t) = wy(x) + wy(t) where
—(w)" 4+ wy = 15 cos 2x (W) 4wy = 2t .

We obtain
wy(x) = 3cos 2z wo(t) =2t — 242" .

Now, v = u — w solves the homogeneous equation

UV — Vg +0=0 0<x<m/2,
02(0,t) = vz (m/2,t) =0 t>0,
10
v(z,0) = u(z,0) — w(z,0) = 1+Z3n cos 2nx — 3 cos 2x 0<zxz<7/2.

n=1

The solution has the form
v(x,t) = Z Bnem =Vt cos 2n,
n=0

Substituting ¢ = 0 into the proposed solution, we get

oo 10 10
v(z,0) = ZBncos%Lx =1 —1—2372 cos 2nx — 3 cos 2z = 1—|—Z3TLC082TL(IJ.

n=0 n=1 n=2

Thus,

By=1, B,=3n n=2,...,10, B,=0 n=111,12,....
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This implies
4 Z 3ne—4* =Dt ¢og 2nx,

and the full solution is
-ty Z 3ne(4* =t o5 g + (2t — 242 '+ 3cos 2:10) .

The solution is a finite sum of smooth elementary functions, so it is indeed a classical
solution.

6.13 To obtain a homogeneous problem, we write

u(z, t) :v(x,t)—l—%t+2 (1—‘7”—2).

2

v solves the system

Vp — Vgy = xt — A2 O<z<m t>0,
v(0,t) =v(m, t) =0 t>0,
v(xz,0)=0 0<z<m.

The solution is
Z A, (t) sin(nz)

where A, (t) satisfies the initial value problem

A 2 [T 4
d4, n?A, = —/ ( t— —) sin(nx) dz, A,(0) =0.
0 2

dt+ T

Computing the integral in the right hand side we obtain
dA, 2(—1)"tt 81— (=1)"
o AT 8- (1))

d¢ n nm3

Solving for A,, we get

1—(—1) t =1 oy [t
An(t):— {8[ ( ) ]}enzt/oen27d7'+ ( ) e”2t/07e”27 dr

nm3 n

w {M} (1 ey + 200 (t 1 —) |

We thus obtain :

_ - {_ (273 +8)(—1)"*1 + 8 (1 B e*”2t>

nd3
—1

2(—1)"*t t 2
+L t} sin(nz) + Z 1o (1 — x_Q) :

3

n3 s
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6.15 To generate a homogeneous boundary condition we substitute u(x,t) = v(z,t)+
x + t2. The initial-boundary value problem for v is

U — Uge = (9t 4 31) sin(32/2) 0<z<m,
v(0,t) = v,(m, ) =0 t>0,
v(z,0) =37 0<z<m/2

Its solution is given by

v(w,t) =Y Au(t)sin[(n+ 1/2)x],

where

dA dA,
T (3/2)°A =9t + 31, 3 T +1/2°A, =0 n#lL

We find A; to be

4 4 4\?| 31x4
A(t) = Al(O)e_gt/4 4+ ge—9t/4 [§ (t _ 5) Q4 4 (5) ] + ; (1 _ e—gt/4)7

Au(t) = Ap(0)e (/2% n#1.

We now use the expansion

= 12
3r = nz:% 1 sin[(n 4+ 1/2)z].
Comparing coefficients we find
12
A,(0) =
(0) 2n+1

Thus,

= 12
vz, t) =Y —(H2% Gin[(n + 1/2)2]

e
:02n+1
1 ge0t/a 4 ; 4 0t/4 | 4\
¢ 9 9)° 9

Finally,

3

31 x4
9

+

(1- e_9t/4)} sin(3z/2) .

uw(z,t) =z +t* +o(z,t) .

(b) We obtained a classical solution of the heat equation in the domain (0, 7) x (0, o).
On the other hand, the initial condition does not hold at x = 0,¢ = 0 since it conflicts
there with the boundary condition.
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6.17 We write u(z,t) = v(x,t) + xsint. We obtain that v solves

Vg — Upy = 1 O<zx<l1,t>0,
0:(0,t) = v, (1,£) =0 t >0,
v(x,0) =1+ cos(2mx) 0<z<I.

The solution’s structure is
v(x,t) = Ao(t) + Z A, (t) cosnmx,
n=1

where

d_AO_1 dA,
de At

+ ()4, =0 n>1,

We obtain at once
At) =1+t  Ay(t)=e*"" A, (t)=0 VYn#£0,2.

Thus,
w(z,t) = zsin(t) + 14+t 4+ e cos(2mz).

(b) The solution is classic in the domain [0, 1] x [0, c0).

6.18 The solution has the form

u(z,t) = iAn(t) sin (?) ,

where A A
nm\ 2
@t (T) ’
B dA,(0)  [* . /nmz A=)
A,(0)=0 , e /0 x sin (T> dz = —

We obtain the solution

An@) =

8(—1)"tle=t/2 “in <\/(n7r)2 - 1t>
2 Y

nmy/(nm)? —1

e = 33 HOE T (VO ()

nmy/ (nm)? —1 2

n=1

(b) No. The boundary condition u(2,t) = 0 is not compatible with the initial condi-
tion u,(z,0) = x at the point z =2, t = 0.
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6.19 To obtain a homogeneous boundary condition we write v(z,t) = a(t)x + b(t) .
We find v(x) = z/m. Define now w(z,t) = u(x,t) — v(z) and formulate an initial-
boundary value problem for w:

h
wt—wm—l-hw:——x O<z<m t>0,
T
w(0,t) = w(m,t) =0 t>0,
w(z,0) =u(z,0) —v(z) = i 0<z<m.
™
We write the expansion for w as
w(z,t) =Y Th(t)Xa(2) .

n=0

where )?n are the eigenfunctions of the associated Sturm-Liouville problem, namely

A, =102, Xp(z) =sinnz n=1,2,3,...
Using the expansion of w in terms of )Afn we obtain

[T,(t) + (02 + B)To(8)] sinna = _’;—“" |

NE

1

3
Il

We proceed to expand f(x) = x into a sine series in the interval [0, 7]

o0
T = E B, sinnx
n=1

2 [T . 2 (—nxcosnx +sinnx\|"
Bn:—/ xsmmcdx:—( )
0

2
™ ™ n 0

(-1t

=2

Substituting this expansion into the PDE, we obtain a sequence of ODEs:

T.(t) + (n* + h)T,(t) = 2A=L)h n=123,...

nm

whose solutions are

N 2(=1)"h
T(t) = Ao+t y )1
®) ¢ * nm(n? + h)

The constants A,, will be determined later on. Therefore,

N _ 2(=1)"h \ .
— n?+h
w(x,t) = ngl (Ane (n*+h)t 4 PP h)) sinnw .

We proceed to find A, from the initial condition

0= [ e - -2

n=1 n=1

:

sin nx .
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Therefore,

This solution is not classical at ¢ = 0, since the sine series does not converge to
—x /7 in the closed interval [0, 1].

6.21 We seek a particular solution to the PDE of the form v(x,t) = f(t) cos (2001z).
The equation implies

Uy — Ve = f(t) cos 20012 + 20012 f(t) cos 2001z = t cos 2001 .
Therefore, f(t) solves the ODE
f(t) +2001%f(t) =t
and we obtain

ot 1
© 20012 20014

t 1
v(z,t) = (20012 - 20014> cos 2001z .

Set w(z,t) = u(z,t) —v(x,t), and write for w:

f(t)

Wy — Wy =0 O<ax<m t>0,
w,(0,t) = wy(m,t) =0 t>0,
cos 2001z

w(z,0) = u(x,0) —v(x,0) = 7cos2x + 0<z<m.

20014

Expand w into an eigenfunctions series
oo
w(z,t) = ZTn(t) cosnx
n=0

where T,,(t) solves
T,(t) +n*T,(t)=0 n=0,1,2,....

We find
To(t) = Ao, To(t) = Ape™t n=1,2,3,...,

implying
w(x,t) = Ay + Z Ane™ cosna .
n=1
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Evaluating the sum at t =0

w(x,0) = Ao—i-ZAncosna: = mwcos2r +

n=1

1
50012 cos 2001z ,

and comparing coefficients we get

1

Ay = , Asoo1 =

Finally we write

1
u(z, t)=me ¥ cos 224+ ———e 29 0520012+ (

2001z.
50018 )cos 001x

20012 20014

6.22 Write v(z,t) = a(t)z? + b(t)x + c(t) to obtain from the boundary conditions the
function v(z,t) = 22/2 + ¢(t). If we demand v to solve the homogeneous PDE too,
we further find

v — 130, = (1) — 13 =0, = ¢(t) = 13t.

Set w(z,t) = u(x,y) —v(x,t) and substitute into the initial-boundary value problem:

wy — 13wz, =0 O<zxz<l1, t>0,
we(0,t) = w,(1,¢) =0 t>0,
w(z,0) =u(z,0) —v(z,0) =z 0<z<1

The relevant eigenfunctions are X,, = cosnmz, implying

oo
w(x, t) = Ay + Z Ane” B cos pra.

n=1

The initial conditions then lead to w(z,0) = Ay + > .~ A, cosnmz = z. Thus,

1 2
Aoz/xdx:x—
O 2

1

- I

1

A, = 2/0 xcosnmxdr = = [(—1)" —1],
and the solution is
1 4 L e 13(2k-1)%m%t 72
57 2 2k —1 — +13t.
urt) =5 - 52 gp oy k- Dot 5 413

k=1

6.23 (a) A particular solution to the PDE is given by

v(x,t) = Ae* cos 17z,
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where A satisfies

3Ae cos17rx + 17?12 Ae’ cos 17mx = e cos 1Tnx .

Therefore, A =1/(3+ 17?7%). Note that v satisfies the boundary conditions. We set
w(z,t) = u(z,t) —v(x,t) and obtain for w

Wy — Wy = 0 O<zx<1,t>0,
w,(0,t) = w,(1,¢) =0 t>0,
1
w(x,0) = 3cosd2mx — 351 cos17mx 0<z<1.

Solving for w:

oo
2 2
w(x,t) = Ay + A,e " cos
) )
n=1

where {4, } are found from the initial conditions

N 1
w(z,0) = Ay + Z A, cosnmx = 3cosd2rr — 31 172 OO 17z .

n=1

We conclude

1
Al = 5 Ap =3 A, =0 4 17,42.
17 31 17252 42 ’ n#
Therefore,
e TPl cos 17T 22, e cos 17mx
U(ZE,t):— 3+1727T2 +3e COS427T.T+W.

(b) The general solution takes the form
u(x,t) = Ay + Z Ane_”2”2t COSNTX .
n=1

The function f(z) = 1/(1 + 2?) is continuous in [0,1], implying that A, are all
bounded. Therefore, the series converges uniformly for all ¢ > t; > 0. Hence,

T d
limu(x,t):AO:/ T
0 4

t—00 1+ 22

6.24 Substituting the expansion

u(z,t) = Z T, (t) cosnx
n=0
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into the PDE we obtain

[(T,)" (t) cosnz 4+ n*T,(t) cos nx] = cos 2t cos 3z,
n=0
leading to
(T,)"(t) +n*T,,(t) = 0 n+#3,
(T3)"(t) + 9 T5(t) = cos 2t n=3.

Solving the ODEs we find
To(t) = Aot + By, (12.25)
T3(t) = Az cos3t + Bzsin 3t + % cos 2t,
T,(t) = A, cosnt + B, sinnt n #0,3.

Therefore,

1 o0
u(z,t) = 5 €O 2t cos 3z + (Aot + By) + Z(An cosnt + B, sinnt) cosnz .

n=1

The first initial condition

1 - 1
u(z,0) = - cos3x + By + ZA” cosnr = cos’>x = —(cos 2z + 1)
) vt 2
implies
1

1 1
Ag= —=, Ay=—~, Byo==, A,= Vn #0,2,3.
3 57 2 27 0 2a n 0 n Oa )3

The second initial condition

ur(z,0) = Ag + Zan cosnr =1

n=1

implies Ag = 1, and B,, = 0 for all n # 0. Therefore,

1 1 1 1
u(zx,t) = = cos 2t cos3x+t+§+ 3 cos 2t cos 2z — R cos 3t cos 3z .

6.25 Seeking a particular solution v(t) that satisfies also the boundary condition we
write
(0 2
v (t) = acoswt , = v(t) = — sinwt.
w

We set w(z,t) = u(z,t) — v(t) and formulate a new problem for w:

Wy — kwg, =0 O<zx<L,t>0,
w,(0,t) = w,(L,t) =0 t>0,
w(z,0) = u(z,0) —v(0) =z 0<z<L.
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The solution takes the form

w(x,t) = Ay + Z Ane ™" cos
n=1

nmwx
I3 .

The coefficients A,, are determined by the initial conditions

w(x,O):Ao—i-;Ancos?:x,
1 [t 2" L
Ay = — de = —| ==
° L/O T ar), T
2 [ nwr 2L n
An:Z/O T oS —— x:n27r2[(—) —1]
Therefore,
(2m71)27'r2
L 4L e "2t (2m-—1
u(m,t):w(x,t)—i—v(t):g—ﬁm: e(2m—1)2 cos< m 7 )mv—i—gsinwt.

6.26 The function v(z) = (2m — 1)z + 1 satisfies the given boundary conditions. We
thus define w(z,t) = u(x,t) — v(z) and formulate for w the new problem

Wyt — Wy = 0 O<ax<l1,t>0,
w(0,t) = w(l,t) =0 t>0,
w(z,0) =u(z,0) —v(z) =2(1 —7)(z — 1/2) 0<z<1,
wi(x,0) = u(z,0) =0 0<z<1.
The solution is
w(zx,t) = Z<A" cos enmit + By, sin ennt) sinnmx .
n=1

We use the initial conditions to determine A,, and B,,:

w(x,0) = ZAnsinmm =2(1 —7m)(x—1/2),

n=1
wy(x,0) = Z B,cnmsinnmz =0 .
n=1
We conclude that B,, = 0 for all n, and

ﬁ:Q/O (x—%)sinnwwdx:—%[(—l)n‘f'l] :
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Therefore, the solution is
—2(1—
u(z,t) = — Z % cos (2ckmt) sin (2kmz) + 2mr — 1)z + 1.

k=1

The solution is not classical. This can be seen either by observing that the initial
conditions are not compatible with the boundary conditions, or by checking that the
differentiated series does not converge at every point.

6.27 The PDE is equivalent to
TU = TUppr + 2U,.

We set
w(r,t) :=u(rt) — a,

and obtain for w

TW; = rWy + 2w, O<r<a, t>0,
w(a,t) =0 t>0, (12.26)
w(r,0)=r—a 0<r</(a)

We solve for w by the method of separation of variables: w(r,t) = R(r)T'(t). We find
for R
rR"+ 2R+ ArR = 0.

It is convenient to define p(r) = rR(r). This implies p(0) = 0 and

/! _
{p—i—)\p—O 0<r<a, (12.27)

p(0) = pla) =0,

The eigenvalues and eigenfunctions of (12.27) are A, = n?7%/a?, p,(r) = sin(nzr/a),

where n > 1. Therefore,
1 nmr

R,(r) = — sin —.

r a
Substituting ), into the equation for 7" we derive T),(t) = exp(—n?n?t/a?), and
the solution takes the form

e n-m 1
w(r,t) = Z A, e = sin (12.28)

Therefore, A, are the (generalized) Fourier coefficients of r(r — a), i.e.

2 [ 4 a?
An:—/ r(r—a)sinwdr:— ¢
a Jo a

11— (-1)")

n3 w3



Chapter 7

7.1 Select @Z = vVu in Gauss’ theorem:

/D V-Gl dedy = [ Bla(s).as) - s
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7.3 We solve by the separation of variables method: u(z,y) = X (2)Y (y). We obtain

—y" X"
= k=

X"Y +Y"'X = kXY
+ = v X

We derive for Y a Sturm—Liouville problem
Y"+AY =0, Y(0)=Y(r) =0.
Therefore, the eigenvalues and eigenfunctions are
A =12, Y, (y) = sinny n=12....

Then, for X we obtain

(Xn)// _ (k + nz)Xn =0 = Xn(l‘) — Ane\/(k+n2)x + Bne_1 /(k+n2):c‘

The general solution is thus

u(x,y) = Z [Ane\/ (ktn®z 4 B e~ VE) 2] ginny.

n=1

The boundary conditions in the x direction are expressed as

NE

u(0,y) = (A, + By,)sinny =1,
n=1
u(m,y) = Z |:Ane VT L BemVEIT | gin ny = 0.

n=1

We expand f(y) =1 into a sine series

1= an sinny, b, = —/ sin (ny) dy = —[(=1)" —1].
™ Jo
n=1

Comparing coefficients yields

b, e~ (k+n2)m b, e\/mw

e (k+n2)m e (k+n2) N e\/(k+n2)ﬂ' — e (k+n2) 7w

(12.29)

(12.30)

(12.31)
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Together with (12.31) we finally write

< ginh |\/k+ (2l — 1)? (7 — x)
u(z,y) = 4 [ ] sin [(21 — 1)y] .

T 4= (20 — 1)sinh {\/mﬂ}

7.5 We should show that
M(ry) < M(rq) VOo<r <r<R.

Let B, = {(z,y) | x>+ y* < r?} be a disk of radius r. Choose arbitrary 0 < r; < ry <
R. Since u(z,y) is a nonconstant harmonic function in B, it must be a nonconstant
harmonic function in each sub-disk. The strong maximum principle implies that the
maximal value of w in the disk B,, is obtained only on the disk’s boundary. As all
the points in B,, are internal to B,,, we have

u(r,y) < max u(z,y) =M(rs) VY (z,y) € B,,.
(z,y)€DBr,

In particular,

M (ry) = M (rs).
(m) = max ulzy) < M(r)

7.7 (a) The Laplace equation in cartesian coordinates is
AW = Wgy + Wy, = 0.
We change variables into
x=rcosl, y=rsing, u(r,0):=w(x(r,0),y(r0)).

The inverse transformation is given by

{ r=y/o e, (12.32)

0 = arctan (y/z) .
By the chain rule we obtain
Weo = UpeTs + 2UpgTals + Ugo07 + UrTag + Ugla,
Wyy = urrrg + 2uygry 0y, + U%GZ + UpTyy + Ugly,y.

From (12.32):

Ty = —— r, = ——2 0, = %L 0, = ===
x /m2+y2 ) Yy /x2+y2 ) T $2+y2 I Yy 332-‘1-:1/2 )

2 22 —2xy

Tee = Y Tyy = Ope = 22$y22 Tyy = 21,22 -
@1y2)32 0 Ty @2 +y2)3/2 @2 0 Ty @2 +y2)
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Therefore,
Wep + Wyy = Upp (12 + rZ) + 20y (120 + 7,0,) + uge(02 + 93)
+Up (Tyg + Tyy) + Uo(Ope + Oyy) = Upr + %UT + %ueg.
(b) In polar coordinates
xr=rcosf, y=rsinb, O<r<\/67 —rT<f<m

we obtain the problem

1 1
uw+;m+;w%:0 0<r<+v6, —m<6<m,
u(V/6,0) = V6 sin + 6 sin’ 0 —r<0<m.

The general solution takes the form

_ B (Y - _
u(r,0) = 5 +Z<R> (a, cosnf + b, sinnf), R =6.

The boundary condition implies
u(V6,0) = %4—2(&” cos 10+ b, sin nf) =3++/6 sin §—3 cos 20.
n=1

Equating coefficients leads to
apg =06, az=-3, a,=0 Vn+#0,2, and by =6, b,=0 Vn # 1.

Therefore, the solution is

2 2
u(r,@):3—% cos20 +r sin9:3—r200820+%+r sin 6,

or, in cartesian coordinates,

1
M%w=3+y+§f—x5

7.9 n = 0: A homogeneous harmonic polynomial is of the form Py(z,y) = ¢ and the
dimension of V; is 1.
n > 1: A homogeneous harmonic polynomial has the following form in polar coordi-
nates:

u(r,0) = Py(r,0) = Z a; j(rcos®) (rsinf),

i+j=n

Hence,

u(r,0) =r" Z a; j(cos ) (sin @) = " f(9).

i+j=n
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Substitute u(r, 0) into the Laplace equation to obtain
f(0) = f.(0) = A, cosnf + B, sinnb,

implying that
P.(r,0) =r"f(0) = r"(A, cosnb + B, sinnf).

It follows that the homogeneous harmonic polynomials of order n > 1 are spanned
by two basis functions:

vi(r,0) = r" cosnb ; vo(r,0) = r" sinnb,
and the dimension of V,, (for n > 1) is 2.

7.11 The general harmonic function has the form

u(r,0) = (Co Inr + Dy) + Z (Cpr"™ 4+ Dpr™™) (A, cosnb + B, sinnd).

n=1

Since we seek bounded solutions we require C,, = 0 for n > 0, and obtain
u(r,0) = 204 i R n(an cosnf + by, sinnh). (12.33)
’ 2 Z\r

Using the boundary condition we get

u(r,0) = %2 sinf = =7 sin 6,
or, in cartesian coordinates,
4y
u(z,y) = m
7.13 Consider the function
a? — 2

9(p) = a2 —2ar cos(0 — ) + 12

in the interval [—m, 7. It is easy to check that
—1<cos(d —p) <1 = 2ar > —2arcos(d —p) > —2ar,
and thus
a’+2ar+r*>a*—2ar cos(§ — ) +r*>a* —2ar+ 2
Therefore, we obtain for 0 < r < a that

a® —r? a?—r
—S
a2 +2ar +r?
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or

a—r a—+r
<

< .
a-+r 9(%) T a-—r

(12.34)

The Poisson integral representation for f > 0, and (12.34) imply

a+rd<p,
a—7T

%/_Wf(so)zjz::dw < u(r,0) < %/_Wf(w)

and thus

IN

(“*’”) L[ b ap

a—1r) 2m J_,

(Z;:) %/:f(w)dcp < u(r,0)

By the mean value theorem

© 00,0 < u(r,0) < LT
a—+r a—rT

u(0,0).

7.15 (a) Suppose v has a local maximum at (zg,yo) € D. Then

Ux(J:anO) = Uy(l‘(hy()) = 0; v:c:c(anyO) S 07Uyy($0>y0) S 0.

Therefore, at this point v, + vy, + v, + yv, < 0, which is a contradiction.
(b) Let € > 0. The function v. satisfies

(Ve ) e + (Us)yy + 2 (ve)z + y(vs)y >0,

and thus according to part (a) the maximum of v, is obtained on dD. Let M be the
maximum of u on dD. For all (z1,y,) € D

u(zy, y1) < vezr,y1) < max{v.(z,y)| (z,y) € 9D} < M +ex’.

Letting € — 0, we obtain u(xy,y1) < M .

(c) Write w(z,y) := wi(z,y) — us(x,y), where uy(z,y), us(z,y) are two solutions of
the problem. We should show that w(x,y) = 0 in D. Notice that the functions
+w(x,y) solve the equation with homogeneous boundary conditions. Therefore, part
(b) implies +w(z,y) <0 in D, namely w(z,y) =0 in D.

7.17 (a) The general solution is of the form
u(z,t) = Z Bne~ 2! sinnx. (12.35)
n=1
Substituting the initial condition into (12.35) we write

u(z,0) = Z B, sinnx = x(x* — 72). (12.36)

n=1
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To find B,, we expand u(z,0) = f(z) = z(2* — 7%) into an eigenfunction series:

2 [T 12(—-1)"
B, = —/ f(z)sinnxdx = (—3)
7 Jo n
Therefore,

u(x,t) = ZBne’Q”% sinnx. (12.37)
n=1

(b) Since f and f’ are continuous and furthermore f(0) = f(7) = 0, the series (12.36)
converges uniformly to the function f. By Corollary 7.18, u solves the heat equation
in D.

7.19 (a) The mean value theorem for harmonic functions implies

u(0,0) = L /ﬂ u(r,0)dé

2 ) .

for all 0 < r < R. Substitute » = R into the equation above to obtain

1 [ 1 [7/? 1
u(0,0) = 2—/ u(R,0)do = sin?(20) df = 1

T J—x _% —7/2

(b) This is an immediate consequence of the strong maximum principle. This principle
implies
u(r,0) <  max wu(R,¢)=1
1 0) S e By oY)
for all » < R, and the equality holds if and only if u is constant. Clearly our solution
is not a constant function, and therefore u < 1 in D. The inequality u > 0 is obtained
from the strong maximum principle applied to —u.

7.21 The function w(x,t) = e *sinz solves the problem

Wy — Wyy =0 (z,t) € Qr,
w(0,t) = w(m,t) =0 0<t<T,
w(z,0) = sin(z) 0<z<m.

On the parabolic boundary 0 < u(x,t) < w(z,t), and therefore, from the maximum
principle 0 <wu(z,t) <w(x,t) in the entire rectangle Q7.



45

Chapter 8

(12.38)

where

r=+(z-8+y—n? T*Z\/(m—%ﬁ)“r( —f—jn)Q, p=E+n

Assume first that (§,7) = (0,0). It is easy to check that
GR(:L‘7 Y; 07 0) |:c2+y2:R2 =0.

On the other hand, Gg(z,y;0,0) = ['(z,y) + constant, therefore,

-1 r
A <§1n }—%) = —di(x,y).

Suppose now that (£,7) # (0,0). Then

Gr(z,y:6,m) =T(x—&y—n) —T(R'VE+n2(x —{y—17)).

Since (&,7) & Bg, it follows that D(R™'\/€2 4+ n%(x — &, y—1)) is harmonic in Bz. On
the other hand, for (z,y) € Bg we have [(R™1/&2 + n2(z—&, y—17)) = T'(z—&,y—n).
Therefore, Gr(x,y; &, n) is the Green function in Bg.
Now, using polar coordinates (r,#) for (x,y), and (R, ¢) for (£,7n), we obtain
IGr(r,y;€,n) §(1—r?/R?)

0¢ 2m(R? — 2Rr cos(0 — @) +12)’

and similarly for 9/0n. The exterior unit normal at a point (£,7n) on the sphere is
(&,m)/ R, therefore,

OGr(x,y;&,m) R? —r?

or ~ 27R(R% - 2Rrcos(f — ¢) +12)
(b) Using (12.38) it follows that limg_ ... Gg(z,y;&,n) = 0.

8.2 Fix two points (z,y), (£,n) € D such that (x,y) # (£,7), and let
v(o,7) = N(o,Ti2,y),  wlo,7):=N(0o,7:£,7).

The functions v and w are harmonic in D \ {(z,y), (§,n)} and satisfy

Opv(o,7) = Ohw(o,7) = —% (o,7) € 0D,
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and

/aDU(U’ 7)ds(o,7) = / w(o,7)ds(o,7) = 0.

oD
Therefore,

/ (wO,v — vO,w)ds(o,T) = 0.
aD

By the second Green identity (7.19) for the domain D, which contains all points in D
such that their distances from the poles (z,y) and (£, n) are larger than e. We have

/ (wOv — VO w)ds(o,T) = / (VO w — woyv)ds(o,7) . (12.39)
OB((z,y):¢) OB((&m)s¢)

Using the estimates (8.3)—(8.4) we infer

lim lvo,w|ds(o, 7) = lim |lwo,v|ds(o,7) =0, (12.40)
=0 JoB((@y)e) =0 JaB((Em)e)
and
lim wo,vds(o,7) = w(x,y), lim vo,wds(o,7) = v(&,n).
=70 JoB((wy)e) <=0 JoB((ene)
(12.41)

Letting ¢ — 0 in (12.39) and using (12.40) and (12.41), we obtain

N(x,y;§,m) = w(x,y) =v(&,n) = N n52,9).

8.3 (a) The solution for the Poisson equation with zero Dirichlet boundary condition
is given by

w(r,0) = foér) + Z[fn(r) cosnb + g, (r) sin nb)]. (12.42)

Substituting the coefficients f,(r), gn(r) into (12.42), we obtain
1 [ 1 [
wr8) =5 [ KO apilpodo+ 5 [ KL mapi)ods
0 r

+ Z (/0 Kfn)(r, a, p)[6,(p) cosnb + €, (r) sin n@]pdp)
n=1

+ Z </ Kén)(r, a, p)[0n(r) cosnbd + €, (r) sinnb]p dp) :
n=1 r

Recall that the coefficients 0,,(p), €,(r) are the Fourier coefficients of the Function F,
hence

1 27 1 2T ‘
%@Z;A F(p, p) cosnpdp, %WZ;A F(p, p)sinnp dp.
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Substitute these coefficients, and interchange the order of summation and integration
to obtain

a 27
w(r, 0) =/ / G(r,0;p,0)F(p, ¢) dppdp,
o Jo
where G is given by

log 5 + 32001 5 [(2)" = (2)"1(8) cosn(0 =) ifp <,

G(r,0;p,¢) = o

log2 43> 1 [(f)n— (%) ](g)ncos n@—yp) ifp>r.
(b) To calculate the sum of the above series use the identities

00 1 5 00
E —z"cosna = E (" cosnadC
n 0
n=1 n=1

N cosa —( 1
- d¢ = —=log(1 +2* — 2 :
/0 14¢?—2Ccosa ¢ 2 og(l + 2 Zcos )

8.5 (a) Let (x,y), (§,n) € R3. The function I'(x — &, y + ) is harmonic as a function
of (§,n) in R%, and therefore

DGz, y;6,n) = AT (xz =&y —n) —Al(x — &y +n) = —0(x — &,y — ).

Since G(x,y;&,0) = 0, it follows that G satisfies all the desired properties of the
Green function.

Notice that on the boundary of R? the exterior normal derivative is 9/9y. It is
easy to verify that

0G(z,y;€,m)
dy

= ; v €R, (§n) €RL.

(b) Check that

G(Qfay;f,n) =——1In

1 { [(x =)+ (y—n)?][(z +&)*+ (y +n)?] }
4

satisfies all the desired properties.

8.7 (a) Let u be a smooth function with a compact support in R%. We need to prove
that

wld)i= [ p@u@)az — (@

as € — 0, where
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Recall that p. is supported in a ball of radius € around 3 and satisfies
/ po(F)dif = 1.

By the continuity of u at y, it follows that for any § > 0 there exists € > 0 such that
|u(Z) — u(y)| < 0 for all © € B(y,e). Therefore,

< / pe(@)[ul®) — u(@)] d < 6 / pel(T) i = 6.
B(y,e) B(y,e)

Thus, lim._o, u.(y) = u(y).

(b) Since
! 1
277'/ exXp (|7“|2—]_) ’I“dA ~ 04665,
0 _

it follows that the normalization constant ¢ for the function

o(3) = {cexp[1/<lfl2 —D] jE <L,

0 otherwise

is approximately 2.1436.
The proof that p. is an approximation of the delta function (for this particular p)
is the same as in part (a)

8.9 Fix y € R. Use Exercise 5.20 to show that as a function of (x,t) the kernel K
solves the heat equation for ¢ > 0.

Set

Then [7_p(x)da = 1. Consider

p(x) :=e"p (m = y) .

By Exercise 8.7, p. approximates the delta function as ¢ — 0.
Take ¢ = V4kt, where t > 0. Then p.(x) = K(x,y,t). Therefore, for any smooth
function ¢(x) with a compact support in R we have

lim [ K(z,y,t)¢(z) dz = ¢(y).

t—04 0

Thus, K(z,y,0) = d(x — y).



8.11 Let (z,y) € Dg, and let

R2
) T2

(z,9) :

(z,9)

be the reflection of (z,y) with respect to the circle 0Bg. Set
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r= @Ot (g = \/<x—§f£>2+< —f—fma o= VET I,

It is easy to verify (as was done in Exercise 8.1) that the function

1 Rr

GR(%ZJ;'S,U) = _%ln or

(&n) # (2,9)
is the Green function in Dg.

8.13 Fix (&,7n) € Bg, and define for (x,y) € Bg \ (£,n)

Ng(z,y;€,n) =
R\T: Y6571 {—%lnﬁ (&) = (0,0),

where

(12.43)

(12.44)

r=+(z-9+y—n? 7*"Z\/(:lc—l:;j )2+ ( —i—jn)?, p=VE+n

It is easy to verify that

ANR(ZU,Z/,S,U) = —(S(ZE - ga y— 77)7
and that Ny satisfies the boundary condition

8NR(337?/7§77) 1

or 2rR

Finally one has to check that Ng satisfies the normalization (8.34).
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Chapter 9

9.1 (b) From the eikonal equation itself u, (0, 0,0) = i\/l —u2(0,0,0) —u2(0,0,0) =
+1, where the sign ambiguity means that there are two possible waves, one propa-
gating into z > 0, and one into z < 0.

The characteristic curves (light rays) for the equation are straight lines (since
the refraction index is constant) perpendicular to the wavefront (this is a general
property of the characteristic curves). Therefore the ray that passes through (0,0, 0)
is in the direction (0,0,1). This implies u,(0,0,z) = u,(0,0,z) = 0 for all z, and
hence u,,(0,0,2) = u,,(0,0,2) = 0. Differentiating the eikonal equation by z and
using the last identity implies u,.(0,0,0) = 0. The result for the higher derivatives is
obtained similarly by further differentiation.

9.3 Verify that the proposed solution (9.26) indeed satisfies (9.23) and (9.25), and
that u,(0,¢) = 0.

9.5 Use formula (9.26). The functions u(r,0) = 2 and wu(r,0) = 1+ r? are both even
which implies at once their even extension. Substitute the even extension into (9.26)
and perform the integration to obtain u(r,t) = 2 + (1 + r* + *t?)t.

9.7 The representation (9.35) for the spherical mean makes it easier to interchange
the order of integration. For instance,

0 1

—

_aMh(a’ 7) Vh(Z + anf) - 7dS;.

AT Jyip=1

Using Gauss’ theorem (recall that the radius vector is orthogonal to the sphere) we
can express the last term as

a
il A h(Z + aif) dif.
AT Jip1<1

To return to a surface integral notation we rewrite the last expression as

—

0,72 . . a72 a
EA$ /Ifg<ah<§> dé': EA;C/O dO{ . . h(£ ng:

~—"

aQAm/ o® My (o, T) da.
0

Multiplying the two sides by a? and differentiating again with respect to the variable
a we obtain the Darboux equation.

9.9 Using the same method as in Subsection 9.5.2, one finds that

2 n? m? . nmy | ommz
Mo =72 (=™ _
lnm =T 5t 55 T =5 | Wam(z,y, 2)=sin — sin —=sin ,
a b c a c




51
for in,m=1,2,....
9.11 Hint: Differentiate (9.76) with respect to r to obtain one recursion formula, and
differentiate with respect to 6 to obtain another recursion formula. Combining the

two recursion formulas leads to (9.77).

9.12 Hint: In part (a) you can use the recursion formula for Bessel functions. In part
(b) use the integral representation for Bessel functions.

9.13 (a) The functions v; and v, satisfy the the Legendre equations

d 2 d’Ul .
& |:(1—t )E:| + 101 =0 —1l<t< 1, (1245)
d i 2 dUg i
E_(1—1&)E}+u2v2_0 —1<t<l. (12.46)
Multiply (12.45) by ve and (12.46) by vy, and subtract to obtain
d du | d dv
v2 g {(1 - t?)d—tl_ —u {(1 - t2)d—f} = (g — p1)vvs —1 <t <1. (12.47)

Integrating (12.47) over [—1, 1] implies

1

/1 {1)2 [(a- t2)vﬂl —u [(1- tQ)UQ]I} ds = (2 — ,u1)/ v1(8)va(s) ds.

1 -1

Integrating the left hand side by parts taking into account that v; are smooth and
that 1 —¢* vanishes at the end points, we obtain (g — 1) fjl v1(s)vz(s)ds = 0. Since
w1 # py it follows that f_ll v1(s)ve(s)ds = 0.

(b) Suppose that Legendre equation admits a smooth solution v on [—1, 1] with p #
k(k+1). By part (a), v is orthogonal to all Legendre polynomials, and by linearity v is
orthogonal to the space of all polynomials. It follows from Weierstrass’ approximation
theorem that v is orthogonal to the space E(—1,1). This implies that v = 0.

9.15 Write the general homogeneous harmonic polynomial as in Corollary 9.24, and
express it in the form Q(r, ¢,0) = r"F(¢,0). Substitute @ into the spherical form of
the Laplace equation (see 9.86), to get that I satisfies

sin ¢ J¢ > 0¢ sin? ¢ 002

Therefore F' is a spherical harmonic (or combinations of spherical harmonics).

= —n(n+1)F.

9.17 (a) By Exercise 9.13, Legendre polynomials with different indices are orthogonal
to each other on F(—1,1). Furthermore, since P, is an n-degree polynomial, we infer
that P,(t) satisfies

1
/ tP(t)dt=0 VI=0,1,2,...,n— 1. (12.48)

1
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The characterization (12.48), together with the normalization P, (1) = 1 determines
the Legendre polynomials uniquely.
Set L
o 2 n
Clearly, @, is an n-degree polynomial. Repeatedly integrating by parts it follows that
f_ll Qn(8)Qm(s)ds = 0 for n # m. Moreover, Q,(1) = 1. Therefore, P, = Q,.
(b) We thus compute

! 1 [dn 2 (2n!) ! 2
P,(t)*dt=——— —(2=1D)"| dt= /t2—1"dt: . (12.49
[ perar=gm [ Gpemar] a=gi [ @iy a- 2 g2

1 1

Returning to the general case of associated Legendre functions, and using (9.101)
we write down

! m/Qden

/OW[RT(COS¢)]2Sin¢d¢=/11[P,§”(t)]2 dt:/ {(1 — ey r dt. (12.50)

—1
Performing m integrations by parts brings the integral into the form
1
dm d™P,
-1 Po— (1 =)™ —2] dt.
o [ on o]

Notice that the expression

Q)

dm amp,
- 1 . t2 m n
o 1= G

is a polynomial of degree n. Moreover, the term t" in this polynomial originates in
the associated term a,t" in the polynomial. A brief calculation shows that

. (n4m)!

'ant”.

Q(t) = (=1)

(n—m)

The orthogonality condition (12.48) implies that the only contribution to the integral
comes through this term, namely,

/1 [P(8)) dt = /1 M%Pn(t)t” dt.

1 —1 (n—m)!

We use again (12.48) and (12.50) to finally obtain

2 ae 2(n +m)!
/_1 P (O] de = 2n+1)(n—m)! "

9.19 Let Bpr be the open ball with a radius R and a center at the origin. For & € Bp,
denote by
R2
jf: .

—
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the inverse point of ¥ with respect to the sphere 0Bg. It is convenient to define the
ideal point oo as the inverse of the origin.

Fix § € Bg. Recall that as a function of Z the function I'(|Z — ¢]) is harmonic for
all ¥ #  and satisfies —AL(Z; 7)) = 0(Z — ) . Consequently,

PG/ R + B2 — 22 - §)

is harmonic in Bg. On the other hand, for ¥ € 0B we have

G(&9) = T(VI7 + |y* — 23 - ) — F(\/(\:EHm/R)Q + R =27-5) = 0.

Therefore, the Green function is given by

G(#;9) = D(VI|Z)? +[g]? — 22 ) — F(\/(\me/R)Q +R*—2%-7).  (12.51)
Now, Let ¢ € 0Bg. Then

oG oG _ R*— i
on  Jdlyl  NwnR

|7 — g1~

9.21 (a) Suppose that u is harmonic in Bg, where By is the open ball of radius R
centered at the origin in RY, and let r < R. Using (9.174) and (9.180), it follows that
the Poisson integral formula for u is giving by

L=y u(T)
u(y) = / — dosz. (12.52)
nwnT  JaB, |7 — 7]

Substituting 7 = 0 in (12.52), we obtain

u(d) = / Uz 4y —%/a&u(f)dax. (12.53)

Cnwnr o, TN T nwy

N

(b) Let 0 < r < R. We write u(Z) = u(rd), where r = |z| and & = Z/r. We also
define

1 1
U = I r d 7= — B d_‘.
)= s [, o= [ uem)az
Differentiating with respect to r we obtain
1 ou(rad 1 ou(x
Up(r) = — ) gy L / UT) G =,
nwy Jop, Or nwyrtNTt Jop, Or

Therefore,
U(r) = constant = hH(l) U(r) = u(0).
(c) The proof of the strong maximum principle for domains in RY is exactly the
same as for planar domains, and therefore it is omitted.
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The weak maximum principle is trivial for the constant function. Suppose now
that D is bounded and u is a nonconstant harmonic function in D which is continuous
on D. Since D is compact, u achieves its maximum on D. By the strong maximum
principle, the maximum is achieved on 9D.

9.23 (a) Write ¥ = (2/,zy), and let T := (2/, —xy) be the inverse point of & with
respect to the hyperplane ORY. Fix ¥ € RY. The function I'(Z; %) is harmonic as a
function of @ in R?, while AzI'(Z;§) = —0(Z — ¢). Consider the function

G(7;y) = T'(@;9) — (3 7).

Since for Z € IRY we have G(7; ) = 0, it follows that G is indeed the Green function
on RY.

Notice that for ¥ € ORY the exterior normal derivative is 9/9yy. Hence,
2z N

= v e RY, ij € ORY.
Nogi—giv T 5T I

G (7))

0ng

~ 0G(Z;y)

B Oyn

yn=0 yn=0

9.25 (a) The eigenvalues and eigenfunctions of the problem are

n?  m? . nwr . mmy
Ay = T2 — +t 5| tnm(x,y)=sin — sin ,
a b a b

for n,m =1,2,.... Now use (9.178) to get the expansion.
(b) The eigenvalues and eigenfunctions of the problem are

2
A = <%—m> , umm:Jn(an’mT)(An,m cosnf+ B, ,sinnf) n>0, m>1.
a a

Now use (9.178) to get the expansion.
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Chapter 10

10.1 The first variation is 0 K = 2 fol y''dt, where 1 is the variation function. There-
fore the Euler-Lagrange equation is y” = 0, and the solution is yy,(¢) = ¢. Expand-
ing fully the functional with respect to the variation v about y = yy;, we have
K(uy +v) = K(unm) + fo ¢")2dt. This shows that yy; is a minimizer, and it is
indeed unique.

10.3 The Euler-Lagrange equation is Au — gu® = 0, x € D, while u satisfies the
natural boundary conditions d,u = 0 on 0D

—/tQ/ Le_LYvup—vw| az
oy Ipl2t 2 '

(b) Taking the first variation and equating it to zero we obtain the nonlinear Klein-
Gordon equation uy — Au + V'(u) = 0.

10.5 (a) The action is

10.7 (a) Introducing a Lagrange multiplier A, we solve the minimization problem

min {/ |Vul*dzdy + A <1 —/ u2dxdy>} :
D D

for all u that vanish on 0D. Equating the first variation to zero we obtain the Euler-
Lagrange equation

Au=—-Iu z€D, u=0 ze€dD. (12.54)

(b) To see the connection to the Rayleigh-Ritz formula (9.53), multiply (12.54) by
u and integrate by parts. Use fD v?drdy = 1, to get \ = fD |Vu|?dzdy. Therefore,
the Lagrange multiplier X is exactly the value of the functional [, |Vu|?>dzdy at the
constrained minimizer. Consider now (9.53) and define a new function w associated
with the minimizer v through w = v/(f, v*dazdy)'/?. Substituting into (9.53) and
observing that [, w?dzdy = 1, shows that the value of A that we found in part (a) is
equal to the first eigenvalue characterized by (9.53).

10.9 The eigenvalue problem is
X® () =AX(z) =0, X(0)=X'(0)=X(b) = X'(b) =0.

Multiply both sides by X and integrate over (0,b). Performing two integrations by
parts and using the boundary conditions we derive

/X” —)\/Xda:
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Therefore A > 0.
The solution satisfying the boundary conditions at x = 0 is

X(z) = A(coshax — cosax) + B (sinh ax — sinax) .

Enforcing the boundary condition at x = b, we obtain that a necessary and sufficient
condition for a nontrivial solution is indeed given by condition (10.73).

10.11 (a) Let {v,} be an orthonormal infinite sequence. Then ||v,|| = 1, and there-
fore, {v,} is bounded.
(b) Let v € H. By the Riemann-Lebesgue lemma (see (6.38)), we have

lim (v,,v) =0 = (0, v).
This shows that {v,} converges weakly to 0.
(c) Suppose that v is a strong limit of a subsequence of {v,, }. Then it is also the
weak limit of this subsequence, and by part (c¢), v = 0. On the other hand, by the
triangle inequality,
vl = Mol | < [y, =]l = 0.

But ||v,|| = 1, therefore |[v|]] = 1 and v # 0. Hence, {v,} does not admit any
subsequence converging strongly to a function in H.

10.12 Hint: Suppose that {u,} weakly converges to u in H;(D). Then by Theorem
10.13, {u,} is a bounded sequence in Hy(D). It follows that {u,} and {Ju,/0x;}
are bounded sequences in Ls(D), and therefore up to a subsequence, they converge
weakly to @, and 4; in La(D), respectively. It remains to show that 4; = du/0x;.
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Chapter 11

11.1 Expand u into a Taylor series at (z;,y;):
(T, Yjr1) = (@i, y;) + Ovulzi, y;) Ax + Oyu(wi, y;) Ay

1
+—

5 [Opatu(s, y;) Ax? + 20, u(zy, y;) Az Ay + Oyyu(zs, y) Ay?] + - -

w(@is1, Y1) = u(w,y;) — Opu(z;, y;) Az + Oyu(x;, y;) Ay
1

w@im1,yj—1) = u(wg,y;) — Opu(zs, y;) Az — Oyu(x;, y;) Ay

1
+§ [Gmu(xi, Y ) AT + 20,,u(zi, ;) Ar Ay + Oyu(;, yj)Ayz} 4.

Wi, yj—1) = ulz,y;) + 0pulzs, y;) Az — Oyu(z;, y;) Ay
1
+§ [&mu(xi, yj)Ax2 — 20 u(z;, y;) AxAy + Oyyu(x;, yj)AyQ} + e
It follows at once that
Ui+1,j+1 - Ui—l,j+1 - Ui—i—l,j—l + Ui—l,j—l = 4A$Ayaxyu($z‘7 ?Jj) +oeee
where
Uij = u(wi, y;).

Therefore, we obtain the following finite difference approximation for the mixed

derivative:
Uit1,j+1 — Uici 41 — Uig1,j-1 +Uiz1 51

4AzAy

awyu($i7 y]) =

11.3 To check the consistency of the Crank-Nicolson scheme we define for any function
v(x,t)

R(v) = Vins1 = Vin 1 (Vz‘+1,n —2Vin +Vicin n Vitrng1 — 2Vipgr + Vi—l,n—‘rl) ’

At 2(Ax)? 2(Ax)?

where V; ; = v(x;, y;).
We now substitute the Taylor series expansion of the solution u(z,t) into the heat
equation in R(u) and obtain

1 1 3
R<U) = §At [&tu(xi, t]) — karxtu(xi; tj)] + E(At)Q 8tttu<l'i, tj) — §k3mttu(xi, tj):|

1

1
19 (A:E)Qk:ammu(xi, tj) + ﬁ(At)?’k@ttttu(mi, t;).

It follows now that lima, a¢—o R(u) = 0 and the scheme is indeed consistent.
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11.5 The numerical solution: The finite difference equation for the Crank-Nicolson
scheme is

Uint1 = Uin Ui —2Uipn + Ui 4 Uitin+1 — 2Uipg1 + Uimi nga

At 2(Az)? 2(Az)? » (12:55)

where U, ,, = u(x;,t,), 1<i< N -2 n>0,and N = (7/Ax)+ 1. Notice that
the boundary conditions determine the solution values at the endpoints, i.e.

Uppp =Un-1, =0 n > 1.
The initial condition becomes
Uio = xi(m — ;) 0<i<N-—-1, x; = 1Ax.

Let us rewrite (12.55) as

o
Uin+1 = §(Ui+1,n+1 — 2Ui i1+ Uiting1) + 7in + Ui,
where o = At/(Az)?, 1<i< N -2, n>0,and
a
Tim = E(Ui—l—l,n —2U;n + Ui ).
We solve the algebraic equations with the Gauss-Seidel method.
The analytical solution: The general solution of the PDE is

u(z,t) = Z By e ™ sin(naz).
n=1

To find the coefficients B,, we expand f(x) = (7 — z) into a sine series in [0, 7]. We
obtain

2 [T ) 0 n = 2m,
B, = %/0 x (m —z) sin(nz) de = { (8/m)(2m — 1) o1 (12.56)

Therefore, the analytical solution is

2m—1)>2t

8 o= e ( i
U(l’,t) = ; Z m sm(?m — 1)1’

m=1

We compare the analytical and numerical solutions at the point (z,t) = (7/4,2). In
the analytical solution we took partial sums with 2, 7 and 20 terms in the series, while
in the numerical solution we used grids of size 25, 61 and 101. The time step is always
At = Ax/4. The results are presented in the Table below. Notice that adding terms
into the partial sums of the Fourier representation adds very little to the accuracy.
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Analytical solution

Numerical solution

9 first 7 first 90 first A mesh | A mesh | A mesh
s st rs of 25 | of 61 | of 101
terms 1in terms 1n terms 1n . . .
. i i grid grid grid
the series the series the series . . .
points points points
u(m/4,2) 0.243689127 | 0.243689128 | 0.243689128 | 0.244344 | 0.243803 | 0.243756

11.6 (b) The Crank-Nicolson scheme for (11.74)—(11.74) is given by

Uins1 — Uin _ Ui = 2Uin +Uic1n . Uigin41 — 2Ui g1 + Uiz g
At 2(Ax)? 2(Ax)? ’
where U, ,, = u(z;,t,), 1 <i< N-—-1, n>0,and N = 7n/Az + 1. The initial
condition leads to

Observe that the solution at the boundary point x = 0 is determined by the boundary
condition

UOJL =0 n Z 1.
We rewrite the equations in the form
«
Uins1 = E(Ui+1,n+l — Ui 1 + Uicing1) + 7in + Uip,
where a = At/(Az)?, 1<i<N-2, n>0and
a
Tin = E(UiJrl,n —2U;n + Ui ).

At the endpoint x = 1 we have a Neumann boundary condition. One option to
eliminate from it an equation for Ux_; , is to approximate the derivative at z = 1 by
a forward difference approximation. In this case we get

UNfl,n = UN72,n-

Unfortunately this is a first order approximation and the error due to it might spoil
the entire (second order) scheme. Therefore, it is beneficial to add an artificial point
Un n, and to approximate the Neumann condition at x = 1 by Uy ,, = Un_2,,. Notice
that now Uy_1, is an internal point.

11.7 The analytic solution: It is easy to see that u(z,t) = t° satisfies all the problem’s
conditions, and thus is the unique solution.
A numerical solution (Az = At = 0.1):

At 0.1 1 n 1
Gop o 0 NER I

o =
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Let us write an explicit finite difference scheme:

( Ui = 0 0<i< 10,
Umnt1 = Uin+10Uit1 —2Uip + Uiir) + 560, 1<i<9, n>0,
9 (12.57)
Uont1 = top n >0,
(L Ulont1 = o n > 0.

The analytic solution takes the value u(1/2,3) = 243 at the required point. Simulating
the scheme (12.57) provides the value u(1/2,3) = 2.4 - 10%. The numerical solution
is not convergent since the scheme is unstable when At < 0.5/(Axz)?.

11.9 Let (4,7) be the index of an internal maximum point. Both terms in the left
hand side of (11.27) are dominated by U; ;. Therefore, if U; ; is positive, the left hand
side is negative which is a contradiction.

11.13 Let p;, i = 1,...,4(N — 2) be the set of boundary point. For each i define the
harmonic function 7;, such that T;(p;) = 1, while T;(p;) = 0 if j # i. Clearly the set
{T;} spans all solutions to the Laplace equation in the grid. It also follows directly
from the construction that the set {7;} is linearly independent.



