
MATH 147 discussion Ryan Ta
University of California, Riverside Winter 2021

Solutions to assigned homework problems from Fourier Analysis: An Introduction by Elias Stein and Rami Sakarchi

Homework 1

• Sect. 1.3, pp. 23-27; 4, 5, 7, 9 (optional), 10.

• Sect. 1.4, p. 26: 1 (optional)

• Sect. 2.6, pp. 58-60: 1, 2, 4, 5, 6, 9

1.3.4. For I ∈ C, we define the complex exponential by

4I =

∞∑
==0

I=

=!
.

(a) Prove that the above definition makes sense, by showing that the series converges for every complex number I. Moreover,
show that the convergence is uniform on every bounded subset of C.

Solution. To show that the series expansion of the complex exponential is convergent, we will use the ratio test from
first-year calculus. Set 0= (I) := I=

=! . Then we have the ratio����0=+1 (I)0= (I)

���� =
������
I=+1

(=+1)!
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which implies its limit

lim
=→∞

����0=+1 (I)0= (I)

���� = lim
=→∞

|I |
(= + 1)

= 0.

So the series is convergent.
Next, we will show that converge is uniform on every bounded subset of C. Every bounded subset of C is contained
in the disk �' := {I ∈ C | |I | < '}. Let (= (I) :=

∑=
:=0

I:

:! and ((I) :=
∑∞
:=0

I:

:! . Then our goal is to show that
(: (I) converges pointwise to ((I). Observe that factorials grow faster than exponentials; that is, given ' > 0 we have
:! > (2'): for all large positive integers : . One can justify that using a proof by induction. Observe that, if we never
assumed that the subset of C is not bounded, as seen in part (a), then the disk containing the unbounded subset must
have an infinite radius, i.e. ' = ∞, which is all of C. But this implies :! > (2'): = ∞, which would be a contradiction
because in reality we have :! < ∞ for all positive integers : . With all that said, for any integers <, = with the assumption



< > = without loss of generality, we use the triangle inequality and the geometric partial sum formula to obtain
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Send < →∞ of our result to conclude

|(= (I) − ((I) | = |(= (I) − lim
<→∞

(< (I) |

= lim
<→∞

|(= (I) − (< (I) |

< lim
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(
1
2=
− 1

2<

)
=

1
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<
1
=
,

where we used 2= > = for all positive integers = (one can prove this using a proof by induction). Finally, let n > 0 be
given, and choose # > 1

n
. If = ≥ # , then we have

|(= (I) − ((I) | <
1
=

≤ 1
#

< n

for all I ∈ �'. Therefore, (= (I) converges uniformly to ((I) on �', which implies the same result on any bounded set
of C. �

(b) If I1, I2 are two complex numbers, prove that 4I14I2 = 4I1+I2 . [Hint: Use the binomial theorem to expand (I1 + I2)=, as
well as the formula for the binomial coefficients.]

Solution. Using the binomial theorem

(I1 + I2)= =
=∑
:=0

=!
:!(= − :)! I

:
1 I
=−:
2 .

and the power series expansion

4I =

∞∑
==0

I=

=!
,



we obtain

4I1+I2 =

∞∑
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as desired. For complete clarity of our proof, we will need to justify the Cauchy product
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Credit for the following goes to this question on Mathematics StackExchange. The double sum of the left-hand side
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This is a sum of all terms along any row ;.
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This is a sum of all terms along any column <.

runs down all the rows OR all the columns of the following array:
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Similarly, the double sum of the right-hand side

∞∑
==0

=∑
:=0

I:1 I
=−:
2

:!(= − :)! =
∞∑
==0

(
I0

1I
=−0
2

0!(= − 0)! +
I1

1I
=−1
2

1!(= − 1)! +
I2

1I
=−2
2

2!(= − 2)! +
I3

1I
=−3
2

3!(= − 3)! + · · · +
I=1 I

=−=
2

=!(= − =)!

)
︸                                                                                           ︷︷                                                                                           ︸

This is a sum of all terms along any antidiagonal =.

runs down all the antidiagonals of the following array:

= = 0 = = 1 = = 2 = = 3 · · ·
↙ ↙ ↙ ↙
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https://en.wikipedia.org/wiki/Cauchy_product
https://math.stackexchange.com/questions/414061/prove-exy-exey-by-using-exponential-series


Notice that the corresponding entries of our two arrays are equal to each other. This implies that our double-sums of
the left- and right-hand sides are equal, as we claimed, which completes our justification of the Cauchy product. �

(c) Show that if I is purely imaginary, that is, I = 8H with H ∈ R, then 48H = cos(H) + 8 sin(H). This is Euler’s identity. [Hint:
Use power series.]

Solution. Using power series expansions

48H =

∞∑
==0

(8H)=
=!

,

cos(H) =
∞∑
==0

(−1)=H2=

(2=)! ,

sin(H) =
∞∑
==0

(−1)=H2=+1

(2= + 1)! ,

we obtain

48H =

∞∑
==0

(8H)=
=!

=

∞∑
==0

(8H)2=
(2=)! +

∞∑
==0

(8H)2=+1
(2= + 1)!

=

∞∑
==0

(82)=H2=

(2=)! + 8
∞∑
==0

(82)=H2=+1

(2= + 1)!

=

∞∑
==0

(−1)=H2=

(2=)! + 8
∞∑
==0

(−1)=H2=+1

(2= + 1)!

= cos(H) + 8 sin(H),

as desired. �

(d) More generally,
4G+8H = 4G (cos(H) + 8 sin(H))

whenever G, H ∈ R, and show that
|4G+8H | = 4G .

Solution. We have

4G+8H = 4G48H

= 4G (cos(H) + 8 sin(H))

and

|4G+8H | = |4G48H |
= |4G (cos(H) + 8 sin(H)) |
= |4G | | cos(H) + 8 sin(H) |

= 4G
√

cos2 (H) + sin2 (H)
= 4G · 1
= 4G ,

as desired. �

(e) Prove that 4I = 1 if and only if I = 2c:8 for some integer : .

Solution. We can always write I = G + 8H, which means

4I = 4G+8H

= 4G (cos(H) + 8 sin(H))
= 4G cos(H) + 84G sin(H).

This will be useful in proving our following implications.
Assume 4I = 1 = 1 + 80. Then we have

1 + 80 = 4G cos(H) + 84G sin(H).



Equate the real and imaginary components of a complex number to conclude the system of equations

4G cos(H) = 1,
4G sin(H) = 0.

Since we know 4G > 0 for all G ∈ R, we must have sin(H) = 0, or equivalently H = 2c: for any integer : . Furthermore,
knowing cos(2c:) = 1, we also obtain

4G = 4G cos(2c:)
= 4G cos(H)
= 1

has the solution G = 0 only. We conclude

I = G + 8H
= 0 + 2c:8
= 2c:8,

as desired.
Conversely, assume I = 2c:8. Then by Euler’s formula we have

4I = 42c:8

= cos(2c:) + 8 sin(2c:)
= 1 + 80
= 1,

as desired. �

(f) Show that every complex number I = G + 8H can be written in the form I = A48 \ , where A is unique and in the range
0 ≤ A < ∞, and \ ∈ R is unique up to an integer multiple of 2c. Check that

A = |I | and \ = arctan
( H
G

)
whenever these formulas make sense.

Solution. We can write G = A cos(\) and H = A sin(\). By Euler’s formula, we have

I = G + 8H
= A cos(\) + 8A sin(\)
= A (cos(\) + 8 sin(\))
= A48 \ ,

as desired. �

(g) In particular, 8 = 4
8 c
2 . What is the geometric meaning of multiplying a complex number by 8? Or by 48 \ for any \ ∈ R?

Solution. We have

48
c
2 = cos

( c
2

)
+ 8 sin

( c
2

)
= 0 + 8 · 1
= 8,

as desired. Multiplying a complex number by 48 \ rotates the point along a circle in C. �

(h) Given \ ∈ R, show that

cos(\) = 4
8 \ + 4−8 \

2
and sin(\) = 4

8 \ − 4−8 \
28

.

These are also called Euler’s identities.

Solution. By Euler’s formula, we have

48 \ + 4−8 \
2

=
(cos(\) + 8 sin(\)) + (cos(−\) + 8 sin(−\))

2

=
(cos(\) + 8 sin(\)) + (cos(\) − 8 sin(\))

2

=
2 cos(\)

2
= cos(\)



and

48 \ − 4−8 \
28

=
(cos(\) + 8 sin(\)) − (cos(−\) + 8 sin(−\))

2

=
(cos(\) + 8 sin(\)) − (cos(\) − 8 sin(\))

28

=
28 sin(\)

28
= sin(\),

as desired. �

(i) Use the complex exponential to derive trigonometric identities such as

cos(\ + o) = cos(\) cos(o) − sin(\) sin(o),

and then show that

2 sin(\) sin(i) = cos(\ − i) − cos(\ + i),
2 sin(\) cos(i) = sin(\ + i) + sin(\ − i).

This calculation connects the solution given by d’Alembert in terms of traveling waves and the solution in terms of
superposition of standing waves.

Solution. We have

cos(\ + o) + 8 sin(\ + o) = 48 (\+o)

= 48 \48o

= (cos(\) + 8 sin(\)) (cos(o) + 8 sin(o))
= cos(\) cos(o) − sin(\) sin(o) + 8(cos(\) sin(o) + sin(\) cos(o)),

from which we can equate the real and imaginary components to obtain

cos(\ + o) = cos(\) cos(o) − sin(\) sin(o),
sin(\ + o) = cos(\) sin(o) + sin(\) cos(o),

respectively. Furthermore, we obtain

sin(\ + i) + sin(\ − i) = (cos(\) sin(i) + sin(\) cos(i)) + (cos(\) sin(−i) + sin(\) cos(−i))
= (cos(\) sin(i) + sin(\) cos(i)) + (− cos(\) sin(i) + sin(\) cos(i))
= 2 sin(\) cos(i)

and

cos(\ − i) − cos(\ + i) = (cos(\) cos(−i) − sin(\) sin(−i)) − (cos(\) cos(i) − sin(\) sin(i))
= (cos(\) cos(i) + sin(\) sin(i)) − (cos(\) cos(i) − sin(\) sin(i))
= 2 sin(\) sin(i),

as desired. �

1.3.5. Verify that 5 (G) = 48=G is periodic with period 2c and that

1
2c

∫ c

−c
48=G 3G =

{
1 if = = 0,
0 if = ≠ 0.

Use this fact to prove that if =, < ≥ 1 we have

1
2c

∫ c

−c
cos(=G) cos(<G) 3G =

{
1 if = = <,
0 if = ≠ <.

and similarly
1

2c

∫ c

−c
sin(=G) sin(<G) 3G =

{
1 if = = <,
0 if = ≠ <.

Finally, show that
1

2c

∫ c

−c
sin(=G) cos(<G) 3G = 0

for any positive integers =, <. [Hint: Calculate 48=G4−8<G + 48=G48<G and 48=G4−8<G − 48=G48<G .]



Solution. For all integers : , we have

5 (G + 2c:) = 48=(G+2c:)

= 48=G42c:8

= 5 (G) · 1
= 5 (G),

which means 5 is periodic with period 2c. Next, we have, if = ≠ 0,∫ c

−c
48=G 3G =

48=G

8=

����c
−c

=
48=c − 4−8=c

8=

=
(−1)= − (−1)=

8=

=
0
8=

= 0

and, if = = 0,m ∫ c

−c
48 (0)G 3G =

∫ c

−c
1 3G

= G |c−c
= c − (−c)
= 2c,

thereby establishing ∫ c

−c
48=G 3G =

{
2c if = = 0,
0 if = ≠ 0.

Now, following the given hint, we have

2 cos(=G) cos(<G) + 8(2 sin(=G) cos(<G)) = 2(cos(=G) + 8 sin(=G)) cos(<G)

= 248=G
48<G + 4−8<G

2
= 48=G (48<G + 4−8<G)
= 48=G4−8<G + 48=G48<G

= 48 (=−<)G + 48 (=+<)G

and

2 sin(=G) sin(<G) + 8(−2 cos(=G) sin(<G)) = −28(cos(=G) + 8 sin(=G)) sin(<G)

= −2848=G
48<G − 4−8<G

28
= 48=G (4−8<G − 48<G)
= 48=G4−8<G − 48=G48<G

+ 48 (=−<)G − 48 (=+<)G .

Add and subtract these two previous equations and divide both sides by 2 to obtain, respectively

(cos(=G) cos(<G) + sin(=G) sin(<G)) + 8(sin(=G) cos(<G) − cos(=G) sin(<G)) = 48 (=−<)G ,
(cos(=G) cos(<G) − sin(=G) sin(<G)) + 8(sin(=G) cos(<G) + cos(=G) sin(<G)) = 48 (=+<)G .

Add and subtract these two previous equations and divide both sides by 2 to obtain, respectively

cos(=G) cos(<G) + 8 sin(=G) cos(<G) = 4
8 (=−<)G + 48 (=+<)G

2
,

sin(=G) sin(<G) − 8 sin(=G) cos(<G) = 4
8 (=−<)G − 48 (=+<)G

2
.



Integrate over [−c, c] both sides of our latest two equations to conclude∫ c

−c
cos(=G) cos(<G) 3G + 8

∫ c

−c
sin(=G) cos(<G) 3G =

{
2c if = − < = 0,
0 if = − < ≠ 0,

,∫ c

−c
sin(=G) sin(<G) 3G + 8

∫ c

−c
sin(=G) cos(<G) 3G =

{
2c if = − < = 0,
0 if = − < ≠ 0,

from which we can equate the real and imaginary components of our last two equations to conclude simultaneously

1
2c

∫ c

−c
cos(=G) cos(<G) 3G =

{
1 if = = <,
0 if = ≠ <,

1
2c

∫ c

−c
sin(=G) sin(<G) 3G =

{
1 if = = <,
0 if = ≠ <,

1
2c

∫ c

−c
sin(=G) cos(<G) 3G = 0,

as desired. �

1.3.7. Show that if 0 and 1 are real, then one can write

0 cos(2C) + 1 sin(2C) = � cos(2C − i),

where � =
√
02 + 12, and i is chosen so that

cos(i) = 0
√
02 + 12

and sin(i) = 1
√
02 + 12

.

Solution. Note that with the notation given in the problem we can also write

cos(i) = 0

�
,

sin(i) = 1

�
.

We have

� cos(2C − i) = �4
2C−i + 4−(2C−i)

2

=
�

2
(42C4−i + 4−2C4i)

=
�

2
((cos(2C) + 8 sin(2C)) (cos(−i) + 8 sin(−i))

+ (cos(−2C) + 8 sin(−2C)) (cos(i) + 8 sin(i)))

=
�

2
((cos(2C) + 8 sin(2C)) (cos(i) − 8 sin(i))

+ (cos(2C) − 8 sin(2C)) (cos(i) − 8 sin(i)))

=
�

2
((cos(2C) cos(i) + sin(2C) sin(i)) + 8(− cos(2C) sin(i) + sin(2C) cos(i))

+ (cos(2C) cos(i) + sin(2C) sin(i)) + 8(cos(2C) sin(i) − sin(2C) cos(i)))

=
�

2
(2 cos(2C) cos(i) + 2 sin(2C) sin(i)))

= � cos(2C) cos(i) + � sin(2C) sin(i)

= � cos(2C) 0
�
+ � sin(2C) 1

�

= 0 cos(2C) + 1 sin(2C),

as desired. �

1.3.9. In the case of the plucked string, use the formula for the Fourier sine coefficients to show that

�< =
2ℎ
<2

sin(<?)
?(c − ?) .

For what position of ? are the second, fourth, ... harmonics missing? For what position of ? are the third, sixth, ... harmonics
missing?



Solution. Page 17 of the Stein and Shakarchi textbook gives the function

5 (G) =
{
Gℎ
?

if 0 ≤ G ≤ ?,
ℎ (c−G)
c−? if ? ≤ G ≤ c,

which serves as a simplified model of a plucked string. Using the formula for the Fourier sine coefficients, we obtain

�< =
2
c

∫ c

0
5 (G) sin(<G) 3G

=
2
c

(∫ ?

0
5 (G) sin(<G) 3G +

∫ c

?

5 (G) sin(<G) 3G
)

=
2
c

(∫ ?

0

Gℎ

?
sin(<G) 3G +

∫ c

?

ℎ(c − G)
c − ? sin(<G) 3G

)
=

2ℎ
c?

∫ ?

0
G sin(<G) 3G + 2ℎ

c(c − ?)

∫ c

?

(c − G) sin(<G) 3G.

for all positive integers <. We employ the method of integration by parts to obtain∫ ?

0
G sin(<G) 3G = − 1

<
G cos(<G)

����?
0
+ 1
<

∫ ?

0
cos(<G) 3G

= − ? cos(<?) − 0 cos(<(0))
<

+ 1
<2 sin(<G)

����?
0

= − ? cos(<?)
<

+ sin(<?) − sin(<(0))
<2

= − ? cos(<?)
<

+ sin(<?)
<2

and ∫ c

?

(c − G) sin(<G) 3G = − 1
<
(c − G) cos(<G)

����c
?

− 1
<

∫ c

?

cos(<G) 3G

= − (c − c) cos(<c) − (c − ?) cos(<?)
<

− 1
<2 sin(<G)

����c
?

= −0 cos(<c) − (c − ?) cos(<?)
<

− sin(<c) − sin(<?)
<2

=
(c − ?) cos(<?)

<
− 0 − sin(<?)

<2

=
(c − ?) cos(<?)

<
+ sin(<?)

<2 .

So we have

�< =
2ℎ
c?

∫ ?

0
G sin(<G) 3G + 2ℎ

c(c − ?)

∫ c

?

(c − G) sin(<G) 3G

=
2ℎ
c?

(
− ? cos(<?)

<
+ sin(<?)

<2

)
+ 2ℎ
c(c − ?)

(
(c − ?) cos(<?)

<
+ sin(<?)

<2

)
= −2ℎ cos(<?)

c<
+ 2ℎ sin(<?)

c<2?
+ 2ℎ cos(<?)

c<
+ 2ℎ sin(<?)
c<2 (c − ?)

=
2ℎ sin(<?)
c<2?

+ 2ℎ sin(<?)
c<2 (c − ?)

=
2ℎ sin(<?)

c<2

(
1
?
+ 1
c − ?

)
=

2ℎ sin(<?)
c<2

c

?(< − ?)

=
2ℎ
<2

sin(<?)
?(< − ?) ,

as desired. The second, fourth, ... harmonics are missing when we have �2= = 0 for all positive integers =. The formula
becomes

�2= =
2ℎ
4=2

sin(2=?)
?(c − ?) .

So the second, fourth, ... harmonics are missing whenever we have sin(2=?) = 0, or equivalently ? = c
2 . Similarly, the third,

sixth, ... harmonics are missing when we have �3= = 0 for all positive integers =. The formula becomes

�3= =
2ℎ
9=2

sin(3=?)
?(c − ?) .



So the second, fourth, ... harmonics are missing whenever we have sin(3=?) = 0, or equivalently ? = c
3 . �

1.3.10. Show that the expression of the Laplacian

Δ =
m2

mG2 +
m2

mH2

is given in polar coordinates by the formula

Δ =
m2

mA2 +
1
A

m

mA
+ 1
A2

m2

m\2 .

Also, prove that ����mDmG ����2 + ����mDmH ����2 = ����mDmA ���� + 1
A2

����mDm\ ����2 .
Solution. We know already that the Laplacian is defined in the Cartesian coordinate system by

ΔD =

(
m2

mG2 +
m2

mH2

)
D

=
m2D

mG2 +
m2D

mH2 .

To compute the Laplace equation ΔD = 0 in the polar coordinate system, we need to derive the equivalent expression of the
Laplacian in polar coordinates. Let

G = G(A, \) = A cos(\),
H = H(A, \) = A sin(\),

D(G, H) = D(A, \) = D(G(A, \), H(A, \)),

the first two of which imply

A =
√
G2 + H2,

\ = tan−1
( H
G

)
.

We obtain first partial derivatives

mA

mG
=
m

mG
(
√
G2 + H2) = G√

G2 + H2
=
G

A
,

mA

mH
=
m

mH
(
√
G2 + H2) = H√

G2 + H2
=
H

A
,

m\

mG
=
m

mG

(
tan−1

( H
G

))
= − H

G2 + H2 = −
H

A2 ,

m\

mH
=
m

mH

(
tan−1

( H
G

))
=

G

G2 + H2 =
G

A2

and the second partial derivatives

m2A

mG2 =
m

mG

(
G√

G2 + H2

)
=

H2

(G2 + H2) 3
2

=
H2

A3 ,

m2A

mH2 =
m

mH

(
H√

G2 + H2

)
=

G2

(G2 + H2) 3
2

=
G2

A3 ,

m2\

mG2 =
m

mG

(
− H

G2 + H2

)
=

2GH
(G2 + H2)2

=
2GH
A4 ,

m2\

mH2 =
m

mH

(
G

G2 + H2

)
= − 2GH
(G2 + H2)2

= −2GH
A4 .

So, by the multivariable chain rule, we obtain the first partial derivatives

mD

mG
=
m

mG
(D(A, \))

=
mD

mA

mA

mG
+ mD
m\

m\

mH

=
mD

mA

G

A
− mD
m\

H

A2



and

mD

mH
=
m

mH
(D(A, \))

=
mD

mA

mA

mH
+ mD
m\

m\

mH

=
mD

mA

H

A
+ mD
m\

G

A2

and the second partial derivatives

m2D

mG2 =
m2

mG2 (D(A, \))

=
m

mG

(
mD

mA

mA

mG
+ mD
m\

m\

mG

)
=
m

mG

(
mD

mA

m

mG

mA

mG

)
+ m

mG

(
mD

m\

m\

mG

)
=

(
m2D

mA2

(
mA

mG

)2

+ mD
mA

m2A

mG2

)
+

(
m2D

m\2

(
m\

mG

)2

+ mD
m\

m2\

mG2

)
=
m2D

mA2

G2

A2 +
mD

mA

H2

A3 +
m2D

m\2

H2

A4 +
mD

m\

2GH
A4

and

m2D

mH2 =
m2

mH2 (D(A, \))

=
m

mH

(
mD

mA

mA

mH
+ mD
m\

m\

mH

)
=
m

mH

(
mD

mA

mA

mH

)
+ m

mH
( mD
m\

m\

mH

)
=

(
m2D

mA2

(
mA

mH

)2

+ mD
mA

m2A

mH2

)
+

(
m2D

m\2

(
m\

mH

)2

+ mD
m\

m2\

mH2

)
=
m2D

mA2

H2

A2 +
mD

mA

G2

A3 +
m2D

m\2

G2

A4 −
mD

m\

2GH
A4 .

Therefore, the Laplacian in polar coordinates is

ΔD =
m2D

mG2 +
m2D

mH2

=

(
m2D

mA2

G2

A2 +
mD

mA

H2

A3 +
m2D

m\2

H2

A4 +
mD

m\

2GH
A4

)
+

(
m2D

mA2

H2

A2 +
mD

mA

G2

A3 +
m2D

m\2

G2

A4 −
mD

m\

2GH
A4

)
=
m2D

mA2

G2 + H2

A2 + mD
mA

G2 + H2

A3 + m
2D

m\2

G2 + H2

A4

=
m2D

mA2

A2

A2 +
mD

mA

A2

A3 +
m2D

m\2

A2

A4

=
m2D

mA2 +
1
A

mD

mA
+ 1
A2

mD

m\

=

(
m2

mA2 +
1
A

m

mA
+ 1
A2

m

m\

)
D,

and so the Laplacian in polar coordinates is given by

Δ =
m2

mA2 +
1
A

m

mA
+ 1
A2

m

m\
.



Also, we obtain ����mDmG ����2 + ����mDmH ����2 = ����mDmA GA − mDm\ HA2

����2 + ����mDmA HA + mDm\ GA2

����2
=

(����mDmA ����2 G2

A2 − 2
����mDmA ���� GHA3 +

����mDm\ ����2 H2

A4

)
+

(����mDmA ����2 H2

A2 + 2
����mDmA ���� GHA3 +

����mDm\ ����2 G2

A4

)
=

����mDmA ����2 G2 + H2

A2 +
����mDm\ ����2 G2 + H2

A4

=

����mDmA ����2 A2

A2 +
����mDm\ ����2 A2

A4

=

����mDmA ����2 + 1
A2

����mDm\ ����2 ,
as desired. �

1.4.1. We look for a solution of the steady-state heat equation ΔD = 0 in the rectangle ' = {(G, H) : 0 ≤ G ≤ c, 0 ≤ H ≤ 1} that
vanishes on the vertical sides of ', and so that

D(G, 0) = 50 (G) and D(G, 1) = 51 (G),

where 50 and 51 are initial data which fix the temperature distribution on the horizontal sides of the rectangle. Use separation
of variables to show that if 50 and 51 have Fourier expansions

50 (G) =
∞∑
:=1

�: sin(:G) and 51 (G) =
∞∑
:=1

�: sin(:G)

then

D(G, H) =
∞∑
:=1

(
sinh(: (1 − H))

sinh(:) �: +
sinh(:H)
sinh(:) �:

)
sinh(:G).

We recall the definitions of the hyperbolic sine and cosine functions:

sinh(G) = 4
G − 4−G

2
and cosh(G) = 4

G + 4−G
2

.

Solution. See my Homework 2 solutions. This problem is required in Homework 2. So I wrote a solution for it. �

2.6.1. Suppose 5 is 2c-periodic and integrable on any finite interval. Prove that if 0, 1 ∈ R, then∫ 1

0

5 (G) 3G =
∫ 1+2c

0+2c
5 (G) 3G =

∫ 1−2c

0−2c
5 (G) 3G.

Also prove that ∫ c

−c
5 (G + 0) 3G =

∫ c

−c
5 (G) 3G =

∫ c+0

−c+0
5 (G) 3G.

Solution. Since 5 is 2c-periodic, we have 5 (G − 2c) = 5 (G) = 5 (G + 2c). We will employ the substitution rule from first-year
calculus. If we let D = G − 2c, which implies 3D = 3G and G = D + 2c, then we obtain∫ 1

0

5 (G) 3G =
∫ 1+2c

0+2c
5 (D + 2c) 3D

=

∫ 1+2c

0+2c
5 (G + 2c) 3G

=

∫ 1+2c

0+2c
5 (G) 3G.

Similarly, if we let D = G + 2c, which implies 3D = 3G and G = D − 2c, then we obtain∫ 1

0

5 (G) 3G =
∫ 1−2c

0−2c
5 (D − 2c) 3D

=

∫ 1−2c

0−2c
5 (G − 2c) 3G

=

∫ 1+2c

0+2c
5 (G) 3G.



Now, using these integral inequalities that we proved, if we let D = G + 0, which implies 3D = 3G and G = D− 0, then we obtain∫ c

−c
5 (G + 0) 3G =

∫ c+0

−c+0
5 (D) 3D

=

∫ c+0

−c+0
5 (G) 3G.

In particular, from the first set of equalities we have∫ c+0

c

5 (G) 3G =
∫ c+0−2c

c−2c
5 (G) 3G

=

∫ −c+0

−c
5 (G) 3G,

which implies ∫ c+0

−c+0
5 (G) 3G =

∫ c

−c
5 (G) 3G +

∫ c+0

c

5 (G) 3G −
∫ −c+0

−c
5 (G) 3G

=

∫ c

−c
5 (G) 3G +

∫ −c+0

−c
5 (G) 3G −

∫ −c+0

−c
5 (G) 3G

=

∫ c

−c
5 (G) 3G,

as desired. �

2.6.2. In this exercise we show how the symmetries of a function imply certain properties of its Fourier coefficients. Let 5 be a
2c-periodic Riemann integrable function defined on R.

(a) Show that the Fourier series of the function 5 can be written as

5 (\) ∼ 5̂ (0) +
∞∑
==1

(( 5̂ (=) + 5̂ (−=)) cos(=\) + 8( 5̂ (=) − 5̂ (−=)) sin(=\)).

Solution. According to page 34 of the textbook, the Fourier series of 5 : R→ R (in exponential form) is given formally
by

5 (\) ∼
∞∑

==−∞
5̂ (=)4 2c8=\

!

where we define ! := 1 − 0 and

5̂ (=) :=
1
!

∫ 1

0

5 (\)4− 2c8=\
! 3\.

Observe that, given any 5̂ (=), the expression

ℎeven (=) :=
5̂ (=) + 5̂ (−=)

2

is an even function of = because ℎeven (=) satisfies

ℎeven (−=) =
5̂ (−=) + 5̂ (−(−=))

2

=
5̂ (−=) + 5̂ (=)

2

=
5̂ (=) + 5̂ (−=)

2
= ℎeven (=),

and the expression

ℎodd (=) :=
5̂ (=) − 5̂ (−=)

2
is odd in = because ℎodd (=) satisfies

ℎodd (−=) =
5̂ (−=) − 5̂ (−(−=))

2

=
5̂ (−=) − 5̂ (=)

2

= − 5̂ (=) − 5̂ (−=)
2

= −ℎodd (=).



Furthermore, we can write 5̂ (=) and 5̂ (−=) as a decomposition of even and odd functions

5̂ (=) = 5̂ (=) + 5̂ (−=)
2

+ 5̂ (=) − 5̂ (−=)
2

= ℎeven (=) + ℎodd (=).

and

5̂ (−=) = 5̂ (=) + 5̂ (−=)
2

− 5̂ (=) − 5̂ (−=)
2

= ℎeven (=) − ℎodd (=).

Using the formal definition of the Fourier series for ! := 2c and Euler’s formula, we have

5 (\) ∼
∞∑

==−∞
5̂ (=)48=\

= 5̂ (0)48 (0) \ +
∞∑
==1

5̂ (=)48=\ +
−1∑

==−∞
5̂ (=)48=\

= 5̂ (0) +
∞∑
==1

5̂ (=)48=\ +
∞∑
==1

5̂ (−=)48 (−=) \

= 5̂ (0) +
∞∑
==1

( 5̂ (=)48=\ + 5̂ (−=)4−8=\ )

= 5̂ (0) +
∞∑
==1

(ℎeven (=) + ℎodd (=))48=\ + (ℎeven (=) − ℎodd (=))4−8=\ )

= 5̂ (0) +
∞∑
==1

(ℎeven (=) (48=\ + 4−8=\ ) + ℎodd (=) (48=\ − 4−8=\ ))

= 5̂ (0) +
∞∑
==1

ℎeven (=) (48=\ + 4−8=\ ) +
∞∑
==1

ℎodd (=) (48=\ − 4−8=\ )

= 5̂ (0) +
∞∑
==1

2ℎeven (=)
48=\ + 4−8=\

2
+ 8

∞∑
==1

2ℎodd (=)
48=\ − 4−8=\

28

= 5̂ (0) +
∞∑
==1

2ℎeven (=) cos(=\) + 8
∞∑
==1

2ℎodd (=) sin(=\)

= 5̂ (0) +
∞∑
==1

2
5̂ (=) + 5̂ (−=)

2
cos(=\) + 8

∞∑
==1

2
5̂ (=) − 5̂ (−=)

2
sin(=\)

= 5̂ (0) +
∞∑
==1

( 5̂ (=) + 5̂ (−=)) cos(=\) + 8
∞∑
==1

( 5̂ (=) − 5̂ (−=)) sin(=\),

as desired. �

(b) Prove that if 5 is even, then 5̂ (=) = 5̂ (−=), and we get a cosine series.

Solution. Since 5 is even, we have 5 (−\) = 5 (\) for all \ ∈ R. Also recall that cos(=\) is an even function of = and
sin(=\) is odd in = for all = ∈ R, meaning we have cos(−=) = cos(=) and sin(−=) = − sin(=), respectively. Using the
formula of 5̂ (=) from part (a), we obtain

5 (−\) ∼ 5̂ (0) +
∞∑
==1

( 5̂ (=) + 5̂ (−=)) cos(−=\) + 8
∞∑
==1

( 5̂ (=) − 5̂ (−=)) sin(−=\)

= 5̂ (0) +
∞∑
==1

( 5̂ (=) + 5̂ (−=)) cos(=\) + 8
∞∑
==1

( 5̂ (=) − 5̂ (−=)) (− sin(=\))

= 5̂ (0) +
∞∑
==1

( 5̂ (=) + 5̂ (−=)) cos(=\) + 8
∞∑
==1

( 5̂ (−=) − 5̂ (=)) sin(=\).



From this and the expression of 5 (\), we obtain

5̂ (0) +
∞∑
==1

( 5̂ (=) + 5̂ (−=)) cos(=\) + 8
∞∑
==1

( 5̂ (−=) − 5̂ (=)) sin(=\)

∼ 5 (−\)
= 5 (\)

∼ 5̂ (0) +
∞∑
==1

( 5̂ (=) + 5̂ (−=)) cos(=\) + 8
∞∑
==1

( 5̂ (=) − 5̂ (−=)) sin(=\)

which algebraically simplifies to
∞∑
==1

( 5̂ (=) − 5̂ (−=)) sin(=\) ∼ 0,

We know from linear algebra that the basis of smooth functions {sin(=\)}∞
==1 ⊂ �

∞ (R) is a linearly independent set,
and so we must conclude 5̂ (=) − 5̂ (−=) = 0, or 5̂ (−=) = 5̂ (=), signifying that 5̂ (=) is an even function of =. �

(c) Prove that if 5 is odd, then 5̂ (=) = − 5̂ (−=), and we get a sine series.

Solution. Since 5 is odd, we have 5 (−\) = − 5 (\) for all \ ∈ R. Also recall that cos(=\) is an even function of = and
sin(=\) is odd in = for all = ∈ R, meaning we have cos(−=) = cos(=) and sin(−=) = − sin(=), respectively. Using the
formula of 5̂ (=) from part (a), we obtain

5 (−\) ∼ 5̂ (0) +
∞∑
==1

( 5̂ (=) + 5̂ (−=)) cos(−=\) + 8
∞∑
==1

( 5̂ (=) − 5̂ (−=)) sin(−=\)

= 5̂ (0) +
∞∑
==1

( 5̂ (=) + 5̂ (−=)) cos(=\) + 8
∞∑
==1

( 5̂ (=) − 5̂ (−=)) (− sin(=\))

= 5̂ (0) +
∞∑
==1

( 5̂ (=) + 5̂ (−=)) cos(=\) + 8
∞∑
==1

( 5̂ (−=) − 5̂ (=)) (sin(=\)).

From this and the expression of 5 (\), we obtain

5̂ (0) +
∞∑
==1

( 5̂ (=) + 5̂ (−=)) cos(=\) + 8
∞∑
==1

( 5̂ (−=) − 5̂ (=)) sin(=\)

= 5 (−\)
= − 5 (\)

∼ −
(
5̂ (0) +

∞∑
==1

( 5̂ (=) + 5̂ (−=)) cos(=\) + 8
∞∑
==1

( 5̂ (=) − 5̂ (−=)) sin(=\)
)

= − 5̂ (0) −
∞∑
==1

( 5̂ (=) + 5̂ (−=)) cos(=\) + 8
∞∑
==1

( 5̂ (−=) − 5̂ (=)) sin(=\)

which algebraically simplifies to
∞∑
==1

( 5̂ (=) + 5̂ (−=)) cos(=\) ∼ 0,

We know from linear algebra that the basis of smooth functions {cos(=\)}∞
==1 ⊂ �

∞ (R) is a linearly independent set,
and so we must conclude 5̂ (=) + 5̂ (−=) = 0, or 5̂ (−=) = − 5̂ (=), signifying that 5̂ (=) is an odd function of =. �

(d) Suppose that 5 (\ + c) = 5 (\) for all \ ∈ R. Show that 5̂ (=) = 0 for all odd =.

Solution. Since 5 (\) is 2c-periodic, we have ! := 2c, and Exercise 2.6.1 implies that the Fourier coefficient is

5̂ (=) = 1
!

∫ 0+!

0

5 (\)4− 2c8=\
! 3\

=
1

2c

∫ 0+2c

0

5 (\)4− 2c8=\
2c 3\

=
1

2c

∫ 0+2c

0

5 (\)4−8=\ 3\



for any 0 ∈ R. Also, for all odd =, which allows us to write = = 2: + 1 for any integer : , we have

48=c = 48 (2:+1) c

= 42c8:+c8

= 42c8:4c8

= (42c8):4c8

= 1: · (−1)
= −1.

Using the given assumption 5 (\ + c) = 5 (\) and our employed substitution D = \ + c, we have

5̂ (=) = 1
2c

∫ 0+c

0−c
5 (\)4−8=\ 3\

=
1

2c

∫ 0

0−c
5 (\)4−8=\ 3\ + 1

2c

∫ 0+c

0

5 (\)4−8=\ 3\

=
1

2c

∫ 0

0−c
5 (\ + c)4−8=\ 3\ + 1

2c

∫ 0+c

0

5 (\)4−8=\ 3\

=
1

2c

∫ 0+c

0

5 (D)4−8=(D−c) 3D + 1
2c

∫ 0+c

0

5 (\)4−8=\ 3\

=
1

2c

∫ 0+c

0

5 (\)4−8=(\−c) 3\ + 1
2c

∫ 0+c

0

5 (\)4−8=\ 3\

=
1

2c

∫ 0+c

0

5 (\)4−8=\48=c 3\ + 1
2c

∫ 0+c

0

5 (\)4−8=\ 3\

=
1

2c

∫ 0+c

0

5 (\)4−8=\ (48=c + 1) 3\

=
1

2c

∫ 0+c

0

5 (\)4−8=\ (−1 + 1) 3\

=
1

2c

∫ 0+c

0

5 (\)4−8=\ (0) 3\

= 0,

as desired. �

(e) Show that 5 is real-valued if and only if 5̂ (=) = 5̂ (−=) for all integers =.

Solution. Suppose 5 is real-valued; that is, assume 5 (\) = 5 (\), where 5 (\) denotes the complex conjugate of 5 (\).
Applying the usual properties of complex conjugation, we have

5̂ (=) = 1
c

∫ 0+2c

0

5 (\)4−8=\ 3\

=
1
c

∫ 0+2c

0

5 (\)4−8=\ 3\

=
1
c

∫ 0+2c

0

5 (\)4−8=\ 3\

=
1
c

∫ 0+2c

0

5 (\)48=\ 3\

=
1
c

∫ 0+2c

0

5 (\)4−8 (−=) \ 3\

= 5̂ (−=)

for all integers =.

Conversely, assume 5̂ (=) = 5̂ (−=) for all integers =. Applying the usual properties of complex conjugation and the



formal definition of a Fourier series, and employing the substitution < := −=, we have

5 (\) ∼
∞∑

==−∞
5̂ (=)48=\

=

∞∑
==−∞

5̂ (=)48=\

=

∞∑
==−∞

5̂ (=)48=\

=

∞∑
==−∞

5̂ (−=)4−8=\

=

∞∑
<=−∞

5̂ (<)48<\

∼ 5 (\),

meaning that 5 (\) and 5 (\) are equal up to a scaling factor with a Fourier coefficient. But this is enough to conclude
that 5 is real-valued. �

2.6.4. Consider the 2c-periodic odd function defined on [0, c] by 5 (\) = \ (c − \).

(a) Draw the graph of 5 .

Solution. Since we are given that the 2c-periodic odd function is only defined on [0, c], we can employ an odd extension
to obtain the resulting 2c-periodic odd function defined on [−c, c]:

5 (\) =
{
\ (c − \) if 0 ≤ \ ≤ c,
\ (c + \) if −c ≤ \ ≤ 0.

This is enough to graph one complete cycle of the 2c-periodic odd function on [−c, c].

−4 −2 2 4

−4

−2

2

4

\

5 (\)

�

(b) Compute the Fourier coefficients of 5 , and show that

5 (\) = 8
c

∑
:=1,3,5,...

sin(:\)
:3 .



Solution. If = ≠ 0, then we can apply the method of integration by parts to obtain

1
2c

∫ 0

−c
5 (\)4− 2c8=\

2c 3\ =
1

2c

∫ 0

−c
\ (c + \)4−8=\ 3\

=
1

2c8=

∫ 0

−c
\ (c + \)3 (4−8=\ )

= − 1
2c8=

(
\ (c + \)4−8=\

��0
−c −

∫ 0

−c
4−8=\3 (\ (c + \))

)
= − 1

2c8=

(
(0 − 0) −

∫ 0

−c
4−8=\ ((c + \) 3\ + \ 3 (c + \))

)
=

1
2c8=

∫ 0

−c
4−8=\ ((c + \) 3\ + \ 3\))

=
1

2c8=

∫ 0

−c
4−8=\ (c + 2\) 3\

= − 1
2c82=2

∫ 0

−c
c + 2\ 3 (4−8=\ )

=
1

2c=2

(
(c + 2\)4−8=\ |0−c −

∫ 0

−c
4−8=\3 (c + 2\)

)
=

1
2c=2

(
(c − (−c) (−1)=) − 2

∫ 0

−c
4−8=\ 3\

)
=

1
2c=2

(
c(1 + (−1)=) − 2

−8= 4
−8=\

����0
−c

)
=

1
2c=2

(
c(1 + (−1)=) − 28

=
(1 − (−1)=)

)
=

1
2c=2

(
c(1 + (−1)=) + 28

=
((−1)= − 1)

)
and

1
2c

∫ c

0
5 (\)4− 2c8=\

2c 3\ =
1

2c

∫ c

0
\ (c − \)4−8=\ 3\

=
1

2c8=

∫ c

0
\ (c − \)3 (4−8=\ )

= − 1
2c8=

(
\ (c − \)4−8=\

��c
0 −

∫ c

0
4−8=\3 (\ (c − \))

)
= − 1

2c8=

(
(0 − 0) −

∫ c

0
4−8=\ ((c − \) 3\ + \ 3 (c − \))

)
=

1
2c8=

∫ c

0
4−8=\ ((c − \) 3\ − \ 3\))

=
1

2c8=

∫ c

0
4−8=\ (c − 2\) 3\

= − 1
2c82=2

∫ c

0
c − 2\ 3 (4−8=\ )

=
1

2c=2

(
(c − 2\)4−8=\ |c0 −

∫ c

0
4−8=\3 (c − 2\)

)
=

1
2c=2

(
(−c(−1)= − c) + 2

∫ c

0
4−8=\ 3\

)
=

1
2c=2

(
−c((−1)= + 1) + 2

−8= 4
−8=\

����c
0

)
=

1
2c=2

(
−c((−1)= + 1) + 28

=
((−1)= − 1)

)
,



which imply

2= =
1

2c

∫ c

−c
5 (\)4− 2c8=\

2c 3\

=
1

2c

∫ 0

−c
5 (\)4− 2c8=\

2c 3\ + 1
2c

∫ c

0
5 (\)4− 2c8=\

2c 3\

=
1

2c=2

(
c(1 + (−1)=) + 28

=
((−1)= − 1)

)
+ 1

2c=2

(
−c((−1)= + 1) + 28

=
((−1)= − 1)

)
=

48
2c=3 ((−1)= − 1)

=
2((−1)= − 1)

c=3 8

If = = 0, then we obtain

20 =
1

2c

∫ c

−c
5 (\)4−

2c8 (0) \
2c 3\

=
1

2c

∫ c

−c
5 (\) 3\

=
1

2c

∫ 0

−c
\ (c + \) 3\ + 1

2c

∫ c

0
\ (c − \) 3\

=
1

2c

(
c

∫ 0

−c
\ 3\ +

∫ 0

−c
\2 3\

)
+ 1

2c

(
c

∫ c

0
\ 3\ −

∫ c

0
\2 3\

)
=

1
2c

(
c

2
\2

���0
−c
+ 1

3
\3

����0
−c

)
+ 1

2c

(
c

2
\2

���c
0
− 1

3
\3

����c
0

)
=

1
2c

(
−c

3

2
+ c

3

3

)
+ 1

2c

(
c3

2
− c

3

3

)
= 0.

So the Fourier series is

5 (\) =
∞∑

==−∞
2=4

2c8=\
2c

= 204
−8 (0) \ +

∑
=≠0

2=4
8=\

= 0 +
∑
=≠0

2((−1)= − 1)
c=3 848=\

=
∑
=≠0

2((−1)= − 1)
c=3 848=\

=

−1∑
==−∞

2((−1)= − 1)
c=3 848=\ +

∞∑
==1

2((−1)= − 1)
c=3 848=\

=

∞∑
==1

(−1)−= − 1
c(−=)3

848 (−=) \ +
∞∑
==1

2((−1)= − 1)
c=3 848=\

=

∞∑
==1

−2((−1)= − 1)
c=3 84−8=\ +

∞∑
==1

2((−1)= − 1)
c=3 848=\

=

∞∑
==1

2((−1)= − 1)
c=3 8(48=\ − 4−8=\ )

=

∞∑
==1

−2
2((−1)= − 1)

c=3

48=\ − 4−8=\
28

=
4
c

∞∑
==1

1 − (−1)=
=3 sin(=\)

=
4
c

∑
==1,3,5,...

2
=3 sin(=\)

=
8
c

∑
==1,3,5,...

sin(=\)
=3 ,



as desired. �

2.6.5. On the interval [−c, c], consider the function

5 (\) =
{

0 if |\ | > X,
1 − |\ |

X
if |\ | ≤ X.

Thus the graph of 5 has the shape of a triangular tent. Show that

5 (\) = X

2c
+ 2

∞∑
==1

1 − cos(=X)
=2cX

cos(=\).

Solution. If = ≠ 0, then we have

2= =
1

2c

∫ c

−c
5 (\)4− 2c8=\

2c 3\

=
1

2c

(∫ −X

−c
04−8=\ 3\ +

∫ X

−X

(
1 − |\ |

X

)
4−8=\ 3\ +

∫ c

X

04−8=\ 3\
)

=
1

2c

∫ X

−X

(
1 − |\ |

X

)
4−8=\ 3\

=
1

2c

(∫ 0

−X

(
1 + \

X

)
4−8=\ 3\ +

∫ X

0

(
1 − \

X

)
4−8=\ 3\

)
=

1
2c

((
− 1
8=

(
1 + \

X

)
4−8=\

����0
−X
+ 1
8=

∫ 0

−X
4−8=\ 3\

)
+

(
− 1
8=

(
1 − \

X

)
4−8=\

����X
0
− 1
8=

∫ X

0
4−8=\ 3\

))
=

1
2c

((
− 1
8=
+ 1
8=X

∫ 0

−X
4−8=\ 3\

)
+

(
1
8=
− 1
8=X

∫ X

0
4−8=\ 3\

))
=

1
2c

(
1
8=X

∫ 0

−X
4−8=\ 3\ − 1

8=X

∫ X

0
4−8=\ 3\

)
=

1
2c

(
− 1
82=2X

4−8=\
����0
−X
− 1
82=2X

4−8=\
����X
0

)
=

1
2c=2X

((1 − 48=X) − (4−8=X − 1))

=
2 − 48=X − 4−8=X

2c=2X

=
2

2c=2X
− 1
c=2X

48=X + 4−8=X
2

=
1

c=2X
− cos(=X)

c=2X

=
1 − cos(=X)

c=2X
.

If = = 0, then we have

20 =
1

2c

∫ c

−c
5 (\)4−

2c8 (0) \
2c 3\

=
1

2c

∫ c

−c
5 (\) 3\

=
1

2c

(∫ −X

−c
0 3\ +

∫ X

−X
1 − |\ |

X
3\ +

∫ c

X

0 3\
)

=
1

2c

∫ X

−X
1 − |\ |

X
3\

=
1

2c

(
1
2
(2X) (1)

)
=
X

2c
.



So the Fourier series is

5 (\) =
∞∑

==−∞
2=4

2c8=\
2c

=

∞∑
==−∞

2=4
8=\

= 204
8 (0) \ +

∑
=≠0

2=4
8=\

=
X

2c
+

∑
=≠0

1 − cos(=X)
c=2X

48=\

=
X

2c
+
−1∑

==−∞

1 − cos(=X)
c=2X

48=\ +
∞∑
==1

1 − cos(=X)
c=2X

48=\

=
X

2c
+
∞∑
==1

1 − cos(−=X)
c(−=)2X

48 (−=) \ +
∞∑
==1

1 − cos(=X)
c=2X

48=\

=
X

2c
+
∞∑
==1

1 − cos(=X)
c=2X

4−8=\ +
∞∑
==1

1 − cos(=X)
c=2X

48=\

=
X

2c
+ 2

∞∑
==1

1 − cos(=X)
c=2X

48=\ − 4−8=\
2

=
X

2c
+ 2

∞∑
==1

1 − cos(=X)
c=2X

cos(=\),

as desired. �

2.6.6. Let 5 be the function defined on [−c, c] by 5 (\) = |\ |.

(a) Draw the graph of 5 .

Solution.

−4 −2 2 4

−4

−2

2

4

\

5 (\)

�

(b) Calculate the Fourier coefficients of 5 , and show that

5̂ (=) =
{
c
2 if = = 0,
−1+(−1)=
c=2 if = ≠ 0.



Solution. If = ≠ 0, then we have

2= =
1

2c

∫ c

−c
5 (\)4− 2c8=\

2c 3\

=
1

2c

∫ c

−c
|\ |4−8=\ 3\

=
1

2c

(∫ 0

−c
−\4−8=\ 3\ +

∫ c

0
\4−8=\ 3\

)
=

1
2c

((
1
8=
\4−8=\

����0
−c
− 1
8=

∫ 0

−c
4−8=\ 3\

)
+

(
− 1
8=
\4−8=\

����c
0
+ 1
8=

∫ c

0
4−8=\ 3\

))
=

1
2c

((
1
8=
(0 + c(−1)=) + 1

82=2 4
−8=\

����0
−c

)
+

(
− 1
8=
(c(−1)= − 0) − 1

82=2 4
−8=\

����c
0

))
=

1
2c

(
− 1
=2 4

−8=\
����0
−c
+ 1
=2 4

−8=\
����c
0

)
=

1
2c=2 (−(1 − (−1)=) + ((−1)= − 1))

=
(−1)= − 1
c=2 .

If = = 0, then we have

20 =
1

2c

∫ c

−c
5 (\)4−

2c8 (0) \
2c 3\

=
1

2c

∫ c

−c
|\ | 3\

=
1

2c

(∫ 0

−c
−\ 3\ +

∫ c

0
\ 3\

)
=

1
2c

(
c2

2
+ c

2

2

)
=
c

2
.

So the Fourier coefficient is

5̂ (=) = 2= =
{
−1+(−1)=
c=2 if = ≠ 0,

c
2 if = = 0

for all integers =. �

(c) What is the Fourier series of 5 in terms of sines and cosines?

Solution. The exponential form of the Fourier series is

5 (\) =
∞∑

==−∞
2=4

2c8=\
2c

= 20 +
∑
=≠0

2=4
8=\

=
c

2
+

∑
=≠0

−1 + (−1)=
c=2 48=\ .



Using the exponential form, we obtain

5 (\) = c

2
+

∑
=≠0

−1 + (−1)=
c=2 48=\

=
c

2
+
−1∑

==−∞

−1 + (−1)=
c=2 48=\ +

∞∑
==1

−1 + (−1)=
c=2 48=\

=
c

2
+
∞∑
==1

−1 + (−1)−=
c(−=)2

48 (−=) \ +
∞∑
==1

−1 + (−1)=
c=2 48=\

=
c

2
+ 2
c

∞∑
==1

−1 + (−1)=
=2

48=\ + 4−8=\
2

=
c

2
+ 2
c

∞∑
==1

−1 + (−1)=
=2 cos(\)

=
c

2
− 4
c

∑
==1,3,5,...

1
=2 cos(\),

which is the Fourier series in its sine-cosine form. �

(d) Taking \ = 0, prove that ∑
==1,3,5,...

1
=2 =

c2

8
and

∞∑
==1

1
=2 =

c2

6
.

Solution. At \ = 0, we obtain

0 = |0|
= 5 (0)

=
c

2
− 4
c

∑
==1,3,5,...

1
=2 cos(0)

=
c

2
− 4
c

∑
==1,3,5,...

1
=2 ,

which is equivalent to ∑
==1,3,5,...

1
=2 =

c2

8
.

Furthermore, we obtain

∞∑
==1

1
=2 =

∑
==1,3,5,...

1
=2 +

∑
==2,4,6,...

1
=2

=
c2

8
+
∞∑
==1

1
(2=)2

=
c2

8
+ 1

4

∞∑
==1

1
=2

which is equivalent to
∞∑
==1

1
=2 =

c2

6
,

as desired. �

2.6.9. Let 5 (G) = j[0,1] (G) be the characteristic function of the interval [0, 1] ⊂ [−c, c], that is,

j[0,1] (G) =
{

1 if G ∈ [0, 1],
0 otherwise.

(a) Show that the Fourier series of 5 is given by

5 (G) ∼ 1 − 0
2c
+

∑
=≠0

4−8=0 − 4−8=1
2c8=

48=G .

The sum extends over all positive and negative integers excluding 0.



Solution. If = ≠ 0, then we have

2= =
1

2c

∫ c

−c
5 (G)4− 2c8=G

2c 3G

=
1

2c

∫ c

−c
j[0,1] (G)4−8=G 3G

=
1

2c

(∫ 0

−c
04−8=G 3G +

∫ 1

0

14−8=G 3G +
∫ c

1

04−8=G 3G
)

=
1

2c

∫ 1

0

4−8=G 3G

= − 1
2c8=

4−8=G
����1
0

=
4−8=0 − 4−8=1

2c8=
.

If = = 0, then we have

20 =
1

2c

∫ c

−c
5 (G)4−

2c8 (0)G
2c 3G

=
1

2c

∫ c

−c
j[0,1] (G) 3G

=
1

2c

(∫ 0

−c
j[0,1] (G) 3G +

∫ 1

0

j[0,1] (G) 3G +
∫ c

1

j[0,1] (G) 3G
)

=
1

2c

(∫ 0

−c
0 3G +

∫ 1

0

1 3G +
∫ c

1

0 3G
)

=
1

2c
(0 + (1 − 0) + 0)

=
1 − 0

2c
.

So the Fourier series of 5 is given by

5 (G) ∼
∞∑

==−∞
2=4

2c8=G
2c

=

∞∑
==−∞

2=4
8=G

= 204
8=(0) +

∞∑
=≠0

2=4
8=G

=
1 − 0

2c
+

∑
=≠0

4−8=0 − 4−8=1
2c8=

48=G ,

as desired. �

(b) Show that if 0 ≠ −c or 1 ≠ c and 0 ≠ 1, then the Fourier series does not converge absolutely for any G. [Hint: It suffices
to prove that for many values of = one has | sin(=\0) | ≥ 2 > 0 where \0 =

1−0
2 .]



Solution. We have

|4−8=0 − 4−8=1 | = |4−8=1 (4−8=048=1 − 1) |
= |4−8=1 | |4−8=048=1 − 1|
= 1 · |4−8=0+8=1 − 1|
= |48=(1−0) − 1|
= | cos(=(1 − 0)) + 8 sin(=(1 − 0)) − 1|

=
√
(cos(=(1 − 0)) − 1)2 + (sin(=(1 − 0)))2

=

√
cos2 (=(1 − 0)) − 2 cos(=(1 − 0)) + 1 + sin2 (=(1 − 0))

=
√

1 − 2 cos(=(1 − 0)) + 1

=
√

2 − 2 cos(2=\0)

= 2

�����±
√

1 − cos(2=\0)
2

�����
= 2| sin(=\0) |,

Since we assume 0 ≠ −c or 1 ≠ c and 0 ≠ 1, it follows that the function 5 (G) = j[0,1] (G) is discontinuous on [−c, c].
Since the Fourier series must equal a discontinuous function, we must have 48=0 − 4−8=1 ≠ 0 (otherwise, 5 (G) ∼ 1−0

2
would be a constant function, which is of course continuous), which implies |48=0 − 4−8=1 | > 0. In fact, the above
equality we calculated implies

| sin(=\0) | =
|4−8=0 − 4−8=1 |

2
> 0

for all = ≠ 0, and so there exists 2 > 0 that satisfies | sin(=\0) | ≥ 2 for many values of = on [−c, c]. So we conclude

∞∑
==1

���� 4−8=0 − 4−8=12c8=
48=G

���� = ∞∑
==1

|4−8=0 − 4−8=1 |
|2c8=| |48=G |

=

∞∑
==1

2| sin(=\0) |
2c=

· 1

=

∞∑
==1

| sin(=\0) |
c=

≥
∑

many = ≥ 1

2

c=

=
2

c

∑
many = ≥ 1

1
=

= ∞,

implying that the Fourier series of 5 does not converge absolutely. �

(c) However, prove that the Fourier series converges at every point G. What happens if 0 = c or 1 = −c?



Solution. We can write∑
=≠0

4−8=0 − 4−8=1
2c8=

48=G =

−1∑
==−∞

4−8=0 − 4−8=1
2c8=

48=G +
∞∑
==1

4−8=0 − 4−8=1
2c8=

48=G

=

∞∑
==1

4−8 (−=)0 − 4−8 (−=)1
2c8(−=) 48 (−=)G +

∞∑
==1

4−8=0 − 4−8=1
2c8=

48=G

=

∞∑
==1

− 4
8=0 − 48=1

2c8=
4−8=G +

∞∑
==1

4−8=0 − 4−8=1
2c8=

48=G

=

∞∑
==1

(
4−8=0 − 4−8=1

2c8=
48=G − 4

8=0 − 48=1
2c8=

4−8=G
)

=

∞∑
==1

(
48=(G−0) − 48=(G−1)

2c8=
− 4
−8=(G−0) − 4−8=(G−1)

2c8=

)
=

1
c

∞∑
==1

1
=

(
48=(G−0) − 4−8=(G−0)

28
− 4

8=(G−1) − 4−8=(G−1)
28

)
=

1
c

∞∑
==1

sin(=(G − 0)) − sin(=(G − 1))
=

=
1
c

∞∑
==1

0=1=,

provided that we define

0= :=
1
=
,

1= := sin(=(G − 0)) − sin(=(G − 1)).

Observe that the sequence {0=}∞==1 decreases monotonically to 0, whereas {1=}∞==1 is bounded, which implies����� #∑
==1

1=

����� ≤ #∑
==1

|1= |

=

#∑
==1

| sin(=(G − 0)) − sin(=(G − 1)) |

≤
#∑
==1

| sin(=(G − 0)) | + | sin(=(G − 1)) |

≤
#∑
==1

1 + 1

=

#∑
==1

2

= 2#.

By Dirichlet’s test (see Exercise 2.6.7(b) of the textbook), we conclude that∑
=≠0

4−8=0 − 4−8=1
2c8=

48=G =
1
c

∞∑
==1

0=1=

converges for any G ∈ R. This implies that the Fourier series of 5 converges for any G ∈ R. �


