MATH 147 discussion Ryan Ta
University of California, Riverside Winter 2021

Solutions to assigned homework problems from Fourier Analysis: An Introduction by Elias Stein and Rami Sakarchi

Homework 1
e Sect. 1.3, pp. 23-27; 4, 5,7, 9 (optional), 10.
e Sect. 1.4, p. 26: 1 (optional)
e Sect. 2.6, pp. 58-60: 1,2,4,5,6,9

1.3.4. For z € C, we define the complex exponential by
(e8] Zn
-
€= Z n!’
n=0

(a) Prove that the above definition makes sense, by showing that the series converges for every complex number z. Moreover,
show that the convergence is uniform on every bounded subset of C.

Solution. To show that the series expansion of the complex exponential is convergent, we will use the ratio test from
first-year calculus. Set a,(z) := %;. Then we have the ratio

n+l

an+1(2) _ (fm)!
an(z) ;_7
Zn+1 n!
"+
__
(n+1)°
which implies its limit
lim an+1(Z) _ |Z|
n—o | a,(z) n—-oo (n+1)
=0.

So the series is convergent.

Next, we will show that converge is uniform on every bounded subset of C. Every bounded subset of C is contained
in the disk Dg = {z € C | |z| < R}. Let S, (2) = X} i—k, and S(2) == X, % Then our goal is to show that
Sk (z) converges pointwise to S(z). Observe that factorials grow faster than exponentials; that is, given R > 0 we have
k! > (2R)* for all large positive integers k. One can justify that using a proof by induction. Observe that, if we never
assumed that the subset of C is not bounded, as seen in part (a), then the disk containing the unbounded subset must
have an infinite radius, i.e. R = oo, which is all of C. But this implies k! > (2R)* = oo, which would be a contradiction
because in reality we have k! < oo for all positive integers k. With all that said, for any integers m, n with the assumption



m > n without loss of generality, we use the triangle inequality and the geometric partial sum formula to obtain
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Send m — oo of our result to conclude
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where we used 2" > n for all positive integers n (one can prove this using a proof by induction). Finally, let € > 0 be
given, and choose N > é If n > N, then we have

1S4() = S(2)] <~

n
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N
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for all z € Dg. Therefore, S, (z) converges uniformly to S(z) on Dg, which implies the same result on any bounded set
of C. O

(b) If z1, 7o are two complex numbers, prove that e*! e% = ¢%*%2, [Hint: Use the binomial theorem to expand (z; + z2)", as
well as the formula for the binomial coefficients.]

Solution. Using the binomial theorem
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we obtain
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as desired. For complete clarity of our proof, we will need to justify the|Cauchy product
0o 0o Il _m © n k n—k
D2 Tt = 2 T
Im! I(n - k)!
1=0 m=0 Hm! n=0 k=0 k(n — k)!
Credit for the following goes to|this question on Mathematics StackExchangel The double sum of the left-hand side
SN A% N (A%, A% L 4% 4% o (A% A% an | as
— = —t—+——+ —=4... | = + + + +
ZZI! ! Z nor o2t 13! Z Olm!  1lm! 2!m! 3!m!
1=0 m=0 1=0 m=0
This is a sum of all terms along any row /. This is a sum of all terms along any column .

runs down all the rows OR all the columns of the following array:

m=0 m=1 m=2 m=3
202 20z 2022 223
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Similarly, the double sum of the right-hand side
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https://en.wikipedia.org/wiki/Cauchy_product
https://math.stackexchange.com/questions/414061/prove-exy-exey-by-using-exponential-series

Notice that the corresponding entries of our two arrays are equal to each other. This implies that our double-sums of
the left- and right-hand sides are equal, as we claimed, which completes our justification of the Cauchy product. O

(c) Show that if z is purely imaginary, that is, z = iy with y € R, then e’Y = cos(y) +isin(y). This is Euler’s identity. [Hint:
Use power series. |

Solution. Using power series expansions

eiy — (ly)n
' 9
n=0 n
sl (_l)nyZn
cos(y) = )
24 oy

1)" 2n+1

(=
sin(y) = Z Qn+ 1)

we obtain
iy N0 @)
e” _;0 n!
S )" (iy)*!
Z 2n)! +Z 2n+1)!
~ sl (ZZ)nyZn (ZZ)n 2n+l1
";) (2n)! Z (2n+1)!
B 0 ( l)nyZn ] (_1)ny2n+l
_;) 2n)! +’; 2n+1D)!
= cos(y) +isin(y),
as desired. O

(d) More generally, _
e Y = e*(cos(y) +isin(y))

whenever x, y € R, and show that

le =e
Solution. We have
ex+iy — exeiy

= e*(cos(y) +isin(y))

and
|ex+iy| — Iexeiy|

= [e*(cos(y) +isin(y))]

= |e*[| cos(y) +isin(y)]

= ¥ yJcos2(y) +sin®(y)

=e*-1

= ex’
as desired. O

(e) Prove that ¢* = 1 if and only if z = 27ki for some integer k.

Solution. We can always write z = x + iy, which means

s = €X+ly

e*(cos(y) +isin(y))
e” cos(y) +ie* sin(y).

This will be useful in proving our following implications.

Assume e¢* =1 =1 +i0. Then we have
1+i0 = e" cos(y) +ie*sin(y).
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Equate the real and imaginary components of a complex number to conclude the system of equations
e*cos(y) =1,
e*sin(y) = 0.

Since we know e¢* > 0 for all x € R, we must have sin(y) = 0, or equivalently y = 27k for any integer k. Furthermore,
knowing cos(2nk) = 1, we also obtain

e* = e cos(2rk)
e”* cos(y)
1

has the solution x = 0 only. We conclude

z=x+iy
=0+ 2nki
= 2nki,
as desired.
Conversely, assume z = 27ki. Then by Euler’s formula we have

% = eanl

= cos(2mk) + i sin(27k)
=1+i0
=1,
as desired. m]

Show that every complex number z = x + iy can be written in the form z = re‘?, where r is unique and in the range
0 <r < oo, and @ € R is unique up to an integer multiple of 2. Check that

r = |z| and @ = arctan (X)
X

whenever these formulas make sense.
Solution. We can write x = r cos(6) and y = r sin(@). By Euler’s formula, we have

Z=x+Iiy
=rcos(#) +irsin(0)
=r(cos(#) +isin(0))

=re'?,

as desired. O
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2

In particular, i = ¢ . What is the geometric meaning of multiplying a complex number by i? Or by ¢? for any 6 € R?

Solution. We have

=0+i-1
=i,
as desired. Multiplying a complex number by e’? rotates the point along a circle in C. O
Given 6 € R, show that _ _ . _
cos(0) = M and sin(0) = M

2i
These are also called Euler’s identities.

Solution. By Euler’s formula, we have

elf 4710 _ (cos(8) +isin(0)) + (cos(—0) + i sin(-0))

2 2
_ (cos(0) +isin(0)) + (cos(6) —isin(6))
- 2
_ 2cos(6)
i

= cos(0)



and
el — it _ (cos(6) +isin(6)) — (cos(-6) +isin(-6))

2i 2
_ (cos(0) +isin()) — (cos(8) —isin(H))
B 2i
_ 2isin(6)
2
= sin(0),
as desired. O

(i) Use the complex exponential to derive trigonometric identities such as
cos(0 + ) = cos(8) cos(?) — sin(0) sin(F),
and then show that
2sin(8) sin(¢) = cos(6 — ¢) — cos(6 + @),
2 sin(6) cos(p) = sin(6 + @) + sin(f — ).

This calculation connects the solution given by d’Alembert in terms of traveling waves and the solution in terms of
superposition of standing waves.

Solution. We have

cos( +#) +isin(f + &) = 'O+
— ¢i0pi?
= (cos(6) +isin(6))(cos(F) +isin(19))

= cos(0) cos(?) — sin(8) sin(F) + i(cos(H) sin(}) + sin(f) cos(})),
from which we can equate the real and imaginary components to obtain

cos(0 + ) = cos(0) cos(?) — sin(0) sin(F),
sin(0 + ) = cos(0) sin(¥#) + sin(0) cos(}),

respectively. Furthermore, we obtain

sin(@ + ¢) +sin(6 — @) = (cos(0) sin(¢) + sin(#) cos(p)) + (cos() sin(—¢) + sin() cos(—¢))
= (cos(0) sin(¢) + sin(0) cos(¢)) + (- cos(0) sin(p) + sin(0) cos(y))

= 2sin(0) cos(p)
and
cos(0 — ¢) — cos(8 + ¢) = (cos(0) cos(—¢) — sin(0) sin(—¢)) — (cos(d) cos(p) — sin(H) sin(p))
= (cos(0) cos(¢) + sin(0) sin(p)) — (cos(0) cos(¢) — sin(0) sin(p))
= 2sin(0) sin(¢y),
as desired. O

1.3.5. Verify that f(x) = e~ is periodic with period 27 and that

i neinx d.x — 1 lfn 209
2n J_» 0 ifn+0.

Use this fact to prove that if n,m > 1 we have

1 4 1 ifn=m
— cos cos dx = ’
o [,, (nx) cos(mx) dx {o if n % m.

and similarly
ifn=m,

1 4 1
— / sin(nx) sin(mx) dx = ]
2 J_x 0 ifn#m.

Finally, show that
1 e
— / sin(nx) cos(mx) dx =0
21 J_»

for any positive integers n, m. [Hint: Calculate e'*e™" + ' e'™* and ' e — e '™ ]



Solution. For all integers k, we have

f(x+2ﬂ'k) — ein(x+27rk)

— emx627rk1

=1
= /().

which means f is periodic with period 27. Next, we have, if n # 0,
T inx
: e
/ ell’lxdx — -
- in
in

(=1 = (=1)"

mn

/g

and, if n = O,m

thereby establishing
/ﬂei”xdxz 21 ?fn:O,
- 0 ifn=+0.

2 cos(nx) cos(mx) + i(2 sin(nx) cos(mx)) = 2(cos(nx) + i sin(nx)) cos(mx)

Now, following the given hint, we have

elmx + e—lmx
2

— einX(eimx +e—imx)

— zeinx

— emxeﬂmx + emxelmx

— ei(n—m)x +ei(n+m)x

and

2 sin(nx) sin(mx) + i(=2 cos(nx) sin(mx)) = —2i(cos(nx) + i sin(nx)) sin(mx)

imx —imx
S PP "
2i
— ean(e—zmx _ elmX)
— X pmimx _ ,inx ,imx

+ei(n—m)x _ ei(n+m)x.

Add and subtract these two previous equations and divide both sides by 2 to obtain, respectively
(cos(nx) cos(mx) + sin(nx) sin(mx)) + i(sin(nx) cos(mx) — cos(nx) sin(mx)) = ' "M
(cos(nx) cos(mx) — sin(nx) sin(mx)) + i (sin(nx) cos(mx) + cos(nx) sin(mx)) = ' +m*
Add and subtract these two previous equations and divide both sides by 2 to obtain, respectively
pi(n=m)x 4 pi(n+m)x

2 b}

ei(n—m)x _ ei(n+m)x

2

cos(nx) cos(mx) + i sin(nx) cos(mx) =

sin(nx) sin(mx) — i sin(nx) cos(mx) =



Integrate over [—, ] both sides of our latest two equations to conclude

2 ifn—-m=0,
0 ifn—-m=#0,

b
T -7

/ﬂ cos(nx) cos(mx) dx +i / i sin(nx) cos(mx) dx = {

2 ifn—-m=0,
0 ifn—-m=#0,

/ﬂ sin(nx) sin(mx) dx +i / i sin(nx) cos(mx) dx = {

from which we can equate the real and imaginary components of our last two equations to conclude simultaneously

1 4 1 ifn=m,
— / cos(nx) cos(mx) dx = 1 n=m
2 J_» 0 ifn+#m,

1 4 1 ifn=m,
— sin sin dx =
2 [,, (nx) sin(mx) {0 ifn#m,

1 V3
— / sin(nx) cos(mx) dx = 0,
2r J_»
as desired. O

1.3.7. Show that if a and b are real, then one can write
acos(ct) + bsin(ct) = Acos(ct — @),

where A = Va2 + b2, and ¢ is chosen so that

cos(¢) = — % and sin(g) = —2—.
Va2 + b2 Va2 + b2
Solution. Note that with the notation given in the problem we can also write
cos(¢) = .
sin(¢) = %
We have
Acos(ct —p) = Aw
A et eren
= %((cos(ct) +isin(ct))(cos(—¢) +isin(—¢))
+ (cos(—ct) +isin(—ct))(cos(p) +isin(y)))
= %((COS(ct) +isin(ct))(cos(p) —isin(¢))
+ (cos(ct) —isin(cr))(cos(¢) —isin(¢p)))
= %‘((COS(CI) cos(p) +sin(ct) sin(g)) +i(= cos(cr) sin(g) + sin(ct) cos(¢))
+ (cos(ct) cos(¢) + sin(ct) sin(yp)) + i(cos(ct) sin(p) — sin(ct) cos(¢)))
= %(2 cos(ct) cos(p) + 2 sin(ct) sin(g)))
= A cos(ct) cos(¢p) + Asin(ct) sin(¢p)
= Acos(cr) 5 + A sin(ct)%
= acos(ct) + bsin(ct),
as desired. ]

1.3.9. In the case of the plucked string, use the formula for the Fourier sine coefficients to show that

_ 2h sin(mp)

" mp(r-p)

For what position of p are the second, fourth, ... harmonics missing? For what position of p are the third, sixth, ... harmonics
missing?

m



Solution. Page 17 of the Stein and Shakarchi textbook gives the function

xh :
1 if0<x<p,
x)=1</4
F( {hnﬂf_x) ifp<x<m,
p

which serves as a simplified model of a plucked string. Using the formula for the Fourier sine coefficients, we obtain

Ay = %Aﬂf(x) sin(mx) dx

= % (/op f(x) sin(mx) dx +/ﬂ f(x) sin(mx) dx)

P
2 P xh T h(r -

=— (/ n sin(mx) dx +/ M sin(mx) dx)
t\Jo P P n—p
2h [P 2h 7

= — x sin(mx) dx + ———— / (7 = x) sin(mx) dx.
np Jo n(m—=p)Jp

for all positive integers m. We employ the method of integration by parts to obtain

P 1 p
/ x sin(mx) dx = —Ex cos(mx)

1 /P
+ — / cos(mx) dx
m Jo

0 0
pcos(mp) —0cos(m(0)) 1 . p
=- +— sin(mx)
m m 0
_.p cos(mp) . sin(mp) — sin(m(0))
B m m?
_ pcos(mp) N sin(mp)
B m m?
and
/g ) l T 1 /g
/ (m = x) sin(mx) dx = —— (7 — x) cos(mx)| — — / cos(mx) dx
P m p MJp
(m = m)cos(mm) — (x — p)cos(mp) 1 . g
=- - = sin(mx)
m m »
3 _Ocos(mﬁ) — (= p) cos(mp) B sin(mmn) — sin(mp)
B m m2
_ (m=p)cos(mp) 0—sin(mp)
B m m?
_ (m—p)cos(mp) N sin(mp)
- m m?
So we have
2h [P 2h T
Ap = — / x sin(mx) dx + —— / (m — x) sin(mx) dx
mp Jo n(r=p)Jp
_2h( p cos(mp) N sin(mp) N 2h (m = p) cos(mp) N sin(mp)
" oap m m? n(x—p) m m?
__2h cos(mp) N 2hsin(mp) N 2hcos(mp)  2hsin(mp)
B m am?p m am?(n — p)
_ 2hsin(mp) N 2hsin(mp)
~ m?p am?(n - p)
2hsin(mp) (1 1 )
= —+
rm? p mT—p

_ 2hsin(mp) n

~ mm? p(m-p)

_ 2h sin(mp)

~ m? p(m~p)’
as desired. The second, fourth, ... harmonics are missing when we have A,, = 0 for all positive integers n. The formula
becomes

_ 2h sin(2np)

“an2p(r-p)’

So the second, fourth, ... harmonics are missing whenever we have sin(2np) = 0, or equivalently p = 7. Similarly, the third,
sixth, ... harmonics are missing when we have A3, = 0 for all positive integers n. The formula becomes

_2h sin(3np)
S92 p(r-p)

2n

A3n



So the second, fourth, ... harmonics are missing whenever we have sin(3np) = 0, or equivalently p = % |

1.3.10. Show that the expression of the Laplacian

9 0?
[R— + —_—
0xr  9y?

is given in polar coordinates by the formula

02 10 1 82
A = — 4+ —— —_ .
or2  ror r?206?
Also, prove that

2 2 2

1

2

au
96

L |9
dy

8_14
or

a_u
Ox

Solution. We know already that the Laplacian is defined in the Cartesian coordinate system by

2 2

Au = (9_+6_ u
dx2  0y?
Cox2 9y’

To compute the Laplace equation Au = 0 in the polar coordinate system, we need to derive the equivalent expression of the
Laplacian in polar coordinates. Let

x =x(r,0) =rcos(6),
y =y(r,0) =rsin(0),
u(x,y) =u(r,0) =u(x(r,0),y(r,0)),

the first two of which imply

6 =tan”! (X) .
X

We obtain first partial derivatives

dy 0 2 +y2

-2 (o ()~

and the second partial derivatives

0% 0 X a y2 3 y?
ox> ox\ 22| 24y Y
Pr_of vy \__x _2
a2y \ \Z+y2]  (24yr)i Y
P0_ 9 ( vy \__ 2y _ 2y
0xr  Ox\ x2+y? (x2 + y2)2 r4’
4%0 0 by _ Xy 2y
(9y2 - dy x2 +y2 - (xz +y2)2 T4

So, by the multivariable chain rule, we obtain the first partial derivatives

ou 0
g—a(u(h@))
_ Ou Br+6u60
© 9rdx 909y
Jux Ouy

orr 00r?



and

T = 3 (o)
_ouor oo
or dy 000y
_Ouy Odux
drr  00r?
and the second partial derivatives
2 2
o = (o)
(i i)
ox \or 0x 06 dx
(o iy, o (i)
Ox \dr 0x 0x|) Ox \ 06 ox

_ (2w (or\', w0 (96)° ou o
o2 \ox) " arox2| 062 \ox] T 06 ox2
3 8%u x* N du y? N 0%uy?>  Oulxy
o2t arrd 9024 00 4

and

u 92

a2 "
_ 0 (uor oude
~ 9y \ordy 069y
_ 0 (udry, 0 duds
9y \oray|  dy 96dy

u

y
_(Pu(or\, oudPr| (9w (06)* dud
“lorz\ay] " oray? 862 \dy) "~ 960 9y?
N du x* N d%u x? B Ou 2xy
orrr?2  drrd 802rt 90 rt’

Therefore, the Laplacian in polar coordinates is

0u  0%u
—_— + —_—
ox2  0y?
_ 0%u x* N ouy* 0%uy* Oulxy 0%u y* N Au x? N 0%u x>  Ou2xy
\or2r2 a3 9024 90 or2r2  Orrd 06%2r* 00 rt
B Pux’>+y> ux*+y* Pux®+y?
T ar2 2 or r3 062 4
urt durt 0*ur?
=t ——=+——
or2r2  orrd 06024
_62u+16u+ 1 du
o2 ror r2o6
0? .\ 10 . 10
= — _— —— | u,
or2  rdr 1200

Au =

and so the Laplacian in polar coordinates is given by

Ao 9? L1014
Tor2  ror r206°



Also, we obtain

2 2 2 2

ou ou Jux Ouy uy Oux

— +|— === —= — 4 — —

Ox dy orr 00r? orr  900r?
3 é)u2x2_ ou|xy 8u2y2 . 8u2y2 ou xy+6u2x2
“Mlor| r2 or|r3 00| r* ar| r? or|r3 00| r*
: %zxz+y2 6_142x2+y2
| or r2 00 ré
_ 6u2r2+6u2r2
“|or| 12 06| r*
a c')u2+ 1 |oul
Clor| o r2|oe]

as desired. O

1.4.1. We look for a solution of the steady-state heat equation Au = 0 in the rectangle R = {(x,y) : 0 < x < 7,0 < y < 1} that
vanishes on the vertical sides of R, and so that

u(x,0) = fo(x) and u(x, 1) = fi(x),

where fj and f] are initial data which fix the temperature distribution on the horizontal sides of the rectangle. Use separation
of variables to show that if f; and f; have Fourier expansions

fo(x) = Z Ay sin(kx) and £ (x) = Z By sin(kx)
k=1 k=1

then

u(x.y) = i (sinh(k(l - y))A . sinh(ky)

sinh(k) %7 Tsinh(k) B")Si“h(kx)‘

k=1
We recall the definitions of the hyperbolic sine and cosine functions:

er—e™ X +e ™
sinh(x) = ———— and cosh(x) =
2 2
Solution. See my Homework 2 solutions. This problem is required in Homework 2. So I wrote a solution for it. O

2.6.1. Suppose f is 2r-periodic and integrable on any finite interval. Prove that if a, b € R, then

/ab f(x)dx = /af:ﬂ fx)dx = /a:_:ﬂ £(x) dx.

/:f(x+a)dx:/:f(x)dx:/:::f(x)dx.

Solution. Since f is 2m-periodic, we have f(x —2x) = f(x) = f(x+2m). We will employ the substitution rule from first-year
calculus. If we let u = x — 27, which implies du = dx and x = u + 27, then we obtain

Also prove that

b b+2n
/ f(x)dx = f(u+2r)du

a+2n

b+2n
=/ f(x+2m) dx

+27

_ /ab+2n o

+27
Similarly, if we let u = x + 2z, which implies du = dx and x = u — 2x, then we obtain

/abf(x)dxz/ab_znf(u—Zﬂ)du

-2

b-2rn
=/ f(x=2r)dx

-2r

= /a . £(x) dx.

+27



2.6.2.

Now, using these integral inequalities that we proved, if we let u = x +a, which implies du = dx and x = u — a, then we obtain

/:f(x+a)dx:/ﬂ+af(u)du

n+a

+a
= / f(x) dx.

—-n+a

In particular, from the first set of equalities we have
n+a n+a-2n
[ rwa- £(@) ds
bg n-2n

= ‘[*Ha f(x) dx,

T

[::f(x)dx=/_:f(x)dx+/:+af(x)dx—/_:Haf(x)dx
= [:f(x) dx+/_;n+af(x) dx—/_;maf(x) dx
- [" s

as desired. O

which implies

In this exercise we show how the symmetries of a function imply certain properties of its Fourier coefficients. Let f be a
2n-periodic Riemann integrable function defined on R.

(a) Show that the Fourier series of the function f can be written as
f(O) ~ f(0)+ Z((f(n) + f(=n)) cos(nf) +i(f(n) = f(-n)) sin(nd)).
n=1

Solution. According to page 34 of the textbook, the Fourier series of f : R — R (in exponential form) is given formally
by
= A 2ninf
FO) ~ > fme™™

n=—00

where we define L := b — a and
2r

b ino
f(n) :=%/ f(O)e T de.

Observe that, given any f(n), the expression

F(n) + f(-n
CVCH( l) : f( ) 2f( )
is an even function of n because /eyen (1) satisfies

hewatn) = LD
_fem+f)
B 2
)+ f(=n)
B 2
= heven(”),

and the expression

oty o= L=

is odd in n because hogq(n) satisfies

hoga(—n) = f(=n) —g(—(—n))
_ f(=n) - F(n)

B 2

_ _f(n) — f(-n)

B 2

= —hoda(n).



Furthermore, we can write f(n) and f(—n) as a decomposition of even and odd functions

Pn) = f(n) +2f(—n) AL —2f(—n)

= hcven(n) + hoga(n).

and

Femy = 10 +2f<—n> _fm —Zf(—n)

= Neven (1) — hoda ().

Using the formal definition of the Fourier series for L := 2z and Euler’s formula, we have

FO)~ > fmen?

n=—0o

(o) _1
= FOO S Fen s 3 fne
n=1 n=—co

F=nyeltm?

Ms

= F(0)+ )" f(me™? +
n=1

n=1

= £(0) + D2 (F(m)e™® + f(=m)e™?)

n=1

= f(O) + Z(heven (n) + hodd(l’l))eine + (heyen(n) — hodd(n))g_mg)
n=1

= FO+ Y (heven(m) (" 4 ¢) + hoga(m) (e = 7))
n=1

= f(O) + Z Neven (n)(eing + e—in@) + Z hodd(n)(eine - e_i"H)
n=1 =1

'n9+ —in6 in6 e—in6’

A - el e - et —
= f(0)+ Z‘f Dheen (1) ———— +i 21 2hoaa(n) ————

= £(0) + Z Dheyen(n) cos(nb) +i Z Dhoqa(n) sin(n)
n=1 n=1

=70+ 2W cos(n) +i )| 2% sin(nf)
n=1 n=1

= £(0) + > (F(m) + F(=m)) cos(nb) +i Y (F(n) = f(~n)) sin(n6),
n=1 n=1

as desired. O
(b) Prove that if f is even, then f(n) = f(—n), and we get a cosine series.

Solution. Since f is even, we have f(—0) = f(0) for all § € R. Also recall that cos(n6) is an even function of n and
sin(n6) is odd in n for all n € R, meaning we have cos(—n) = cos(n) and sin(—n) = —sin(n), respectively. Using the
formula of f(n) from part (a), we obtain

F(=0) ~ £(0)+ > (f(n) + f (=) cos(=nb) +i )" (f(n) = f(~n)) sin(-nb)

n=1 n=1
= £(0) + Y (f(n) + f(=m)) cos(nf) +i D" (f(n) = f(=n))(~sin(n0))
n=1 n=1

= £(0) + Y (f(n) + f(=m)) cos(nf) +i D (f(=n) = f(n)) sin(nd).

n=1 n=1



From this and the expression of f(6), we obtain

F©O)+ Y (f(n) + F(=m) cos(nf) +i > (f(=n) = f(n)) sin(nf)
n=1 n=1

~ f(=6)
= f(6)

~ £+ Y (fn) + F(=m) cos(nd) +i D (F(n) = F(=n)) sin(nf)
n=1 n=1

which algebraically simplifies to
D) = F(=m)) sin(no) ~ 0,
n=1
We know from linear algebra that the basis of smooth functions {sin(n6)}> , ¢ C*(R) is a linearly independent set,
and so we must conclude f(n) — f(-n) = 0, or f(—n) = f(n), signifying that f(n) is an even function of n. O
(¢) Prove that if f is odd, then f(n) = —f(—n), and we get a sine series.
Solution. Since f is odd, we have f(—-60) = —f () for all 8 € R. Also recall that cos(nf) is an even function of n and

sin(n6) is odd in n for all n € R, meaning we have cos(—n) = cos(n) and sin(—n) = —sin(n), respectively. Using the
formula of f(n) from part (a), we obtain

F(=0) ~ fO) + D (f () + f(=m)) cos(=n) +i Y (f(n) = f(=n)) sin(-nf)
n=1 n=1
= F(0)+ ) (F(n) + f(=m)) cos(nd) +i Y (f(n) = f(=n)) (= sin(n6))
n=1 n=1

= £0) + D (F(n) + F(=m)) cos(nb) +i Y (f(=n) = F(m))(sin(n6)).
n=1

n=1

From this and the expression of f(6), we obtain

£+ Y2 (F () + F(=m) cos(nd) +i )" (f(=n) = f(n)) sin(n6)
n=1 n=1

= f(-0)
=-£(0)

~ = [FO) + D (F () + F(=m)) cos(nd) +i Y (F(n) = f(~n)) sin(n6)
n=1 n=1

=—£(0) = D (f () + F(=m)) cos(nb) +i Y (f(=n) = F(n)) sin(n6)
n=1 n=1

which algebraically simplifies to
DU(F ) + f(=n)) cos(n6) ~ 0,
n=1

We know from linear algebra that the basis of smooth functions {cos(n6)}> , c C*(R) is a linearly independent set,

and so we must conclude f(n) + f(—n) =0, or f(-n) = —f(n), signifying that f(n) is an odd function of 7. O
(d) Suppose that (6 + ) = £(6) for all & € R. Show that f(n) = 0 for all odd .

Solution. Since f(0) is 2r-periodic, we have L := 27, and Exercise 2.6.1 implies that the Fourier coefficient is

2n

a+L ino
f(n)=% / F(0)e™ T ag

_2nin®

1 a+2n
=5 / f(@)e 5" do
a

1 a+2n ino
= ﬁ / f(G)e_’" do
a




for any a € R. Also, for all odd n, which allows us to write n = 2k + 1 for any integer k, we have
einﬂ — ei(2k+1)7r
— e27rik+7ri
— eZnikem’
— (eZHi)keni
=1%.(-1)
=-1.

Using the given assumption f(6 + 7r) = f(6) and our employed substitution u = 6 + 7, we have

. ] a+mn .
fom =5 / F(B)e® a6

-7

1 a . 1 a+mn .
= —/ F(0)e ™0 dg + —/ f(0)e™ ™0 dg
27 Jou—n 2r J,

1 a . 1 a+mn .
=5 £ +m)e™™0 do + > / (e dg
] aai-rl—ﬂ . ] ¢ a+m .
=5 Fu)e ™ = gy + > / f(0)e™ 0 ap
T a 7 a

1 a+m . 1 a+mn .
=5 / F(0)e™ ™0~ gg + o / f(0)e"? dp
T T
1 aa+7r . X 1 “ a+mn .
=5 / F(O)e™ e do + o / f(0)e™? do
1 aa+ﬂ . . ¢
= 2—/ (@)™ (e +1)do
T a
l a+mn .
= 2—/ F(@)e ™ (-1+1)do
T a

1 a+m .
= / f(0)e™?(0) do
2r J,
=0,
as desired. O
(e) Show that f is real-valued if and only if £(n) = f(-n) for all integers n.

Solution. Suppose f is real-valued; that is, assume f(0) = f(6), where f(6) denotes the complex conjugate of f(8).
Applying the usual properties of complex conjugation, we have

1 a+2n

;/ f(@)e*i"(’ deo
1 ua+27r _
_/ f(g)e—ine do
T Ja

1 a+2n

;/ f(9)e*""6 deo

1 a+2n )
- / f(0)e™? do
T a

1 a+2n )
- / £(0)e 1M g9

fn)

Vs
- f-n)

for all integers n.

Conversely, assume f(n) = f(—n) for all integers n. Applying the usual properties of complex conjugation and the



formal definition of a Fourier series, and employing the substitution m := —n, we have

FO) ~ > flmeine

n=—oo

I
N
~
~~
S
A3
L
)

I
NgE
<
T
2
N—
r§|
3
S

Il
§ S
1l Il
finatl
~
s
&w
3
fas}

meaning that f(0) and f () are equal up to a scaling factor with a Fourier coefficient. But this is enough to conclude
that f is real-valued. O

2.6.4. Consider the 2r-periodic odd function defined on [0, ] by f(6) = (7 — ).
(a) Draw the graph of f.

Solution. Since we are given that the 27-periodic odd function is only defined on [0, ], we can employ an odd extension
to obtain the resulting 27-periodic odd function defined on |-, 7]:

_JO(r—-0) if0<6<m,
f<9)_{0(7r+9) if -7 <6 <0.

This is enough to graph one complete cycle of the 27-periodic odd function on |-, 7].

f(0)
4 1
2 i
‘ 6
-4 -2 2 4
/o |
—4
O
(b) Compute the Fourier coefficients of f, and show that
8 sin(k0)
0) = — .
£(0) =~ k3

k=1,3,5,...



Solution. If n # 0, then we can apply the method of integration by parts to obtain

1 0 _2nin® 1 0 ing
2 | SO mdo=o [ 0(r+0)e™"do
27 Jor 2 J_»

1 0 _
R g(ﬂ. +9)d(e—1n9)

27r1
1 0 o
T (0(“9)6%9'-” - [ et o)
1 0o
=-3 ((O 0) - /elne((n+9)d9+9d(ﬂ+9)))
win —
1 o
=5 | ¢ "((x+0)do+0d0))
min
1 (U
= zﬂn/ e—ll’LQ(ﬂ_+26) d9
l -7

1 0 A
=—— / T +26 d(e—lng)
-

2mi%n?

1 o
= 2_ ((71' + 20)6 ln0|0 _ / e*lnﬁd(ﬂ_ + 29))
" -7

0
5 (7 - (-0 (-D") - 2/

-7

e—in(-) d@)

y

7T(1 + (—1)”) - %(1 _ (_l)n))

27rn2 (ﬂ(l +(=D") - _ime_i"g

n2

2 (ﬂ'(l + (—l)n) + %((_l)n _ 1))

and

1 d _2nin@ 1 T ine
Py f(g)e 2 dl = — g(ﬂ- _ 9)6 iné g9
27 Jo 27 Jy

L " 9(71- _ G)d(e—inB)
27in Jy
! —in6|" " —in
= " 2nin (9(”‘9)6 Iy —/0 e "d(e(n—e)))
1 .~
= " 2nin ((O 0) - ‘/0 € 9((77—9)d9+9d(7r—9)))
L ”e_ing((ﬂ_ —0)do —GdQ))
27in Jo

1 T
= - / e*li’l@(ﬂ_zg) dG

2min Jy

1 T '
= —_—/ T —26 d(e—me)
0

2mi%n?

B 21 ((” 20)e _ma|”—/0”e"'"“’d(7r—20))

( n(- l)”_ﬂ')+2/ﬂe—in9d0)
)

A=)+ 2= ).

—in

( R((=1)" +1) 4 —gmin®

27rn2



which imply

Ccn = % _: f(@)e_zgi;le do
= —/ f(0)e 57" d6+—/ f(0)e
& (n<1+< D)+ 2 (-1 - 1)
n?
-1

A,

n3

If n = 0, then we obtain
co = % [” f(@)e_zm(ow de
= ﬁ . f(H) de

So the Fourier series is

1 0 0
=—(n/ 0d9+/ 02d0)+
4 -7 -7
T 5|0
5t 5o )z 521
71'3 71'3
(535

+93

1
2r
1

T

2
=0.

(e8]

2

f(6) =

_ Coe—i(O)e " cheine

n#0

Loy Ao,

n#0

2(=D" =1 ina

2nind
(714 2r

20" =1 o

nd
1( n)o

2D -,

nd

2D =) o

mn3

2((-1)" -1

3
l

Ms

3
l

) ein@

1
+_

(o]
+2
(o]
2
o0
e—1n9+z

2niné
2r

- ( A1) 1)+ 2 (1) - 1)
I’l

1 [0 1 [~
_—/ e(n+0)d9+—/ 0(n —0) do
27T - 271' 0

e f oo
)

/g

71'

2

)

2D 1)
A=)
2(=D" =1 ing

nd

n=1

n=1

n=1

_ e—inE’)

_ e—mH

-2

NgE

an3

1-(-1

)n
n3

sin(n6)

s

2
= sin(n6)
n

3
I
-
e
wn

Njoo N|& N[k F

sin(nd)
nd

S
I
L
W

2i



as desired.

2.6.5. On the interval [—n, 7], consider the function

if |6] > 6,

0
f(g):{l—'%" if 6] < 6.

Thus the graph of f has the shape of a triangular tent. Show that
cos(né)
FO) =5+ Z cos(nf).

Solution. If n # 0, then we have

_ _/ f(g)e 27r21:6'
5 b3
0 X .
(/ Oe “"9d6’+/ (1—U) “"9d6’+/ Oe“"gda)
"\, -5 0 s

1 J 0 .
— (1 - %)em" de

Lo

5 1 S )
-— e—ln9 e
0 m Jjo

1
2 in ind
— i L/ e—mH do — L /6 —in6 4o
2 \ind J_s ind Jo
— i 1 —in@ 0 _ 1 —in@ 0
2n | i2n28 Zn%s 0
1- m6 _ (,"ind _ 1
= (1= ) - (T 1))
2 _ ln& _ e—in(S
- 2nn2é
B 2 1 ein& + e—iné
" 2725 wn%s 2
1 cos(nd)
ns n%é
_ 1 —cos(no)
o

If n = 0, then we have

27r1(())0
== f(9)€ B

=—/ f(6)do
21 J_»
-5 K n

=L(/ Od0+/ l—ﬂd9+/ Od&)
21 \J-rn -5 6 s
Lo el
= 1- =

2 -5 1) do

1 (1
=—[=(20)(1

5= (3000)

9



So the Fourier series is

> 2rind
f(0) = Z cpe 27
n=—co
— Z CneinG
— i(0)6 in6
= cpé' + Z cpe
n#0
0 1 —cos(nd) ;¢
ot Z mis
-1 00
0 1 —cos(nd) ;0 1 —cos(nd) ;¢
2n n_z mis Z mis
6 o 1—cos(—nd) ;e . xo 1—cos(nd) ;.
= — _— =+ _—
27 Z 7(-n)2s ¢ ; an2s -
§ < 1—cos(nd) ;.9 < 1-cos(nd) e
=—+ _ + _
2n Z s ; mis
1) o 1 —cos(nd) ein? — ¢=in¢
=—+2
2wt Z mn2s 2
1) — 1 — cos(nd)
= E +2 Z W COS(I’ZQ),
as desired.
2.6.6. Let f be the function defined on [-x, 7] by f(8) = |6|.
(a) Draw the graph of f.
Solution.
f(0)
4 i
2 i
‘ 0
—4 -2 2 4
21
4 |

(b) Calculate the Fourier coefficients of f, and show that

. .
A _ 5 1fn=0,
fm {iﬂiﬂ ifn#0.

n?



Solution. If n # 0, then we have

:_/ f(O)e”
—/ 16]e=? dg
2171 (/ ""9d9+/ —'"9(19)

2niné
2r

1([1 o 1 ol
— ._ —lnH _ _/ —iné ael + (_._ee—lné)
2 \\ in _x in in 0
1 1 n 1 —in6 ‘ 1 n
= 2— ‘—(O+7l'(—l) )+ ﬂe + —.—(71'(—1) -
T mn “n - mn
0
— i _l —iné + i —-in@ "
2\ n? . n? 0
-1)
(=D -1
o

If n = 0, then we have

27i (0)9
2

Co——/ f(0)e”
ﬂ./;n |6] dO
! (/:—0d0+‘/0n9d9)

So the Fourier coefficient is
ifn #0,

ifn=0
for all integers n.
(c) What is the Fourier series of f in terms of sines and cosines?

Solution. The exponential form of the Fourier series is

)

n=—co
co+ Z cpe™?

n#0
T 1+ (=D" .
§+§:—2€m

n#0

2xin®
cpé 2r

f(6)

mn

+—
in

1 o
/ e—m@ dg)
0

1 .
) _ Q_e—;ne




Using the exponential form, we obtain

roy= 54 S T o

2
n#0 n

(o)

-1
o -1+ (=D" ;.0 -1+ (=D" ;.0
2" Z —m +ZTe

n=—oo n=1

(o) o

n “1+ (=D e “1+(=1" ;.0
==+ _ + _
2 Z n(—n)? ¢ Z an?
n=1 n=1
o 2 i -1+ (-1)" eint 4 p—inb
2 n2 2
n=1
T 2 -1+ (="
= §+;ZTCOS(9)
n=1
T 4 Z 1
=== — cos(0),
2
2 m n=1,3,5,... n
which is the Fourier series in its sine-cosine form.
(d) Taking 8 = 0, prove that
2 oo 2
T 1 b
Z = — and Z - =—
2 2
n=i3s,. " 8 Pyl 6
Solution. At 8 = 0, we obtain
0=10|
= f(0)
4
= g - — — cos(0)
To=izs,..
L 4 1
=—_ = >
2 Toizs,.. "
which is equivalent to
1 B 2
—2 = —.
n=135,." 8

Furthermore, we obtain

which is equivalent to

as desired.

2.6.9. Let f(x) = x[a,p](x) be the characteristic function of the interval [a, b] C [-n, ], that is,

) 1 ifx € [a,b],
a X) = .
Xla.b] 0 otherwise.
(a) Show that the Fourier series of f is given by
b—a e—ina _ e—inb .
~ + lnX'
f 2w Z 2rin ¢

n#0

The sum extends over all positive and negative integers excluding 0.



Solution. If n # 0, then we have

- L / Fe

X[a b1 (x)e”" dx

27r

1 - a ) b . T )
= — (/ Oe ™™ dx + / le ™V dx +/ Qe M dx)
2n - a b

1 b
"
3 1
2min

e*lnx dx

b

—inx

a

e~ina _ e—tnb

2min

— o [ rwe T

= [ﬂ Xla,p](X) dx

:%(f){[ab (x)dx+/b Xt (x)dx+/bﬂ»qa,b]<x>dx)
277(/ 0dx+/ 1dx+/ de)

=E(0+(b—a)+0)

_b-a
2

If n = 0, then we have

So the Fourier series of f is given by

(e8]

2winx
Jx) ~ Z cne 2
n=—o00
[ee)
— Z cnelnx
n=—oo
(o]
— Coem(O) + Z Cnemx
n#0
—ina —inb
_ b-a N Z e -e pinx
2 2min ’
n#0
as desired. O

(b) Show thatifa # —m or b # m and a # b, then the Fourier series does not converge absolutely for any x. [Hint: It suffices

to prove that for many values of n one has | sin(nfy)| > ¢ > 0 where 6y = b%“.]



Solution. We have

e—ina _ e—inb| — |e—inb(e—inaeinb _ 1)|

= e~ ||eminaginb _
= 1. |e inarinb _q|

= |- _

=|cos(n(b —a)) +isin(n(b —a)) — 1|

= (cos(n(b —a)) - 1)2 + (sin(n(b — a)))?

= \Jeos2(n(b — a)) — 2cos(n(b — a)) + 1 +sin(n(b — a))
= 1 -2cos(n(b-a))+1

= /2 —2cos(2nby)

N [1- cos2(2n6?0)

= 2[sin(nfy)l,

=2

Since we assume a # —m or b # « and a # b, it follows that the function f(x) = x[4,5](x) is discontinuous on [-n, 7].
Since the Fourier series must equal a discontinuous function, we must have eina _ o=inb 24 (otherwise, f(x) ~ b%“
would be a constant function, which is of course continuous), which implies leie — e inb | > 0. In fact, the above
equality we calculated implies

|e—ina _ e—inbl

| sin(n6y)| = >

>0
for all n # 0, and so there exists ¢ > 0 that satisfies | sin(n6y)| > ¢ for many values of n on [z, 7]. So we conclude
—ina e—inb|

— einx
Z [27in| | |

B i 2| sin(n6))| ]

2nn

i | sin(n6)|

mn

implying that the Fourier series of f does not converge absolutely. O

(c) However, prove that the Fourier series converges at every point x. What happens if a = 7 or b = —n?



Solution. We can write

—ina —inb -1 —ina _ ,—inb
Z € -e einx — Z € lnx + Z einx
— 2min Rt 27rm Zmn
®  _—i(-n)a _ ,—i(-n)b —ina _ ﬂnb
— Z e € l( n)x + Z einx
i 2ri(—n) 2rin
o0 ema _ mb ﬂna _ ﬂnb .
— Z _ e—mx + Z T pinx
- 2nin 2nin
& —ina ﬁnb ina inb
— Z € — inx _ ¢ —€ e~inx
= © 2min 2nin

n

Ms

(ein(x—a) _ ein(x—b) e—in(x—a) _ e—in(x—b))

4 2min 2min

Z"’] l ( m(x a) _ e—tn(x a) ein(x—b) _ e—in(x—b))
n

3
Il

1
m i 2i 2i

00

1 Z sin(n(x —a)) —sin(n(x — b))

m n
l (o)
== anby,
T n=1
provided that we define
1
a, = —,
n
b, = sin(n(x — a)) — sin(n(x — b)).

Observe that the sequence {a, }, | decreases monotonically to 0, whereas {b,},._, is bounded, which implies

N N
Dbl <> Ikl
n=1 n=1

| sin(n(x —a)) — sin(n(x — b))|

| sin(n(x — a))| + | sin(n(x — b))|

By Dirichlet’s test (see Exercise 2.6.7(b) of the textbook), we conclude that

» » 0
e~ina _ , inb inx 1
§ ; e == E anbn
2nin n
n#0 n=1

converges for any x € R. This implies that the Fourier series of f converges for any x € R.



