MATH 147 discussion Ryan Ta
University of California, Riverside Winter 2021

Solutions to assigned homework problems from Fourier Analysis: An Introduction by Elias Stein and Rami Sakarchi

Homework 2
e Sect. 1.4: 1
e Sect. 3.3:3,4,5,7,8,9, 10, 12
e Sect.34:2,3

1.4.1. We look for a solution of the steady-state heat equation Au = 0 in the rectangle R = {(x,y) : 0 < x < 1,0 < y < 1} that
vanishes on the vertical sides of R, and so that

u(x,0) = fo(x) and u(x, 1) = fi(x),

where fy and f] are initial data which fix the temperature distribution on the horizontal sides of the rectangle. Use separation
of variables to show that if f; and f; have Fourier expansions

folx) = i A sin(kx) and fi(x) = i By sin(kx)
k=1 k=1

then

o [ sinh(k(1 - y)) sinh(ky)
”(x’y)‘z( soh(6) ¥ Gnh(k)

Bk) sinh(kx).
k=1

We recall the definitions of the hyperbolic sine and cosine functions:

X _ ,—X X 4o
sinh(x) = % and cosh(x) = %

Solution. To commence the method of separation of variables, write

u(x,y) = @)y (y),

as suggested by page 4 of the textbook. Our partial derivatives are

Uxx(x,y) = @' ()Y (y),
Uyy (X, ) = @()y” (y)

So the steady-state heat equation Au = 0, or uxx + uyy = 0, becomes

Pxx (DY () + @ (X)yy () = 0.,

which we can algebraically rearrange to write

%] ¥

where A € R is a constant in both x and y. This produces the system of two ordinary differential equations

Qoﬂ__@__/l’

Oxx + @ =0,
Yyy — Ay =0.

This system is decoupled, which allows us to solve each one independently and obtain the general solutions
Cre V-1 4 Crem V-1 if A <0,

p(x) =1Cix + Cy if 1=0,
C) cos( VAx) + Cy sin( VAx) if A > 0,

Dqcos( V=1y) + Dy sin( V-1y) if 1 <0,
Y(y)=1Diy+ D> if1=0,
D1eVV + Dye VA if 1> 0,

where Cy, C, D1, D, are constants. Now, the boundary conditions

u(0,y) =u(m,y)=0



are equivalent to

e(0)y(y) =0,
e(my(y) =0,

which imply either ¥ (y) = 0 or ¢(0) = ¢(xr) = 0. If y(y) = 0, then we would have

u(x,y) = @)y (y)

= ¢(x)0
=0,
which would be a trivial solution. So we should assume
#(0) = ¢(m) =0,

which will impose constraints on the constants C;, C», depending on A. This motivates us to break this down into cases.
e Case 1: Suppose 4 < 0. Then we have
px) = Cle‘mx + Cre” ﬁx,
¢(0) =0,
which implies C; + C, = 0, or C; = —C;. So we have

(x) = Cleﬁx + Cze_ﬁx
— Cleﬁx _ Cle*\/jx
— Cl(eﬁx _ e—ﬁX).

We notice e V=17 — ¢~ V=17 # 0 unless A = 0. This means

¢(x) = Cr(eV 4 eV
@(r) =0

)

implies C; = 0, and so we have
p(x) = Ci(e V1 —em Vo)
- O(eﬁx + e*ﬁx)
= 0,
which would mean u is a trivial solution. Therefore, the problem has no negative eigenvalues.
e (Case 2: Suppose A = 0. Then we have
e(x) = Cix + Cy,
¢(0) =0,
implies C; = 0, and so we have
e(x) =Cix+Cy

= C1x+0
=C1x.

Furthermore, ¢ () = 0 implies C; = 0, and so we write ¢(x) = 0. Therefore, we have

ug(x,y) = () (y)
=0y (y)
= 0,

which is a trivial solution.

e (Case 3: Suppose 4 > 0. Then we have

@(x) = C; cos( VAx) + Cy sin( VaAx),
¢(0) =0,



which implies C; = 0, and so we have

p(x) = Cy cos( VAx) + C; sin( Vix)

= 0 cos( VAx) + G sin( ViAx)
=, sin( Vax).

Next, we have
¢(x) = Cy sin( VAx),
p(m) =0

implies either C, = 0 or sin( VAr) = 0. But C; = 0 (with C; = 0) implies ¢(x) = 0 and that u(x, y) would be a trivial
solution. So we should assume VAr = nz, or equivalently the eigenvalues

Ak =A=n>,
with the corresponding eigenfunctions

@ (x) = Cox sin( YAzx)

= Cz,k sin( \/n_zx)
= Cz,k sin(kx).

Next, we need to express ¥ as a linear combination of hyperbolic sine functions. We can first rewrite

Wi (y) = Dy xe* + Dy e ™

ky _ o—ky —ky n(y=1) _ o—k(y-1) n(y-1)

e e e e e e

=2D —2¢7D -

Lk ( 2 2 ) ¢ Pk ( 2 2 )
e ky X e

=2D (sinh(ky) + T) —2e "Dy i (Sil‘lh(k(y -1)) - > )

=2D  sinh(ky) + Dy e ® —2¢7% Dy sinh(k(y — 1)) + e XDy jek¥
=2D  sinh(ky) —2e %D, sinh(k(y — 1)) + e ¥ Dy 1Y + Dy e,

As the choice of constants is arbitrary, we are allowed to relabel the constants. By relabeling the constants, we can write
Yk (y) = Dy x sinh(ky) + D g sinh(k(y — 1)) + D3 xe*” — D3 e™*

eky — kv

2
= Dl,k sinh(ky) + D2,k sinh(k(y - 1)) + 203’]{ sinh(ky)
= (Dl,k + 2D3,k) sinh(ky) + Dz,k sinh(k(y - 1))

= Dl,k sinh(ky) + Dg’k sinh(k(y - 1)) + 203’]{

By relabeling the constants one more time, we can finally write
Yi(y) = Dy sinh(ky) + Doy sinh(k(y — 1)).

Therefore, if we write ay := Cp ¢ D1k and by := C3 D2 i, then we have

ur(x,y) = X ()¢ (y)
= (Cpx sin(kx)) (D1 x sinh(ky) + D g sinh(k(y — 1)))
= sin(kx)(Co.x D1k sinh(ky) + C2 x D2  sinh(k(y — 1)))
= sin(kx)(ag sinh(ky) + by sinh(k(y — 1))).

for k =1,2,3,..., which is a nontrivial solution.

Given

00

u(x,y) = Z sin(kx) (a sinh(ky) + by sinh(k(y — 1))),
k=1

we have

Jo(x) =u(x,0) = i by sin(kx) sinh(—k),
k=1

00

filx) =u(x, 1) = Z ay sin(kx) sinh(k).

k=1



3.3.3.

Now, recall

x Zoifk=1
/ sin(kx) sin(lx)dx = 2 ' .
0 0 ifk#L

Consequently, the Fourier sine series expansion of fy and f; suggest that A; and By are the Fourier sine coeflicients of fy and
f1, respectively. So we obtain

2 T
A = — Jo(x) sin(kx) dx
T Jo

2 T
=— / u(x,0) sin(kx) dx
T Jo

= 2 /n (Z sin(lx)b; sin(lx) sinh(—m)) sin(kx) dx
0

T I=1
2, . T .
=— Z b; sinh(—m) sin(lx) sin(kx) dx
T 0
2
= Zpy sinh(=k) 2
n 2
2
= —Zpysinh(k)2
bd 2
= —by, sinh(k)
and

By = %/Oﬂfl (x) sin(kx) dx
= % /0” u(x, 1) sin(kx) dx

= % ‘/07r (i a; sin(lx) sinh(l)) sin(kx) dx

I=1

2 — w
= —Zal sinh(7) / sin(Zx) sin(kx) dx
T3 0

2
= Z4; sinh(k)Z
n 2
= ay sinh(k).

So we obtain the coeflicients
~ sinh(k)’
Ak
sinh(k) "

So our formal solution is

o)

u(x,y) = > sin(kx) (ax sinh(ky) + b sinh(k(y = 1)))
k=1

- Z sin(kx) ( T sinh(ky) — ?1(k) sinh(k(y — 1)))

_ = sinh(k(y — 1))A sinh(ky)
- ; (_ sinh(k) % Ssinh(k)

Bk) sin(kx)

- (sinh(k(l —y))A .\ sinh(ky)
i

sinh(k)  © 7 “Sinh(k) B")Sin(kx)’

k=
as desired. |

Construct a sequence of integrable functions { fx } on [0, 2] such that

1 2r
lim —/ | fi(6)|*>d6 =0
271' 0

k—o0

but klim fx (0) fails to exist for any 6.

[Hint: Choose a sequence of intervals I C [0, 2] whose lengths tend to 0, and so that each point belongs to infinitely many
of them; then let fx = xy,.]



Solution. Consider a sqeuence {/x }; | defined by I := [0, %], which satisfies I C [0, 2x], so that their lengths |/ | tend to
0 as k — oo. If we choose fr = 1, , then we have

1 2n 5 1 2n 5
[ im@ra=5 [T o oFde
1 { 1 2n
— 5 [ b@Pass - [ oo as
T Jo T +

1

1 % 1 2n

=— 12d9+—/ 0> do
271' 0 27T %

1
=% Oklda
L
|

1 (1
:g(%—o)
1
=

which implies

2k
_ ! lim !
- 21 k—oo k
1
= E(O)
=0.

) 1 2n ) ) 1
lim — | fx(6)|° df = lim —
0 21 0 k—o0

Now, we will show that klim [ (0) fails to exist for any 6. At the same time, we also have

ifx #0,

0
li 6) =
Jim s, (6) {oo ifx=0,

which is a Dirac delta distribution, not a function. In other words, there does not exist a function f thatis alimitof {fx};” ,. O

3.3.4. Recall the vector space R of integrable functions, with its inner product and norm

1 2 %
=57 [ rwra)

(a) Show that there exist non-zero integrable functions f for which || f|| = 0.

Solution. Choose for instance

1 ifx=nmn.

o) = {0 ifx # 7,

Then we have f € R and f is nonzero, and

2
T / 7)) dr

2 Jo

1 n 2n
— o ([ T1renace [T irwas]

1
=—(0+0
2n ( )
=0,
meaning that f satisfies all the requested properties. O

(b) However, show that if f € R with || f|| = 0, then f(x) = 0 whenever f is continuous at x.



©

3.3.5. Let

Solution. Suppose instead f(x) # 0 and f is continuous at x for all 0 < x < 2x. Then we have f(x) > O or f(x) < O for
all 0 < x < 27. In either case, we have | f(x)| > 0, which implies | f(x)|> > 0% = 0 for all 0 < x < 27, and so we obtain

1 2n
1P =5 [ 1P as

2
> — 0dx
2r 0
=0,
or equivalently || f|| > 0, which contradicts the assumption || f|| = 0. So we are forced to conclude f(x) = 0. O

Conversely, show that if f € R vanishes at all of its points of continuity, then || f|| = O.

Solution. Since we assume f € R, it follows by Theorem 1.7 of the Appendix (Integration) in Stein and Shakarchi that
f is continuous on 0 < x < 27 except on a set of measure zero. We also assume that f vanishes at all of its points of
continuity; in this case, we have f = 0 except on a set of measure zero. Let A C [0, 2] be such a set of measure zero;
that is, A satisfies |A| = 0, where |A| denotes the length of A. Then we have f(x) = 0 for all x € [0,2x] \ A. Note that a
set of measure zero can be either empty or nonempty. If A is nonempty, then we have

0< /A 1P d
/ sup £ (O dx
A

X€EA

IA

sup|f(x)|2/A 1dx

X€EA

sup | £ (x)*|A|
X€EA

sup | f(x)* - 0

X€EA

:0’

which implies

/ F ()P dx = 0.
A

So we obtain

1 2
I9P =5 [ 1reoP as

1 ) )
- ( /A PP dx+ /[O,M]\A £ dx)

1
=— (0 + / 0? dx)
T [0,27]\A

which is equivalent to || f|| = 0, as desired. On the other hand, if A is empty, or A = @, then the argument is somewhat
trivial: we have |A| = |@| = 0and f(x) =0 for all 0 < x < 2x, and so we obtain

1 2r
1P =5z [ 1P
T Jo
1 2n
=0

0% dx

which is equivalent to || f|| = 0, as desired. O

0 for 0 =0,

f(0) = {log(%) for0 < 6 < 2m,

and define a sequence of functions in R by

1
b (8) = 0 for?SHS;,
f(8) for. <6<2n.

Prove that {b,} ", is a Cauchy sequence in R. However, f does not belong to R.



Solution. Since we have f(0) = log(é) for 0 < 6 < 2n, this holds true in particular for % <@ <2nforalln=1,2,3,....So
we can actually write

0 for0 <6 < %,
log(]@) for % <0 <2m.

fn(0) = {

Now we will show that {f,,} -, is a Cauchy sequence with respect to the norm of R. Let m, n be large positive integers with
the assumption m > n without loss of generality. We apply the Pythagorean Theorem for the norm of R in order to obtain

”fn - fm”2 = ”(fn - fm) +fm”2 - ”fm”2
= 1L £all® = 1 fonll?

1 2r 5 1 27 5

— 5 [ ea@Pao- o [T ig@P as
T Jo 2r 0
1 2 2 2 )

~ 5 ([ ewor 0= [T is008 ao)
T \Jo 0
1 2r 1 2 27 1 2

= Z(/}l log (5) de_-/,L log(é) de

1 2

1w (1

2 i Og(e)

1
1 m
- L / (log(6))? do
2 1

1

= 0(log(0)?[7 -2 / " log(6) do

2 ] 1
= % (log (% (log(%)) -2 (Hlog(ﬁ)l’," —/ ldH)

n

n

2 1 1
log( )—2910g(0)|']” +20|7

S}
|
—_—
—
)
g
—

2 (1) 2 (1) 2 2
—log|—|+-log|—-|+———
m m| n n| m n

2 2
:1((10g(i)_1) H)_l((log(i)_l) H)
m m n n
_ (log(m) + D2+1  (log(n)+1)%+1
h m B n

—-0-0
=0

as m,n — oo, which signifies that {b, },’ , is a Cauchy sequence. The convergence towards the end of our previous calcula-
tions is due to the following limit (for my method, I applied I’Hopital’s rule twice as follows):

(log(x) + 1 +1 < ((log(x) +1)>+1)

li = lim
X—00 X X—00 %x
2(log(x) + 1)+
- lim (log(x) + 1) %
X—00 1
— lim 2(log(x) + 1)
X—00 X
_ #E2(log(x) + 1)
= lim —_—y
2
= lim £
x—oo |
2
= lim -
X—00 X

as desired. O



3.3.7. Show that the trigonometric series
o1
—— sin(nx)
; log(n)

converges for every x, yet it is not the Fourier series of a Riemannian integrable function.

Solution. We can write

Z sin(nx) = Z anby,
o log(n) ~
provided that we define
1
~ log(n)’

b, :=sin(nx).

Observe that the sequence {a, },_, decreases monotonically to 0, whereas {b,}_, is bounded, which implies

N N
D bul < 3 1bul
n=1 n=1

By Dirichlet’s test (see Exercise 2.6.7(b) of the textbook), we conclude that

(o) [oe]

Z logl(n) sin(nx) = Z anby,

n=2 n=2

converges for any x € R. Consider some function f whose Fourier series is

(o)

Z ¢y sin(nx),

n=2

where we define ¢, := logﬁ. Then by Parseval’s identity, we have

(o]
2 2
71 =Z|cn|
"

- Z |log(n>|2

= 00,

meaning that f is not Riemann integrable. There are many ways to show that the series

S 1
Z | log(n)|?
is divergent. Perhaps the most elementary method of showing this is the integral test: we have
°° 1 0 1
——dx = / ———dx
./2 | log(x)|> 2 log(x) log(x)
|
> d.
- /2 xlog(®)
|
= / —du
log(2) U

= [1og () li5e2)
= log(co) — log(log(2))

= 00.

Therefore, the series in question diverges by the integral test.



3.3.8.

Exercise 6 in Chapter 2 dealt with the sums
1 o 1
Son owm YL
2 2
n=ijzs,.. ! n=1 "t

Similar sums can be derived using the methods of this chapter.

(a) Let f be the functiondefined on [—m, ] by f(6) = |8|. Use Parseval’s identity to find the sums of the following two

series:
4

i;—” and
==
o 2n+1) 96

e
3|—
I

813

n=1

Solution. We have already computed in Exercise 2.6.6 that the n™ Fourier coefficient of f () = |6] is

R AP
I91P =57 [ 1R s

1 T
= — 0|- de
271/_,r||

1 Vs
= —/ 6% do
2n J_»

ifn=0,
EDT ifn 0

IYE

for all integers n. We have

1 63"
T3 .
1 = (-n)3
T 2n 3
s
T2 3
3
and, by Parseval’s identity,
AP =D lenl
=leo+ ) leal?
n#0
nez
PR 1+ (="
= |— + —_—
‘2 nZ#) n?
nez
2 © n|2
o [-1+(=1)"|
SR e
n=1
2 n|2 n|2
x -1+ (=1)"| -1+ (=1)"| )
=" +2 Z L A Z L S
2.4 2,4
4 (n=1,3,5,... n n=2,4,6,... Tn
2 2 2
x 12| 0] )
=—+2 + Z
24 2,4
4 (n=1,3,5,... ™n n=2,4,0,... Tn
2
b4 4
=—+2 Z
2.4
4 n=1,3,5,... n
2 8 1
“T R n+1)*
n=1,3,5,...

2 (o)
m 8 1
= — 4+ — _—
4 712’12::‘)(211+1)4

We combine our two expressions of || £]|> to conclude

2

2 8 < 1
— = — 4 — _
3 4 772;J(2n+1)4



which is algebraically equivalent to

i 1 3 2 (7‘1’2 712)
== 5 -5
o 2n+1) 8 \3 4
B 72 2
81
=%’
which is the first sum. Furthermore, we obtain
i 1 L, 1
BV v v
o S TV o S
-~ 1 o1
= +
nz:;) (2n+1)4 HZ:; (2n)*
7

which is algebraically equivalent to

which is the second sum.

(b) Consider the 2r-periodic odd functiondefined on [0, 7] by f(6) = 8(nr — 6). Show that
- 1 n° 1 7°
— = d — =,
;) (n+1)6 960 " 2, 76 945
Solution. We have already computed in Exercise 2.6.4 that the n™ Fourier coefficient of f(6) = 6(x — ) is

0 ifn=0,
Cp = _1\n_ .
HEV; ifn 20

for all integers n. We have

1 T
1P = 2 /O £ do

/4
1 Ve
:—/ 6*(n — 0)*do
T Jo
1 T
=_/ 0*(n* = 270 + 6%) do
T Jo
1 T
=— (/ 0> (1> — 270 + 6%) de)
T \Jo
1 i 202 3 4
=— n°0° = 276° + 67 dO
T \Jo
1 T T T
=—(772/ 92d9—27r/ 93d9+/ 94d9)
T 0 0 0
1 3|7 4|7 57
= — 71-29_ _271—0_ +9_
n 3 41, 51
303 4 4 5 05
:l 2 0 o " 0* n-0
n 3 4 5
_1 7r5_7r5+7r5
“a\3 25
4

| 3

W
e}



and, by Parseval’s identity,

17 = Z Jenl?

=lco+ ) leal?

n#0

nez

2(-1)" -1 F
=02+ ) |———~2
0] ; i

nez

2((-1)" - 1)J?
_22 216

Z I(-1)" - 1]?
m2nb

(=)™ -1 I(=D)" - 1)?
- (_Z et 2 T)

1,3,5 n=2,4,6
) 2 0 2
- 8( |712n|6 * Z 71-2116)
n=13,5,. n=2,4,6,...
=8
2,6
n=ijzs,.. T
n+ 1)6
- i3, (2n +1)
- _2 Z 6
n* (2n +1)
We combine our two expressions of || f]|> to conclude
71'4 32 Z 1
5 x2 i (2n+ 1)6°
which is algebraically equivalent to
© 1 2 4

_ T
"~ 960°
which is the first sum. Furthermore, we obtain
i 1 L, 1
6 6 6
= =35 a3
- 1 S|
= +
ZO (2n+1)° nz (2n)°
_ 70 N 1 1
© 960 64 L b’

which is algebraically equivalent to

n=1
T 045’
which is the second sum.
3.3.9. Show that, if a is not an integer, the Fourier series of
l(rr—x)a

) =

sm(ﬂa)



on [0, 2x] is given by

HOBEY

Apply Parseval’s formula to show that

I~ .
inx
e

n+a’

n=—oo

2

n=—oo

Solution. For all integers n, the Fourier coefficient is

i 1 B b8
(n+a)? sin?(ra)

1 2n X
Cp=— f(x)e " dx
2r 0
1 2 P ) )
- el(ﬂ—x)(le—lnx dx
21 Jo  sin(ma)
eiﬂa 2n
- - e—i(n+a)x dx
2sin(ra) Jo
i 2
— e (_ 1 —i(n+a)x "
2sin(rra) \ i(n+a) 0

ina
e

e—i(n+ar)27r —-1

) sin(7ra)
eiﬂa’

i(n+a)
e—2i7rani7rn -1

) sin(7a)
eiﬂ(l

i(n+a)
e—2i7rar -1

T2 sin(7a)
1

i(n+a)
ina —-inta

e —-e

- (n+ @) sin(na)
sin(rra)

2i

" (n+a)sin(ra)

1
T n+a’

and so the Fourier series on [2, 7] is given by

[oe]

FO)~ ) cne™

n=—oo
B i einx
n+a
n=—o00
Now, we have
1 2 2
A1 =5 [f(x)]” dx
T Jo
2 2
— L " n ei(n—x)a/ dx
2r Jo  |sin(ra)
2
_ L 71'2 / d |ei(7{*x)(l|2 dx
27 sin®(na) Jo
1 2 2
S
27 sin*(nar) Jo
1 2 2r
e,
27 sin*(nar) Jo
1 71'2 2
= ——x
27 sin’(nar) |
1 2
" (2n-0)

T 2n sin® (na)

2

- sin?(7a)



and, by Parseval’s identity,

00

A7 =) leal?

n=—0oo

00

2,

n=—0oo

- 1
n;w (n+a)?

1 2

n+a

Equate our two expressions of || f||> together to conclude
2

i 1 _ n
(n+a)? sin’(ra)’

n=—oo

as desired. O

3.3.10. Consider the example of a vibrating string which we analyzed in Chapter 1. The displacement u(x, t) of the string at time ¢
satisfies the wave equation
1 0%u _ 0%u
2o a2
where ¢? = /1) The string is subject to the initial conditions

w(r0)= ) and (0)= g,

where we assume that f € C! and g is continuous. We define the total energy of the string by

1 L (ou\? 1 L (ou\?
E(l) = Ep'/o‘ (E) dx+§T'/0 (a—x) dx.

Show that the total energy of the string is conserved, in the sense that E (¢) is constant. Therefore,

L L
E(t) = E(0) = %pfo g(x)zdx+%‘r/0 £ (x)? dx.

d 1 L ({ou\ 1 L (ou)’
E'n =<z Ry ) d
@) dr(zp/o (a:) ”zT/O (ax) *

1 /La AN, /La ou)”

2P ), a\ar) T2, ar\ax)] &

_ /L@@dJr /La_“ﬁ@_“d

Py e Ty axar\ox]

L 2 L

Oou | ,0u ou 0 (Ou
= Z2Z=E) g it e
p/o ot (c (9x2) T Bxat(ﬁx)dx

B /Lau T 6%u dear Lou o (ou i
P, o \pox2 o 0xox \or
L du 8%u Lou o (ou
= ——dx —— =] ax]|.
(0 ar o2 T 0 6x(9x(6t) x)

Solution. We have

The vibrating string has fixed endpoints (see page 10 of Stein-Shakarchi), which means u(0,7) = u(L,t), and so, when we
use integration by parts on the second term, we obtain
Bt gudPu
- o o5 dx
0 0 ot dx

/Laua u\  _ udu
o Oxax\ ot T 0t Ox

_ Ou(L,t) du(L,1)  9u(0,1) du(0,1) /L du &*u
0

or ox ot ox ot ox2
~Qu(0.0) du(0,1)  u(0,1) du(0,1) _/La_u@d
T T a0 ox or  ox y dro
L ou 6%u
=0- ——dx
0 ot 6x2

/L Ou 6%u
= — — dx.
o Ot 0x?



Therefore, we conclude

L 2
ou 0°u ou 0 (Ou
E'(r) = ——dx+ dx
® T(O or ox2 T, (9x8x(6t) )
_ L du 0%u L du 0%u
o arox? o 01 Ox2
=7-0
= 0’
meaning that the total energy E(t) is constant. O
3.3.12. Prove that
/ * sin(x) /s
dx = —.
0 X 2
[Hint: Start with the fact that the integral of Dy (8) equals 27, and note that the difference — L__ — 2 s continuous on [, 7].

sin( %) 0
Apply the Riemann-Lebesgue lemma.]

Solution. The Stein and Shakarchi textbook has defined in page 37

N

Dn(0) = Z ein®

n=-N

and established its closed form
sin((N + 1)6)

Dy (6) = sin(%)

As stated in the hint, we have

Qi 1 n
/Md@:/ D (6)do

«  sin($) x

= N
/ Z RUT
T p=—N

-1 T T N 1 n
+/ ei(0)9d9+z —ei"G
rn J-x — in _

—H’lﬂ'

1 einG

-1

int _ ,—inm
Z #+/ 1d0+Z
n=-N -
/ 1d9+ —

1

n——N
b
/ 1d6

=~ (-m)

=2m.



By using for instance 1’Hopital’s rule twice, we obtain

- 12| lim 0 —2sin(%)
91—>0 sin(%) 0 6'1—>0 Gsin(g)

. %(0 - 2sin(%))
0= L (9sin(2)

1- cos(g)
650 sin(4) + & cos(4)

o %(1 - cos(%))
-0 L (sin(£) + & cos())
tim 2sm( )
0-0 1 cos(9) + (4 cos(§) - Zsin(%))

5 s1n(—)

im

6-0 COS( ) = §sin($))
Z sm(—)

- cos( 5) — sm( ))

- 2 has a removable discontinuity at # = 0, and so we can regard —~ — 2 as “continuous” and

1
sin(9) n( )
hence integrable on [ ). So we can now apply the Riemann-Lebesgue Lemma in order to conclude

(1 2 1
lim/ — - sin((N+—)0) do = 0.
N —o0 - Sln(i) 6 2

By letting x := (N + %)9, which implies dx = (N + %) df, we obtain

which signifies that

[T sin((N + %)6)

= [n sin(2) @0
:/”sin((N+l)0) 2+ L2 do

x 2 0 sm(%

~ 7 sin((N + 2)9) . 1
_2[ﬂ 5 (sm( 7 5)51n((N+§)9) de
B (N+)7 gin(x)  dx 2] . 1
_2./—‘(N+;)7r NI N+3 +-/—.7r (sm(g) B 5) sm((N z) ) “

(N+%)7r T 1 2 1
=2/ wdx+/ — " 2 sm((N+ ) )d&.
~(N+hHm X - sm(E) 6 2
Now we send N — oo to conclude

2n = lim 2n

N —>c

(N+Hrn b3
= lim 2/ > sin(x) dx +/ 1 - % sin ((N + 1) 9) do
Now |\ Jo(nelyr X -z \sin(§) @ 2

(N+l)7r V9 l 2 1
=2 lim ) et gim — = sin((N+—)9) do
N —oo —(N+%)7r X N—oo J_o SIH(E) 0 2

:2/ w(lx.'.o

R

=4/”@%Qﬂ,
0 X

or equivalently

as desired. O



3.4.2. An important fact we have proved is the family {e""*},cz is orthonormal in R and it is also complete, in the sense that the
Fourier series of f converges in the norm. In this exercise, we consider another family possessing these same properties.

On [-1, 1], define

n

d 2
La(@) = S (@ = )"
foralln=0,1,2,.... Then L, is a polynomial of degree n, which is called the pth Legendre polynomial.

(a) Show that if f is infinitely differentiable on [—1, 1], then

1 1
/ L) f () dx = (~1)" / (2 = )" (x) d.
-1 -1

In particular, show that L,, is orthogonal to x™ whenever m < n. Hence, {L,};"_, is an orthogonal family.

Solution. 1 will show this by induction. You can also start at the left-hand side and integrate by parts n times to get to
the right-hand side. For the base case at n = 0, we have

1 1 0
[ Lo () de = / | L5071 d

=/_1l f(x)dx

1
- / FO () dx
-1

1
=(-1)° [1 (x* = 10O (x) dx.

Now, for the inductive step, let k = 1,2,3, ... assume at any n = k the statement

1 1
/ Lyi(x)f(x)dx = (=1)F / (x? = DR (x) dx.
-1 -1

For n = k + 1, we use integration by parts to obtain

1 1 k+
/ Lyt (1) (x) dx = / A2 ) d
1 —

| dxk+1
1

_ dt k41 bako, k1 pr
= 5@ -0 - [ ) ar

_ k 1 2 1 1 ! dk 2 lk 2 1 ’ d
= F@ e D=L = [ = DR - ) () d
=(k+ D17 = 1) = ((-1)* - 1))
—/1 (d—k(xz- DEGE? = 1) + (x* - 1)£(x2— 1))f’(x) dx
_1 \dxk dxk
1
= (k+1)!f(x)(0-0) —[l (Lfl(x)(ﬁ— D+ (32— 1)(0))f’(x) dx
1
. / L0 = 1)) de
_1 1
=_/ Lf](x)xzf'(x)dx+/ Lyi(0)f (x) d
-1 -1

1

1
= (1) / LR () d + / Ly f () ds
1 1
= [ - (e [ @ e a
1 k k 1
— (_1)k+1 [1 (x2 _ l)k (%(xz)f'(x) +x2%fl(x)) dx — (_1)k+l [1 (x2 _ 1)kf(k+1) (X) dx
1 1
= (c1ye! / (2 = DEOF(x) + 22 () d - (—1)F*! / (2 = DEFED () dr
-1 -1
1
— (_l)k+1/ (x2 _ l)k(XZf(k+l) (.X) _ f(k+1) (.XI)) dx
,11
— (_1)k+1 / (X2 _ 1)k(x2 _ l)f(k+l) ()C) dx
.

1
— (_1)k+1 / (x2 _ 1)k+lf(k+l) (x) dx.
-1



This completes our proof by induction. Next, we will show that L, is orthogonal to x™ whenever m < n. Indeed,
since we assume m < n, it follows that n — m is positive, and so the (n — m)™ derivative of a function—in other words,
£ (x)—makes sense. Using the identity we proved, we obtain

1 1 ) an
L, Mdx = - - 1)—x"
/_1 (x)x™ dx '[1 (x )dx”x

1 _
dn m dm
- / (x>=1) —x"dx

dxnmdm

/ (x* _l)dx" m(m!)dx

= —/ (x% = 1)(0) dx
-1

1
=—/ 0dx
-1

=0,

as desired. O

(b) Show that
(n !)222n+1

1
Lall*= [ |La(x)*dx =
1LalP = [ a0 e = S5

[Hint: First note that ||L,||*> = (—1)"(2n)!ff1 (x2 = 1)" dx. Write (x> — 1)" = (x — 1)"(x + 1)"* and integrate by parts n
times to calculate this last integral.]

Solution. Following the hint and using the identity from part (a), we have

Ll = [ 11 Ly (2 d

= ‘[1] L,(x)L,(x) dx
=/1(x2—1)"L5,”>(x) dx
- (- 1)"/(2—1)"—L (x) d

— v [ e 1)"—",,( -

= (- 1)"/ (x* - de"(x - 1)"dx.

") dx

Next, we need to prove the claim

d2n "
o (= 1) = (2n)!
foralln = 0,1,2,.... (What I have written below is valid but unnecessarily complicated, so please skip this part. A

much shorter proof is to use the Binomial Theorem on (x> — 1)", writing

n

(XZ _ 1)” — Z)CZI(—l)n_[,

=0

and then take the 2n™ derivative. Only the term corresponding to I = n of the 2n'" derivative is nonzero, and that term is
precisely (2n)!.) I will show this by induction. For the base case at n = 0, we have

2(0)

m(x_ 0= 1)
=1
= (2(0)!
Now, for the inductive step, let k = 1,2, 3, ... assume at any n = k the statement
d*

— - Dk = (2k).

dx2k



Then for n = k + 1 we use the product and chain rules for derivatives and the Binomial Theorem to obtain

>0 K+ k+1
+1 _ +
L 2(k+1) (=D = A 2k+2 (x*=1)
_ d2k+l d( > )k+l
= 12k dx
2+

= kT ——— (2(k + Dx(x* = 1)¥)

g2+
=2(k+1) T l(x(x - Db

de
:(2k+2)d2kd (x(x” = 1))
2k
= (2k+2)52k (ix( )k+xdi(x2— 1)k)

2
= (2k +2) 2k(l(x — DR+ 2kx? (22 = DF

Zk

dk
- — (= D+ 2k —-

= (2k +2) e

(22 - 1)“))

= (2k+2) | (2k)! + w4 (x2(x2 - 1)’<-1))

A2k

d 2k((x2 —1+ )% - 1)’”))

= (2k +2) (2k)'+2k ((x 1)k (xz—l)k'))

= (2k +2) (2k)'+2k( (2 - Dk - d_j(( 2_1)k—1))

&
|
- 2k +2) ((Zk)' £k
|
|
|

= (2k +2) (2k)|+2k((2k) _ﬂ(x l)k—l))

= (2k +2) [ (2k)! +2k (2k)!— Z(xz)q(k - z))

=0

k-1 2
= 2k +2) [ 2K) ! + 2k | (2k)! - Zd ))
=0
d 2k-21-1 d2/+1 21
D 2k—2I—1 g2l

d2k—21—1
= (2k +2) | (2k)! + 2k (Zk)!—ZW(O)))

1=0
= (2k +2)((2k)! + 2k ((2k)! - 0))
= (2k +2)((2k)! + 2k (2Kk)")
= (2k +2)(2k + 1)(2k)!
= (2k +2)!
= (2(k + 1)L

~

M?v‘

= (2k +2) [ (2k)! + 2k [ (2k)! -

>
.—.O

This completes our proof by induction. Resume here. Putting our results together, we obtain
2 ! 2
ILalP = [ ILaoP ax
1 ) d2n )
= (—l)n [1 (x - 1)”M(x - l)n dx
1
= (—1)"/ (x* = 1)"(2n)! dx
-1

1
= (—1)"(2;1)![1 (x> = 1)"dx

which establishes the first part of the textbook hint. Next, we follow the remainder of the textbook hint and apply the
integration by parts n times in order to compute our integral. If we integrate by parts once, we obtain the iterative



relationship

1 1
L (xz—l)"dx=[1 (x+D"(x—=1)"dx

(DM (x = 1)"+1
B n+1

/(x+1)” Lx = D)™ dx

A+ -t - (—1+1)"(—1 — 1!
- n+1

2n0n+1 _ 0n(_2)n+1 n 1 |
— _ 1 n— _ 1 n+l
n+1 n+1[1(x+ )= )T dx

1
/ (x+ D" x = 1) dx.
-1

- n+1 [1 (x+ 1) (x = 1) dx

n+1

This means that to integrate by parts n times, we need to iterate this process n times; we obtain
1 n 1
/ (x> =1)"dx = ——/ (x+ D" x = 1) ax
1 n+1 —1
=(— . ) —n_I/l(x+1)"_2(x—1)"+2dx
n+1 n+2 J_
n n—1 n—2
- [ _ +1 n-2 1 n+2d
( n+1)( n+2)( n+3/(x =D *

: We iterated 2 times so far. So we continue this process n — 2 more times.

= n n—1 n-2 n—(ﬂ—l) : n-n n+n
_(_n+1)(_n+2)(_n+3)'”(_T‘[l(X+1) (x — )™ dx

_ (-D)™n! o
- (Zn)'--(n+3)(n+2)(n+1)/ (x = D)™ dx
(—1)"(n!)> e !

B 2n)---(n+3)(n+2)(n+ l)n! 2n+ 1
_ (D) (1= P - (-1 -1

-1

(2n)! 2n+1
(_l)n(n!)2 02n+1 _ (_2)2n+1
T 2n)! 2+l
_ =D @)? -(=2)(=2*"
2n)! 2n+1
_ (=DM )P 2(2)*
(2n)!  2n+1

B (_1)n(n!)222n+1
T@2n)'2n+1)

Finally, we conclude

1
ILal® = (=1)" (2n)! / (o = 1)"(2n)! dx
-1
(_l)n(n!)222n+1

=(-1)"(2n)!
D T D)
(_ 1 )Zn (n!)222n+1

B 2n+1
(n!)222n+1

C 2n+1

as desired. O
(c) Prove that any polynomial of degree  that is orthogonal to 1,x,x2,...,x""! is a constant multiple of L,,.

Solution. 1do not know the answer to this one. This “proof™ is probably invalid. Let p,, be a polynomial of degree n on
[—1, 1] that is orthogonal to 1,x,x2,...,x" . Then we must have

1
/ p(x)x*dx =0.
-1



forany k =0,1,2,...,n— 1. Suppose by contradiction that such a polyonimal p,, is not a constant multiple of L,,. Then
we would have

pn(x) # ALn(x)
for all A € R and for all x € [—1, 1]. But then by part (a) we would have

1 1
/ p(x)x* dx # / AL, (x)x* dx
-1 -1

1
= /l/ Ly (x)x* dx

1
=1-0
=0,

but this contradicts our assumption that p,, is orthogonal to x* forany k = 0,1,2,...,n— 1. O

(d) Let £, = ﬁ, which are the normalized Legendre polynomials. Prove that {L£,} is the family obtained by applying

the “Gram-Schmidt process” to {1, x, X2, .}, and conclude that every Riemann integrable function f on [—1, 1]
has a Legendre expansion

S L L
n=0

which converges to f in the mean-square sense.

Solution. Since the Gram-Schmit process was not defined anywhere in the textbook, I will follow the process outlined
on the corresponding Wikipedia articlel. To prove that { £} is the family means, in this context, to prove that {£,} is
orthonormal. Since we have

L,
1Lnll = H—
ILnll
_ Ll
IZnll
=1,
we already see that £, is normal. To show that {£,} is orthonormal, we apply the “Gram-Schmidt process” to
{1,x,x%,...,x" ...} to construct an orthonormal basis {wg(x), w1 (x), wa(x), ..., wn(x),...} given by
wo(x) ;=1
and
(x, wo(x))
wi(x) 1= x — ——————-wo(x)
lIwo(x) 12
/_]1 x-ldx
=x—-—F—1
/—1 1dx
0
=x-=1
72
=x
and
(x*, wo(x)) (X, wi(x))
wa (x) 1= x% = 22w (x) — =t w (x)
[lwo(x) |12 w1 (012

) /_llxz-ldx1 f_llxzxdx
f_ll 12 dx f_ll x2 dx

(S}

I

=

|

—_

|
wIv| O

=

(S8

1l
=
|
W= e


https://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process

and

3 wo(x))

wi(x) =x° — wo(x) — —<XS’WI(X)>W (x) - —<XS’W2(X)>W (x)

Iwo()[2 " ° w2 w2

1 1 1
~ 3_/_1x3~1dx1_f_1x3xdx _/_1x3(x2—%)dx(2_l)
=X X X

1 1 1
/4 12 dx lezdx [](xz—%)zdx 3
2
z 0 1
=x3—gl—%x—?(x2—§)
3 3 45
3
=.X3—§X

and so on. We also have

d 0
Lo(x) = @(x -1)

— ()C2 _ 1)0

=wo(x)

and

d' !
Li(x) = E(X -1

d 2
= (-1
s )

=2x
=2w(x)

and
d2
Ly(x) = E(xz - 1)
=12x* -4
1

=12(x*- =

[#-3)
= 12wy (x)

and

&, 3
L3(x) = E(x -1

= 120x" - 72x
3
=120 (x° - 2
Y

= 120w3(x),
and so on. We can continue these processes infinitely many times—computing in general the n terms w, (x) and
L, (x)—to see that each term L, (x) is a scalar multiple of w,, (x). Therefore, since {wq(x), wi(x), w2(x), ..., w,(x),...}
is an orthonormal basis, it follows that {Lo(x), L1 (x), L2(x), ..., L,(x), ...} is an orthogonal basis, from which we can
immediately conclude that { Ly, £, L2, ..., Ly, ...} is an orthonormal basis.

Next, we will establish the Legendre expansion
F=4f L) L
n=0

by showing that the sum
N
SN (f) = D (fo L) Ln
n=0

converges to f in the mean-square sense. To this end, let € > 0 be given. By the Weierstrass Approximation Theorem,
there exists a polynomial p(x) of degree n defined on [—1, 1] that satisfies || f — p|| < €. By part (c), any polynomial is
a constant multiple of L,,, and in turn a constant multiple of £,,. In particular, we have

If =Sn(HIl < e

which means Sy (f) converges to f in the mean-square sense, as desired. O



3.4.3. Let a be a complex number not equal to an integer.
(a) Calculate the Fourier series of the 2x-periodic functiondefined on [—x, 7] by f(x) = cos(ax).

Solution. For all @ € C\ Z, we have the Fourier cosine coefficient
2 T
a, = —/ f(x) cos(nx) dx
21 J_»

T
:l/ cos(ax) cos(nx) dx
TJ-n

1 1
=— / —(cos(ax + nx) + cos(ax — nx)) dx
Tz 2

= % [: cos((n+ a)x) +cos((a — n)x) dx
_ 1 (sin((n+a)x) N sin((a,_n)x)) n

n+a a—n

-7

sin(ax + nx) N sin(ax — nx)) d

27r ( n+a a-n x
1 (sm(ax) cos(nx) + sin(nx) cos(ax) N sin(ax) cos(nx) — sin(nx) cos(a/x)) d
2 n+a a—n o
_ 1 (sin(ax) cos(nn) +sin(nr) cos(an)  sin(a(-n)) cos(n(-mn)) + sin(n(-mx)) cos(a(-n))
T on ( n+a - n+a
sin(ar) cos(nr) — sin(nr) cos(an)  sin(a(-r)) cos(n(—-n)) — sin(n(—n)) cos(a(-r))
+ _
a-n a—-n
_ 1 (sin(am)(=1)" +O0cos(an) —sin(an)(-1)" +0cos(an)
T on ( n+a - n+a
N sin(am)(—=1)" — 0 cos(am) s sin(ar)(—1)" — 0 cos(am)
a—-n a-n
(=" (ZSin(cm) . 2 sin(ar)
2r n+a a-n

_ (=D)" 4asin(ar)
T2t a-n?
_ (=D)"2asin(an)
 n(a?-n?)



and the Fourier sine coefficient
2 T
b, = —/ f(x) sin(nx) dx
2 J_

T
= l/ cos(ax) sin(nx) dx
TJ-n

1 71
= / E(sin(ax + nx) + sin(ax — nx)) dx

= % /n sin((n + a@)x) + sin((a — n)x) dx

1 (_cos((n +a)x)  cos((a - n)x)) d

" n+a a-n o
1 (cos(a/x + nx) . cos(ax — nx) ) g
2 n+a a—n o
1 (cos(a/x) cos(nx) — sin(nx) sin(ax) N cos(ax) cos(nx) + sin(nx) sin(a/x)) g
2 n+a a—-n r
1 (cos(ar)cos(nr) — sin(nr) sin(ar)  cos(a(—n)) cos(n(—n)) — sin(n(—mx)) sin(a(-x))
~2n ( n+a - n+a
N cos(arm) cos(nm) + sin(nr) sin(ar) _ cos(a(—m)) cos(n(—m)) + sin(n(-m)) sin(a(—n')))
a-n a-n
1 (cos(am)(—=1)" +Osin(anr) cos(an)(—1)" + Osin(ar)
" 2n ( n+a B n+a
N cos(am)(=1)" — Osin(ar) B cos(am)(=1)" — Osin(ar)
a-n a-n
1 0 0
" 2n (n +a * a - n)
-0,

which implies the complex Fourier coefficient
1 n )
cw=ne [ T
2m J
‘l V(3
= —/ F(x)(cos(nx) —isin(x)) dx
2 J_»

= %[: f(x) cos(nx)dx—i% [: f(x)sin(x) dx

_4n _ b
22
1 (-1)"2asin(ar) 0
= — =
2 n(a?-n?) 2

_ (=D"asin(ar)
T n(e?-n?)



for all integers n. The Fourier series in sine-cosine form is

(o]
inx

Fx) ~ Z
3 Z ( D"asin(am) ;,.
_n__m Cx(e?-n?)
= Z ( 71r)(a(2¥ Sln(Oﬁr)( os(nx) + i sin(nx))
= _Z: —(_711)(;!; S_i[;(;;ﬂ) cos(nx) +i Z_: —(_;)(::; S_ir;(zo;ﬂ) sin(nx)
-1 _1\n : 0 n
- Z (E)"asin(am) ;)(a‘z”_“;(f)‘”) cos(nx) + (1) asinlam) 12 ‘;smo(z‘;”) cos(Ox )+Z( lza‘;sm("”) cos(nx)
( 1)"asm(cm) (-1 sin(arn) . (-nH" asm(cm)
(Z s+ A o 5 G )
(=1)"a sin(ar) sm(cm) (=D "asin(am)
ZZ EIrEEnD Z Ty )
(=) asin(an) (=D"asin(an) .
i[5 ) o 0§ I )

H" > (=)
_ Z (-1 a/sm(mr) cos(nx) + 1n(aﬂ) N Z (-1 asm(mr) cos(nx)
m(a? - g m(a? -
. (-D"a sm(a/ﬂ) — (—1)"a sin(an)
+i ( ; 1@ - Z; (e —n?) sin(nx)
n
_ sm(cm) Z ( ﬂl()azsln(cm) os(nx) + i0
B sm(a/n) (=)™ sin(an)
=| " on Z —nz) cos(nx)
foralla € C\ Z.
(b) Prove the following formulas due to Euler:
3 1 __ 7
=— )
i n? — 202 2atan(an)
Forallu € C\ nzZ,
1 - u
COt(M) = ; +2; m
Solution. Atx =, we have f(r) = cos(an), and the Fourier series becomes
sm(om) (=n" sm(om)
fim) = Z Ty COs)
s1n(a7r) (=)™ sin(an)
= +2a -z @~ 7 1 n
Z ot D
sm(aﬂ) (=1)*" sin(an)
= + 2«
Z n(a? —n?)
sin(an) o sin(an)
= — 2 —_—
o QZ (a2 - n?)

sm(mr) 2a sm(a/n)

an



So we conclude

© 1 B P sin(ar)
nz:; n?—a? 2asin(an) ( - fim ))
B T sin(ar)
"~ 2asin(an) ( ar COS(CM))
1 7 cos(am)
T 222 2a sin(am)
1 by

T 202 2« tan(am)

for all @ € C\ Z, which is the first identity. Furthermore, if we substitute u = a, then the first identity becomes

- 1 T
2, n?—(4)2 7 2(%)2 2% tan(u)’

n=1

which can be rewritten as
2 2

[ee)
Z - "_ T
nzn u?  2utan(u)’

n=1

from which we candivide both sides by 72 to obtain

S 1 1
Z m2r2 —u2 2u?  2utan(u)

n=1
So we conclude
t(u) = ——
cot(u) tan(u)
_ 2u
"~ Qutan(u)

1 1
_2 -
" (2u2 nz; n2n? —uz)

1 < 1
=2u (ﬁ-’-z u2—n2ﬂ2)

n=1
1 Zi u
=—+ -
u u? —n2n?
n=1

for all u € C \ nZ, which is the second identity.

(c) Show that for all @ € C\ Z we have

an ( 1)n 1
=1+2a -
sin(ar) Z n? —a?

Solution. Atx =0, we have f(x) = cos(a(0)) = 1, and the Fourier series becomes

sm(a7r) Z( 1)"sm(a7r) cos(n(0))

m(a? -

f(m) =

3 sm(om) Z (=1)"sin(ar)

m(a? —n?)

_sin(anr) | 2asin(an) (=)™ 1(-1)
= e Z @2 —n2

sin(arr) 2« sin(anr) i (=1t
= + .
2 — a2

an



So we conclude

an amn

sin(arm) - sin(ar) .

o _f(m)

sin(ar)

_an (sin(cm) N 2a sin(a) i (=t
n=1

 sin(an) an T n? —a?

foralla € C\ Z. O

o ta/—l
/ dt = — T
o t+1 sin( )
[Hint: Split the integral as fol + flw and change variables ¢ = i in the second integral. Now both integrals are of the
form

(d) Forall 0 < a < 1, show that

1 t'y—l

0 1+¢
o (=D"

n=0 n+y

for all 0 < y < 1, which one can show is equal to ), . Use part (c) to conclude the proof.]

Solution. Following the hint, we split the integral by writing

oo .a—1 1 ca-1 oo ca—1
t t t
/ dt = —dt+/ — dt.
o t+1 o t+1  t+1

Employing the substitution r = -, which implies d¢ = —- du, our second integral becomes
u u
00 ta—] 0 l a—1 1
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1+l ot \w?
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1 2
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! 1
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1 (1-a)-1
= / dt
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Therefore, we can express our integral as

t
1 a- 1 (1-a)-1
t t
= / —dt+ / dt,
o t+1 o t+1
meaning that the requested integral is expressed as the sum of two integrals of the form fol % dt forany 0 < y < 1.

Next, we will continue following the given hint by establishing

1 -1 sl n
tY -1
——dt = E )
o t+1 —n+y

forany 0 <y < 1. Fix 0 < s < 1 and observe that for all 0 < # < s, we invoke the geometric sum formula to obtain
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which implies
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Furthermore, this series is Abel summable, and so by Abel’s Theorem we obtain
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Finally, we conclude
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where we invoked part (c) for our second-to-last last equality above, as given by the final part of the textbook hint.



