
MATH 147 discussion Ryan Ta
University of California, Riverside Winter 2021

Solutions to assigned homework problems from Fourier Analysis: An Introduction by Elias Stein and Rami Sakarchi

Homework 2

• Sect. 1.4: 1

• Sect. 3.3: 3, 4, 5, 7, 8, 9, 10, 12

• Sect. 3.4: 2, 3

1.4.1. We look for a solution of the steady-state heat equation ΔD = 0 in the rectangle ' = {(G, H) : 0 ≤ G ≤ c, 0 ≤ H ≤ 1} that
vanishes on the vertical sides of ', and so that

D(G, 0) = 50 (G) and D(G, 1) = 51 (G),

where 50 and 51 are initial data which fix the temperature distribution on the horizontal sides of the rectangle. Use separation
of variables to show that if 50 and 51 have Fourier expansions

50 (G) =
∞∑
:=1

�: sin(:G) and 51 (G) =
∞∑
:=1

�: sin(:G)

then

D(G, H) =
∞∑
:=1

(
sinh(: (1 − H))

sinh(:) �: +
sinh(:H)
sinh(:) �:

)
sinh(:G).

We recall the definitions of the hyperbolic sine and cosine functions:

sinh(G) = 4
G − 4−G

2
and cosh(G) = 4

G + 4−G
2

.

Solution. To commence the method of separation of variables, write

D(G, H) = i(G)k(H),

as suggested by page 4 of the textbook. Our partial derivatives are

DGG (G, H) = i′(G)k(H),
DHH (G, H) = i(G)k ′′(H)

So the steady-state heat equation ΔD = 0, or DGG + DHH = 0, becomes

iGG (G)k(H) + i(G)kHH (H) = 0.,

which we can algebraically rearrange to write
iGG

i
= −

kHH

k
= −_,

where _ ∈ R is a constant in both G and H. This produces the system of two ordinary differential equations

iGG + _i = 0,
kHH − _k = 0.

This system is decoupled, which allows us to solve each one independently and obtain the general solutions

i(G) =


�14

√
−_G + �24

−
√
−_G if _ < 0,

�1G + �2 if _ = 0,
�1 cos(

√
_G) + �2 sin(

√
_G) if _ > 0,

k(H) =


�1 cos(

√
−_H) + �2 sin(

√
−_H) if _ < 0,

�1H + �2 if _ = 0,
�14

√
_H + �24

−
√
_H if _ > 0,

where �1, �2, �1, �2 are constants. Now, the boundary conditions

D(0, H) = D(c, H) = 0



are equivalent to

i(0)k(H) = 0,
i(c)k(H) = 0,

which imply either k(H) = 0 or i(0) = i(c) = 0. If k(H) = 0, then we would have

D(G, H) = i(G)k(H)
= i(G)0
= 0,

which would be a trivial solution. So we should assume

i(0) = i(c) = 0,

which will impose constraints on the constants �1, �2, depending on _. This motivates us to break this down into cases.

• Case 1: Suppose _ < 0. Then we have

i(G) = �14
√
−_G + �24

−
√
−_G ,

i(0) = 0,

which implies �1 + �2 = 0, or �2 = −�1. So we have

i(G) = �14
√
−_G + �24

−
√
−_G

= �14
√
−_G − �14

−
√
−_G

= �1 (4
√
−_G − 4−

√
−_G).

We notice 4
√
−_c − 4−

√
−_c ≠ 0 unless _ = 0. This means

i(G) = �1 (4
√
−_G + 4−

√
−_G),

i(c) = 0

implies �1 = 0, and so we have

i(G) = �1 (4
√
−_G − 4−

√
−_G)

= 0(4
√
−_G + 4−

√
−_G)

= 0,

which would mean D is a trivial solution. Therefore, the problem has no negative eigenvalues.

• Case 2: Suppose _ = 0. Then we have

i(G) = �1G + �2,

i(0) = 0,

implies �2 = 0, and so we have

i(G) = �1G + �2

= �1G + 0
= �1G.

Furthermore, i(c) = 0 implies �1 = 0, and so we write i(G) = 0. Therefore, we have

D0 (G, H) = i(G)k(H)
= 0k(H)
= 0,

which is a trivial solution.

• Case 3: Suppose _ > 0. Then we have

i(G) = �1 cos(
√
_G) + �2 sin(

√
_G),

i(0) = 0,



which implies �1 = 0, and so we have

i(G) = �1 cos(
√
_G) + �2 sin(

√
_G)

= 0 cos(
√
_G) + �2 sin(

√
_G)

= �2 sin(
√
_G).

Next, we have

i(G) = �2 sin(
√
_G),

i(c) = 0

implies either �2 = 0 or sin(
√
_c) = 0. But �2 = 0 (with �1 = 0) implies i(G) = 0 and that D(G, H) would be a trivial

solution. So we should assume
√
_c = =c, or equivalently the eigenvalues

_: = _ = =
2,

with the corresponding eigenfunctions

i: (G) = �2,: sin(
√
_:G)

= �2,: sin(
√
=2G)

= �2,: sin(:G).

Next, we need to express k: as a linear combination of hyperbolic sine functions. We can first rewrite

k: (H) = �1,:4
:H + �2,:4

−:H

= 2�1,:

(
4:H − 4−:H

2
+ 4
−:H

2

)
− 24−:�2,:

(
4=(H−1) − 4−: (H−1)

2
− 4

=(H−1)

2

)
= 2�1,:

(
sinh(:H) + 4

−:H

2

)
− 24−:�2,:

(
sinh(: (H − 1)) − 4

=(H−1)

2

)
= 2�1,: sinh(:H) + �1,:4

−:H − 24−:�2,: sinh(: (H − 1)) + 4−2:�2,:4
:H

= 2�1,: sinh(:H) − 24−:�2,: sinh(: (H − 1)) + 4−2:�2,:4
:H + �1,:4

−:H .

As the choice of constants is arbitrary, we are allowed to relabel the constants. By relabeling the constants, we can write

k: (H) = �1,: sinh(:H) + �2,: sinh(: (H − 1)) + �3,:4
:H − �3,:4

−:H

= �1,: sinh(:H) + �2,: sinh(: (H − 1)) + 2�3,:
4−:H − 4:H

2
= �1,: sinh(:H) + �2,: sinh(: (H − 1)) + 2�3,: sinh(:H)
= (�1,: + 2�3,: ) sinh(:H) + �2,: sinh(: (H − 1)).

By relabeling the constants one more time, we can finally write

k: (H) = �1,: sinh(:H) + �2,: sinh(: (H − 1)).

Therefore, if we write 0: := �2,:�1,: and 1: := �2,:�2,: , then we have

D: (G, H) = -: (G)k: (H)
= (�2,: sin(:G)) (�1,: sinh(:H) + �2,: sinh(: (H − 1)))
= sin(:G) (�2,:�1,: sinh(:H) + �2,:�2,: sinh(: (H − 1)))
= sin(:G) (0: sinh(:H) + 1: sinh(: (H − 1))).

for : = 1, 2, 3, . . ., which is a nontrivial solution.

Given

D(G, H) =
∞∑
:=1

sin(:G) (0: sinh(:H) + 1: sinh(: (H − 1))),

we have

50 (G) = D(G, 0) =
∞∑
:=1

1: sin(:G) sinh(−:),

51 (G) = D(G, 1) =
∞∑
:=1

0: sin(:G) sinh(:).



Now, recall ∫ c

0
sin(:G) sin(;G) 3G =

{
c
2 if : = ;,
0 if : ≠ ;.

Consequently, the Fourier sine series expansion of 50 and 51 suggest that �: and �: are the Fourier sine coefficients of 50 and
51, respectively. So we obtain

�: =
2
c

∫ c

0
50 (G) sin(:G) 3G

=
2
c

∫ c

0
D(G, 0) sin(:G) 3G

=
2
c

∫ c

0

( ∞∑
;=1

sin(;G)1; sin(;G) sinh(−<)
)

sin(:G) 3G

=
2
c

∞∑
;=1

1; sinh(−<)
∫ c

0
sin(;G) sin(:G) 3G

=
2
c
1: sinh(−:) c

2

= − 2
c
1: sinh(:) c

2
= −1: sinh(:)

and

�: =
2
c

∫ c

0
51 (G) sin(:G) 3G

=
2
c

∫ c

0
D(G, 1) sin(:G) 3G

=
2
c

∫ c

0

( ∞∑
;=1

0; sin(;G) sinh(;)
)

sin(:G) 3G

=
2
c

∞∑
;=1

0; sinh(;)
∫ c

0
sin(;G) sin(:G) 3G

=
2
c
0: sinh(:) c

2
= 0: sinh(:).

So we obtain the coefficients

0: =
�:

sinh(:) ,

1: = −
�:

sinh(:) .

So our formal solution is

D(G, H) =
∞∑
:=1

sin(:G) (0: sinh(:H) + 1: sinh(: (H − 1)))

=

∞∑
:=1

sin(:G)
(

�:

sinh(:) sinh(:H) − �:

sinh(:) sinh(: (H − 1))
)

=

∞∑
:=1

(
− sinh(: (H − 1))

sinh(:) �: +
sinh(:H)
sinh(:) �:

)
sin(:G)

=

∞∑
:=1

(
sinh(: (1 − H))

sinh(:) �: +
sinh(:H)
sinh(:) �:

)
sin(:G),

as desired. �

3.3.3. Construct a sequence of integrable functions { 5: } on [0, 2c] such that

lim
:→∞

1
2c

∫ 2c

0
| 5: (\) |2 3\ = 0

but lim
:→∞

5: (\) fails to exist for any \.

[Hint: Choose a sequence of intervals �: ⊂ [0, 2c] whose lengths tend to 0, and so that each point belongs to infinitely many
of them; then let 5: = j�: .]



Solution. Consider a sqeuence {�: }∞:=1 defined by �: := [0, 1
:
], which satisfies �: ⊂ [0, 2c], so that their lengths |�: | tend to

0 as : →∞. If we choose 5: = j�: , then we have

1
2c

∫ 2c

0
| 5: (\) |2 3\ =

1
2c

∫ 2c

0
|j�: (\) |2 3\

=
1

2c

∫ 1
:

0
|j�: (\) |2 3\ +

1
2c

∫ 2c

1
:

|j�: (\) |2 3\

=
1

2c

∫ 1
:

0
12 3\ + 1

2c

∫ 2c

1
:

02 3\

=
1

2c

∫ 1
:

0
1 3\

=
1

2c
\

���� 1
:

0

=
1

2c

(
1
:
− 0

)
=

1
2c:

,

which implies

lim
:→∞

1
2c

∫ 2c

0
| 5: (\) |2 3\ = lim

:→∞

1
2c:

=
1

2c
lim
:→∞

1
:

=
1

2c
(0)

= 0.

Now, we will show that lim
:→∞

5: (\) fails to exist for any \. At the same time, we also have

lim
:→∞

j�: (\) =
{

0 if G ≠ 0,
∞ if G = 0,

which is a Dirac delta distribution, not a function. In other words, there does not exist a function 5 that is a limit of { 5: }∞:=1. �

3.3.4. Recall the vector space R of integrable functions, with its inner product and norm

‖ 5 ‖ =
(

1
2c

∫ 2c

0
| 5 (G) |2 3G

) 1
2

.

(a) Show that there exist non-zero integrable functions 5 for which ‖ 5 ‖ = 0.

Solution. Choose for instance

5 (G) =
{

0 if G ≠ c,
1 if G = c.

Then we have 5 ∈ R and 5 is nonzero, and

‖ 5 ‖2 = 1
2c

∫ 2c

0
| 5 (G) | 3G

=
1

2c

(∫ c

0
| 5 (G) | 3G +

∫ 2c

c

| 5 (G) | 3G
)

=
1

2c
(0 + 0)

= 0,

meaning that 5 satisfies all the requested properties. �

(b) However, show that if 5 ∈ R with ‖ 5 ‖ = 0, then 5 (G) = 0 whenever 5 is continuous at G.



Solution. Suppose instead 5 (G) ≠ 0 and 5 is continuous at G for all 0 ≤ G ≤ 2c. Then we have 5 (G) > 0 or 5 (G) < 0 for
all 0 ≤ G ≤ 2c. In either case, we have | 5 (G) | > 0, which implies | 5 (G) |2 > 02 = 0 for all 0 ≤ G ≤ 2c, and so we obtain

‖ 5 ‖2 = 1
2c

∫ 2c

0
| 5 (G) |2 3G

>
1

2c

∫ 2c

0
0 3G

= 0,

or equivalently ‖ 5 ‖ > 0, which contradicts the assumption ‖ 5 ‖ = 0. So we are forced to conclude 5 (G) = 0. �

(c) Conversely, show that if 5 ∈ R vanishes at all of its points of continuity, then ‖ 5 ‖ = 0.

Solution. Since we assume 5 ∈ R, it follows by Theorem 1.7 of the Appendix (Integration) in Stein and Shakarchi that
5 is continuous on 0 ≤ G ≤ 2c except on a set of measure zero. We also assume that 5 vanishes at all of its points of
continuity; in this case, we have 5 = 0 except on a set of measure zero. Let � ⊂ [0, 2c] be such a set of measure zero;
that is, � satisfies |�| = 0, where |�| denotes the length of �. Then we have 5 (G) = 0 for all G ∈ [0, 2c] \ �. Note that a
set of measure zero can be either empty or nonempty. If � is nonempty, then we have

0 ≤
∫
�

| 5 (G) |2 3G

≤
∫
�

sup
G∈�
| 5 (G) |2 3G

= sup
G∈�
| 5 (G) |2

∫
�

1 3G

= sup
G∈�
| 5 (G) |2 |�|

= sup
G∈�
| 5 (G) |2 · 0

= 0,

which implies ∫
�

| 5 (G) |2 3G = 0.

So we obtain

‖ 5 ‖2 = 1
2c

∫ 2c

0
| 5 (G) |2 3G

=
1

2c

(∫
�

| 5 (G) |2 3G +
∫
[0,2c ]\�

| 5 (G) |2 3G
)

=
1

2c

(
0 +

∫
[0,2c ]\�

02 3G

)
= 0,

which is equivalent to ‖ 5 ‖ = 0, as desired. On the other hand, if � is empty, or � = ∅, then the argument is somewhat
trivial: we have |�| = |∅| = 0 and 5 (G) = 0 for all 0 ≤ G ≤ 2c, and so we obtain

‖ 5 ‖2 = 1
2c

∫ 2c

0
| 5 (G) |2 3G

=
1

2c

∫ 2c

0
02 3G

= 0

which is equivalent to ‖ 5 ‖ = 0, as desired. �

3.3.5. Let

5 (\) =
{

0 for \ = 0,
log( 1

\
) for 0 < \ ≤ 2c,

and define a sequence of functions in R by

1= (\) =
{

0 for 0 ≤ \ ≤ 1
=
,

5 (\) for 1
=
< \ ≤ 2c.

Prove that {1=}∞==1 is a Cauchy sequence in R. However, 5 does not belong to R.



Solution. Since we have 5 (\) = log( 1
\
) for 0 < \ ≤ 2c, this holds true in particular for 1

=
< \ ≤ 2c for all = = 1, 2, 3, . . .. So

we can actually write

5= (\) =
{

0 for 0 ≤ \ ≤ 1
=
,

log( 1
\
) for 1

=
< \ ≤ 2c.

Now we will show that { 5=}∞==1 is a Cauchy sequence with respect to the norm of R. Let <, = be large positive integers with
the assumption < > = without loss of generality. We apply the Pythagorean Theorem for the norm of R in order to obtain

‖ 5= − 5<‖2 = ‖( 5= − 5<) + 5<‖2 − ‖ 5<‖2

= ‖ 5=‖2 − ‖ 5<‖2

=
1

2c

∫ 2c

0
|1= (\) |2 3\ −

1
2c

∫ 2c

0
| 5< (\) |2 3\

=
1

2c

(∫ 2c

0
|1= (\) |2 3\ −

∫ 2c

0
| 5< (\) |2 3\

)
=

1
2c

(∫ 2c

1
=

����log
(

1
\

)����2 3\ − ∫ 2c

1
<

����log
(

1
\

)����2 3\)
=

1
2c

∫ 1
<

1
=

����log
(

1
\

)����2 3\
=

1
2c

∫ 1
<

1
=

(log(\))2 3\

= \ (log(\))2 |
1
<
1
=

− 2
∫ 1

<

1
=

log(\) 3\

=
1
<

(
log

(
1
<

))2

− 1
=

(
log

(
1
=

))2

− 2

(
\ log(\) |

1
<
1
=

−
∫ 1

<

1
=

1 3\

)
=

1
<

(
log

(
1
<

))2

− 1
=

(
log

(
1
=

))2

− 2\ log(\) |
1
<
1
=

+ 2\ |
1
<
1
=

=
1
<

(
log

(
1
<

))2

− 1
=

(
log

(
1
=

))2

− 2
<

log
(

1
<

)
+ 2
=

log
(

1
=

)
+ 2
<
− 2
=

=
1
<

((
log

(
1
<

))2

− 2 log
(

1
<

)
+ 2

)
− 1
=

((
log

(
1
=

))2

− 2 log
(

1
=

)
+ 2

)
=

1
<

((
log

(
1
<

)
− 1

)2

+ 1

)
− 1
=

((
log

(
1
=

)
− 1

)2

+ 1

)
=
(log(<) + 1)2 + 1

<
− (log(=) + 1)2 + 1

=

→ 0 − 0
= 0

as <, = → ∞, which signifies that {1=}∞==1 is a Cauchy sequence. The convergence towards the end of our previous calcula-
tions is due to the following limit (for my method, I applied l’Hôpital’s rule twice as follows):

lim
G→∞

(log(G) + 1)2 + 1
G

= lim
G→∞

3
3G
((log(G) + 1)2 + 1)

3
3G
G

= lim
G→∞

2(log(G) + 1) 1
G

1

= lim
G→∞

2(log(G) + 1)
G

= lim
G→∞

3
3G

2(log(G) + 1)
3
3G
G

= lim
G→∞

2
G

1

= lim
G→∞

2
G

= 0,

as desired. �



3.3.7. Show that the trigonometric series
∞∑
==2

1
log(=) sin(=G)

converges for every G, yet it is not the Fourier series of a Riemannian integrable function.

Solution. We can write
∞∑
==2

1
log(=) sin(=G) =

∞∑
==2

0=1=,

provided that we define

0= :=
1

log(=) ,

1= := sin(=G).

Observe that the sequence {0=}∞==1 decreases monotonically to 0, whereas {1=}∞==1 is bounded, which implies����� #∑
==1

1=

����� ≤ #∑
==1

|1= |

=

#∑
==1

| sin(=G) |

=

#∑
==1

1

= #.

By Dirichlet’s test (see Exercise 2.6.7(b) of the textbook), we conclude that

∞∑
==2

1
log(=) sin(=G) =

∞∑
==2

0=1=,

converges for any G ∈ R. Consider some function 5 whose Fourier series is

∞∑
==2

2= sin(=G),

where we define 2= := 1
log(=) . Then by Parseval’s identity, we have

‖ 5 ‖2 =
∞∑
==2

|2= |2

=

∞∑
==2

1
| log(=) |2

= ∞,

meaning that 5 is not Riemann integrable. There are many ways to show that the series

∞∑
==2

1
| log(=) |2

is divergent. Perhaps the most elementary method of showing this is the integral test: we have∫ ∞

2

1
| log(G) |2

3G =

∫ ∞

2

1
log(G) log(G) 3G

≥
∫ ∞

2

1
G log(G) 3G

=

∫ ∞

log(2)

1
D
3D

= | log(D) | |∞log(2)

= log(∞) − log(log(2))
= ∞.

Therefore, the series in question diverges by the integral test. �



3.3.8. Exercise 6 in Chapter 2 dealt with the sums ∑
==1,3,5,...

1
=2 and

∞∑
==1

1
=2 .

Similar sums can be derived using the methods of this chapter.

(a) Let 5 be the functiondefined on [−c, c] by 5 (\) = |\ |. Use Parseval’s identity to find the sums of the following two
series:

∞∑
==0

1
(2= + 1)4

=
c4

96
and

∞∑
==1

1
=4 =

c4

90
.

Solution. We have already computed in Exercise 2.6.6 that the =th Fourier coefficient of 5 (\) = |\ | is

2= =

{
c
2 if = = 0,
−1+(−1)=
c=2 if = ≠ 0

for all integers =. We have

‖ 5 ‖2 = 1
2c

∫ c

−c
| 5 (\) |2 3\

=
1

2c

∫ c

−c
|\ |2 3\

=
1

2c

∫ c

−c
\2 3\

=
1

2c
\3

3

����c
−c

=
1

2c
c3 − (−c)3

3

=
1

2c
2c3

3

=
c2

3
and, by Parseval’s identity,

‖ 5 ‖2 =
∞∑

==−∞
|2= |2

= |20 |2 +
∑
=≠0
=∈Z

|2= |2

=

���c
2

���2 +∑
=≠0
=∈Z

����−1 + (−1)=
c=2

����2
=
c2

4
+ 2

∞∑
==1

|−1 + (−1)= |2
c2=4

=
c2

4
+ 2

( ∑
==1,3,5,...

|−1 + (−1)= |2
c2=4 +

∑
==2,4,6,...

|−1 + (−1)= |2
c2=4

)
=
c2

4
+ 2

( ∑
==1,3,5,...

|−2|2
c2=4 +

∑
==2,4,6,...

|0|2
c2=4

)
=
c2

4
+ 2

∑
==1,3,5,...

4
c2=4

=
c2

4
+ 8
c2

∑
==1,3,5,...

1
(2= + 1)4

=
c2

4
+ 8
c2

∞∑
==0

1
(2= + 1)4

.

We combine our two expressions of ‖ 5 ‖2 to conclude

c2

3
=
c2

4
+ 8
c2

∞∑
==0

1
(2= + 1)4

,



which is algebraically equivalent to

∞∑
==0

1
(2= + 1)4

=
c2

8

(
c2

3
− c

2

4

)
=
c2

8
c2

12

=
c4

96
,

which is the first sum. Furthermore, we obtain

∞∑
==1

1
=4 =

∑
==1,3,5,...

1
=4 +

∑
==2,4,6,...

1
=4

=

∞∑
==0

1
(2= + 1)4

+
∞∑
==1

1
(2=)4

=
c4

96
+ 1

16

∞∑
==1

1
=4 ,

which is algebraically equivalent to

∞∑
==1

1
=4 =

16
15
c4

96

=
c4

90
,

which is the second sum. �

(b) Consider the 2c-periodic odd functiondefined on [0, c] by 5 (\) = \ (c − \). Show that

∞∑
==0

1
(2= + 1)6

=
c6

960
and

∞∑
==1

1
=6 =

c6

945
.

Solution. We have already computed in Exercise 2.6.4 that the =th Fourier coefficient of 5 (\) = \ (c − \) is

2= =

{
0 if = = 0,
2( (−1)=−1)

c=3 8 if = ≠ 0

for all integers =. We have

‖ 5 ‖2 = 1
c

∫ c

0
| 5 (\) |2 3\

=
1
c

∫ c

0
\2 (c − \)2 3\

=
1
c

∫ c

0
\2 (c2 − 2c\ + \2) 3\

=
1
c

(∫ c

0
\2 (c2 − 2c\ + \2) 3\

)
=

1
c

(∫ c

0
c2\2 − 2c\3 + \4 3\

)
=

1
c

(
c2

∫ c

0
\2 3\ − 2c

∫ c

0
\3 3\ +

∫ c

0
\4 3\

)
=

1
c

(
c2 \

3

3

����c
0
− 2c

\4

4

����c
0
+ \

5

5

����c
0

)
=

1
c

(
c2 c

3 − 03

3
− 2c

c4 − 04

4
+ c

5 − 05

5

)
=

1
c

(
c5

3
− c

5

2
+ c

5

5

)
=
c4

30



and, by Parseval’s identity,

‖ 5 ‖2 =
∞∑

==−∞
|2= |2

= |20 |2 +
∑
=≠0
=∈Z

|2= |2

= |0|2 +
∑
=≠0
=∈Z

����2((−1)= − 1)
c=3 8

����2
= 2

∞∑
==1

|2((−1)= − 1) |2
c2=6

= 8
∞∑
==1

| (−1)= − 1|2
c2=6

= 8

( ∑
==1,3,5,...

| (−1)= − 1|2
c2=6 +

∑
==2,4,6,...

| (−1)= − 1|2
c2=6

)
= 8

( ∑
==1,3,5,...

|−2|2
c2=6 +

∑
==2,4,6,...

|0|2
c2=6

)
= 8

∑
==1,3,5,...

4
c2=6

=
32
c2

∑
==1,3,5,...

1
(2= + 1)6

=
32
c2

∞∑
==0

1
(2= + 1)6

.

We combine our two expressions of ‖ 5 ‖2 to conclude

c4

5
=

32
c2

∞∑
==0

1
(2= + 1)6

,

which is algebraically equivalent to

∞∑
==0

1
(2= + 1)6

=
c2

32
c4

30

=
c6

960
,

which is the first sum. Furthermore, we obtain

∞∑
==1

1
=6 =

∑
==1,3,5,...

1
=6 +

∑
==2,4,6,...

1
=6

=

∞∑
==0

1
(2= + 1)6

+
∞∑
==1

1
(2=)6

=
c6

960
+ 1

64

∞∑
==1

1
=6 ,

which is algebraically equivalent to

∞∑
==1

1
=4 =

64
63

c6

960

=
c6

945
,

which is the second sum. �

3.3.9. Show that, if U is not an integer, the Fourier series of

5 (G) = c

sin(cU) 4
8 (c−G)U



on [0, 2c] is given by

5 (G) ∼
∞∑

==−∞

48=G

= + U .

Apply Parseval’s formula to show that
∞∑

==−∞

1
(= + U)2

=
c2

sin2 (cU)
.

Solution. For all integers =, the Fourier coefficient is

2= =
1

2c

∫ 2c

0
5 (G)4−8=G 3G

=
1

2c

∫ 2c

0

c

sin(cU) 4
8 (c−G)U4−8=G 3G

=
48 cU

2 sin(cU)

∫ 2c

0
4−8 (=+U)G 3G

=
48 cU

2 sin(cU)

(
− 1
8(= + U) 4

−8 (=+U)G
����2c
0

)
= − 48 cU

2 sin(cU)
4−8 (=+U)2c − 1
8(= + U)

= − 48 cU

2 sin(cU)
4−28 cU428 c= − 1

8(= + U)

= − 48 cU

2 sin(cU)
4−28 cU − 1
8(= + U)

=
1

(= + U) sin(cU)
48 cU − 4−8 cU

28

=
sin(cU)

(= + U) sin(cU)

=
1

= + U ,

and so the Fourier series on [2, c] is given by

5 (G) ∼
∞∑

==−∞
2=4

8=G

=

∞∑
==−∞

48=G

= + U .

Now, we have

‖ 5 ‖2 = 1
2c

∫ 2c

0
| 5 (G) |2 3G

=
1

2c

∫ 2c

0

���� c

sin(cU) 4
8 (c−G)U

����2 3G
=

1
2c

c2

sin2 (cU)

∫ 2c

0
|48 (c−G)U |2 3G

=
1

2c
c2

sin2 (cU)

∫ 2c

0
12 3G

=
1

2c
c2

sin2 (cU)

∫ 2c

0
1 3G

=
1

2c
c2

sin2 (cU)
G

����2c
0

=
1

2c
c2

sin2 (cU)
(2c − 0)

=
c2

sin2 (cU)



and, by Parseval’s identity,

‖ 5 ‖2 =
∞∑

==−∞
|2= |2

=

∞∑
==−∞

���� 1
= + U

����2
=

∞∑
==−∞

1
(= + U)2

.

Equate our two expressions of ‖ 5 ‖2 together to conclude
∞∑

==−∞

1
(= + U)2

=
c2

sin2 (cU)
,

as desired. �

3.3.10. Consider the example of a vibrating string which we analyzed in Chapter 1. The displacement D(G, C) of the string at time C
satisfies the wave equation

1
22

m2D

mC2
=
m2D

mG2 ,

where 22 = g
d

. The string is subject to the initial conditions

D(G, 0) = 5 (G) and
mD

mC
(G, 0) = 6(G),

where we assume that 5 ∈ �1 and 6 is continuous. We define the total energy of the string by

� (C) = 1
2
d

∫ !

0

(
mD

mC

)2

3G + 1
2
g

∫ !

0

(
mD

mG

)2

3G.

Show that the total energy of the string is conserved, in the sense that � (C) is constant. Therefore,

� (C) = � (0) = 1
2
d

∫ !

0
6(G)2 3G + 1

2
g

∫ !

0
5 ′(G)2 3G.

Solution. We have

� ′(C) = 3

3C

(
1
2
d

∫ !

0

(
mD

mC

)2

3G + 1
2
g

∫ !

0

(
mD

mG

)2

3G

)
=

1
2
d

∫ !

0

m

mC

(
mD

mC

)2

3G + 1
2
g

∫ !

0

m

mC

(
mD

mG

)2

3G

= d

∫ !

0

mD

mC

m2D

mC2
3G + g

∫ !

0

mD

mG

m

mC

(
mD

mG

)
3G

= d

∫ !

0

mD

mC

(
22 m

2D

mG2

)
3G + g

∫ !

0

mD

mG

m

mC

(
mD

mG

)
3G

= d

∫ !

0

mD

mC

(
g

d

m2D

mG2

)
3G + g

∫ !

0

mD

mG

m

mG

(
mD

mC

)
3G

= g

(∫ !

0

mD

mC

m2D

mG2 3G +
∫ !

0

mD

mG

m

mG

(
mD

mC

)
3G

)
.

The vibrating string has fixed endpoints (see page 10 of Stein-Shakarchi), which means D(0, C) = D(!, C), and so, when we
use integration by parts on the second term, we obtain∫ !

0

mD

mG

m

mG

(
mD

mC

)
3G =

mD

mC

mD

mG

����!
0
−

∫ !

0

mD

mC

m2D

mG2 3G

=
mD(!, C)
mC

mD(!, C)
mG

− mD(0, C)
mC

mD(0, C)
mG

−
∫ !

0

mD

mC

m2D

mG2 3G

=
mD(0, C)
mC

mD(0, C)
mG

− mD(0, C)
mC

mD(0, C)
mG

−
∫ !

0

mD

mC

m2D

mG2 3G

= 0 −
∫ !

0

mD

mC

m2D

mG2 3G

= −
∫ !

0

mD

mC

m2D

mG2 3G.



Therefore, we conclude

� ′(C) = g
(∫ !

0

mD

mC

m2D

mG2 3G +
∫ !

0

mD

mG

m

mG

(
mD

mC

)
3G

)
= g

(∫ !

0

mD

mC

m2D

mG2 3G −
∫ !

0

mD

mC

m2D

mG2 3G

)
= g · 0
= 0,

meaning that the total energy � (C) is constant. �

3.3.12. Prove that ∫ ∞

0

sin(G)
G

3G =
c

2
.

[Hint: Start with the fact that the integral of �# (\) equals 2c, and note that the difference 1
sin( \2 )

− 2
\

is continuous on [−c, c].
Apply the Riemann-Lebesgue lemma.]

Solution. The Stein and Shakarchi textbook has defined in page 37

�# (\) :=
#∑

==−#
48=\

and established its closed form

�# (\) =
sin((# + 1

2 )\)
sin( \2 )

.

As stated in the hint, we have∫ c

−c

sin((# + 1
2 )\)

sin( \2 )
3\ =

∫ c

−c
�# (\) 3\

=

∫ c

−c

#∑
==−#

48=\ 3\

=

−1∑
==−#

1
8=
48=\

����c
−c
+

∫ c

−c
48 (0) \ 3\ +

#∑
==1

1
8=
48=\

����c
−c

=

−1∑
==−#

48=c − 4−8=c
8=

+
∫ c

−c
1 3\ +

#∑
==1

48=c − 4−8=c
8=

=

−1∑
==−#

0
8=
+

∫ c

−c
1 3\ +

#∑
==1

0
8=

=

∫ c

−c
1 3\

= \ |c−c
= c − (−c)
= 2c.



By using for instance l’Hôpital’s rule twice, we obtain

lim
\→0

(
1

sin( \2 )
− 2
\

)
= lim
\→0

\ − 2 sin( \2 )
\ sin( \2 )

= lim
\→0

3
3\
(\ − 2 sin( \2 ))
3
3\
(\ sin( \2 ))

= lim
\→0

1 − cos( \2 )
sin( \2 ) +

\
2 cos( \2 )

= lim
\→0

3
3\
(1 − cos( \2 ))

3
3\
(sin( \2 ) +

\
2 cos( \2 ))

= lim
\→0

1
2 sin( \2 )

1
2 cos( \2 ) + (

1
2 cos( \2 ) −

\
4 sin( \2 ))

= lim
\→0

1
2 sin( \2 )

cos( \2 ) −
\
4 sin( \2 ))

=

1
2 sin( 0

2 )
cos( 0

2 ) −
0
4 sin( 0

2 ))

=
0

1 − 0
= 0,

which signifies that 1
sin( \2 )

− 2
\

has a removable discontinuity at \ = 0, and so we can regard 1
sin( \2 )

− 2
\

as “continuous” and

hence integrable on [−c, c]. So we can now apply the Riemann-Lebesgue Lemma in order to conclude

lim
#→∞

∫ c

−c

(
1

sin( \2 )
− 2
\

)
sin

((
# + 1

2

)
\

)
3\ = 0.

By letting G := (# + 1
2 )\, which implies 3G = (# + 1

2 ) 3\, we obtain

2c =
∫ c

−c

sin((# + 1
2 )\)

sin( \2 )
3\

=

∫ c

−c
sin

((
# + 1

2

)
\

) (
2
\
+ 1

sin( \2 )
− 2
\

)
3\

= 2
∫ c

−c

sin((# + 1
2 )\)

\
3\ +

∫ c

−c

(
1

sin( \2 )
− 2
\

)
sin

((
# + 1

2

)
\

)
3\

= 2
∫ (#+ 1

2 ) c

−(#+ 1
2 ) c

sin(G)
G

#+ 1
2

3G

# + 1
2

+
∫ c

−c

(
1

sin( \2 )
− 2
\

)
sin

((
# + 1

2

)
\

)
3\

= 2
∫ (#+ 1

2 ) c

−(#+ 1
2 ) c

sin(G)
G

3G +
∫ c

−c

(
1

sin( \2 )
− 2
\

)
sin

((
# + 1

2

)
\

)
3\.

Now we send # →∞ to conclude

2c = lim
#→∞

2c

= lim
#→∞

(
2
∫ (#+ 1

2 ) c

−(#+ 1
2 ) c

sin(G)
G

3G +
∫ c

−c

(
1

sin( \2 )
− 2
\

)
sin

((
# + 1

2

)
\

)
3\

)
= 2 lim

#→∞

∫ (#+ 1
2 ) c

−(#+ 1
2 ) c

sin(G)
G

3G + lim
#→∞

∫ c

−c

(
1

sin( \2 )
− 2
\

)
sin

((
# + 1

2

)
\

)
3\

= 2
∫ ∞

−∞

sin(G)
G

3G + 0

= 4
∫ ∞

0

sin(G)
G

3G,

or equivalently ∫ ∞

0

sin(G)
G

3G =
c

2
,

as desired. �



3.4.2. An important fact we have proved is the family {48=G}=∈Z is orthonormal in R and it is also complete, in the sense that the
Fourier series of 5 converges in the norm. In this exercise, we consider another family possessing these same properties.

On [−1, 1], define

!= (G) =
3=

3G=
(G2 − 1)=

for all = = 0, 1, 2, . . .. Then != is a polynomial of degree =, which is called the =th Legendre polynomial.

(a) Show that if 5 is infinitely differentiable on [−1, 1], then∫ 1

−1
!= (G) 5 (G) 3G = (−1)=

∫ 1

−1
(G2 − 1)= 5 (=) (G) 3G.

In particular, show that != is orthogonal to G< whenever < < =. Hence, {!=}∞==0 is an orthogonal family.

Solution. I will show this by induction. You can also start at the left-hand side and integrate by parts = times to get to
the right-hand side. For the base case at = = 0, we have∫ 1

−1
!0 (G) 5 (G) 3G =

∫ 1

−1

30

3G0 (G
2 − 1)0 5 (G) 3G

=

∫ 1

−1
5 (G) 3G

=

∫ 1

−1
5 (0) (G) 3G

= (−1)0
∫ 1

−1
(G2 − 1)0 5 (0) (G) 3G.

Now, for the inductive step, let : = 1, 2, 3, . . . assume at any = = : the statement∫ 1

−1
! 5 1 (G) 5 (G) 3G = (−1):

∫ 1

−1
(G2 − 1): 5 (:) (G) 3G.

For = = : + 1, we use integration by parts to obtain∫ 1

−1
!:+1 (G) 5 (G) 3G =

∫ 1

−1

3:+1

3G:+1
(G2 − 1):+1 5 (G) 3G

= 5 (G) 3
:

3G:
(G2 − 1):+1

����1
−1
−

∫ 1

−1

3:

3G:
(G2 − 1):+1 5 ′(G) 3G

= 5 (G) ((: + 1)!(G2 − 1))
��1
−1 −

∫ 1

−1

3:

3G:
((G2 − 1): (G2 − 1)) 5 ′(G) 3G

= (: + 1)! 5 (G) ((12 − 1) − ((−1)2 − 1))

−
∫ 1

−1

(
3:

3G:
(G2 − 1): (G2 − 1) + (G2 − 1) 3

:

3G:
(G2 − 1)

)
5 ′(G) 3G

= (: + 1)! 5 (G) (0 − 0) −
∫ 1

−1

(
! 5 1 (G) (G2 − 1) + (G2 − 1) (0)

)
5 ′(G) 3G

= −
∫ 1

−1
! 5 1 (G) (G2 − 1) 5 ′(G) 3G

= −
∫ 1

−1
! 5 1 (G)G2 5 ′(G) 3G +

∫ 1

−1
! 5 1 (G) 5 ′(G) 3G

= −(−1):
∫ 1

−1
! 5 1 (G)G2 5 ′(G) 3G +

∫ 1

−1
! 5 1 (G) 5 ′(G) 3G

= (−1):+1
∫ 1

−1
(G2 − 1): 3

:

3G:
(G2 5 ′(G)) 3G − (−1):+1

∫ 1

−1
(G2 − 1): 5 (:+1) (G) 3G

= (−1):+1
∫ 1

−1
(G2 − 1):

(
3:

3G:
(G2) 5 ′(G) + G2 3

:

3G:
5 ′(G)

)
3G − (−1):+1

∫ 1

−1
(G2 − 1): 5 (:+1) (G) 3G

= (−1):+1
∫ 1

−1
(G2 − 1): (0 5 ′(G) + G2 5 (:+1) (G)) 3G − (−1):+1

∫ 1

−1
(G2 − 1): 5 (:+1) (G) 3G

= (−1):+1
∫ 1

−1
(G2 − 1): (G2 5 (:+1) (G) − 5 (:+1) (G)) 3G

= (−1):+1
∫ 1

−1
(G2 − 1): (G2 − 1) 5 (:+1) (G) 3G

= (−1):+1
∫ 1

−1
(G2 − 1):+1 5 (:+1) (G) 3G.



This completes our proof by induction. Next, we will show that != is orthogonal to G< whenever < < =. Indeed,
since we assume < < =, it follows that = − < is positive, and so the (= − <)th derivative of a function—in other words,
5 (=−<) (G)—makes sense. Using the identity we proved, we obtain∫ 1

−1
!= (G)G< 3G = −

∫ 1

−1
(G2 − 1) 3

=

3G=
G< 3G

= −
∫ 1

−1
(G2 − 1) 3

=−<

3G=−<
3<

3G<
G< 3G

= −
∫ 1

−1
(G2 − 1) 3

=−<

3G=−<
(<!) 3G

= −
∫ 1

−1
(G2 − 1) (0) 3G

= −
∫ 1

−1
0 3G

= 0,

as desired. �

(b) Show that

‖!=‖2 =
∫ 1

−1
|!= (G) |2 3G =

(=!)222=+1

2= + 1
.

[Hint: First note that ‖!=‖2 = (−1)= (2=)!
∫ 1
−1 (G

2 − 1)= 3G. Write (G2 − 1)= = (G − 1)= (G + 1)= and integrate by parts =
times to calculate this last integral.]

Solution. Following the hint and using the identity from part (a), we have

‖!=‖2 =
∫ 1

−1
|!= (G) |2 3G

=

∫ 1

−1
!= (G)!= (G) 3G

=

∫ 1

−1
(G2 − 1)=! (=)= (G) 3G

= (−1)=
∫ 1

−1
(G2 − 1)= 3

=

3G=
!= (G) 3G

= (−1)=
∫ 1

−1
(G2 − 1)= 3

=

3G=

(
3=

3G=
(G2 − 1)=

)
3G

= (−1)=
∫ 1

−1
(G2 − 1)= 3

2=

3G2= (G
2 − 1)= 3G.

Next, we need to prove the claim
32=

3G2= (G
2 − 1)= = (2=)!

for all = = 0, 1, 2, . . .. (What I have written below is valid but unnecessarily complicated, so please skip this part. A
much shorter proof is to use the Binomial Theorem on (G2 − 1)=, writing

(G2 − 1)= =
=∑
;=0

G2; (−1)=−; ,

and then take the 2=th derivative. Only the term corresponding to ; = = of the 2=th derivative is nonzero, and that term is
precisely (2=)!.) I will show this by induction. For the base case at = = 0, we have

32(0)

3G2(0) (G
2 − 1)0 = (G2 − 1)0

= 1
= (2(0))!

Now, for the inductive step, let : = 1, 2, 3, . . . assume at any = = : the statement

32:

3G2: (G
2 − 1): = (2:)!.



Then for = = : + 1 we use the product and chain rules for derivatives and the Binomial Theorem to obtain

32(:+1)

3G2(:+1) (G
2 − 1):+1 = 32:+2

3G2:+2 (G
2 − 1):+1

=
32:+1

3G2:+1
3

3G
(G2 − 1):+1

=
32:+1

3G2:+1 (2(: + 1)G(G2 − 1): )

= 2(: + 1) 3
2:+1

3G2:+1 (G(G
2 − 1): )

= (2: + 2) 3
2:

3G2:

3

3G
(G(G2 − 1): )

= (2: + 2) 3
2:

3G2:

(
3

3G
G(G2 − 1): + G 3

3G
(G2 − 1):

)
= (2: + 2) 3

2:

3G2: (1(G
2 − 1): + 2:G2 (G2 − 1):−1)

= (2: + 2)
(
32:

3G2: (G
2 − 1): + 2:

32:

3G2: (G
2 (G2 − 1):−1)

)
= (2: + 2)

(
(2:)! + 2:

32:

3G2: (G
2 (G2 − 1):−1)

)
= (2: + 2)

(
(2:)! + 2:

32:

3G2: ((G
2 − 1 + 1) (G2 − 1):−1)

)
= (2: + 2)

(
(2:)! + 2:

32:

3G2: ((G
2 − 1): − (G2 − 1):−1)

)
= (2: + 2)

(
(2:)! + 2:

(
32:

3G2: (G
2 − 1): − 32:

3G2: (G
2 − 1):−1

))
= (2: + 2)

(
(2:)! + 2:

(
(2:)! − 32:

3G2: (G
2 − 1):−1

))
= (2: + 2)

(
(2:)! + 2:

(
(2:)! − 32:

3G2:

:−1∑
;=0

(G2);1(:−1)−;

))
= (2: + 2)

(
(2:)! + 2:

(
(2:)! −

:−1∑
;=0

32:

3G2: G
2;

))
= (2: + 2)

(
(2:)! + 2:

(
(2:)! −

:−1∑
;=0

32:−2;−1

3G2:−2;−1

32;+1

3G2;+1 G
2;

))
= (2: + 2)

(
(2:)! + 2:

(
(2:)! −

:−1∑
;=0

32:−2;−1

3G2:−2;−1 (0)
))

= (2: + 2) ((2:)! + 2: ((2:)! − 0))
= (2: + 2) ((2:)! + 2: (2:)!)
= (2: + 2) (2: + 1) (2:)!
= (2: + 2)!
= (2(: + 1))!.

This completes our proof by induction. Resume here. Putting our results together, we obtain

‖!=‖2 =
∫ 1

−1
|!= (G) |2 3G

= (−1)=
∫ 1

−1
(G2 − 1)= 3

2=

3G2= (G
2 − 1)= 3G

= (−1)=
∫ 1

−1
(G2 − 1)= (2=)! 3G

= (−1)= (2=)!
∫ 1

−1
(G2 − 1)= 3G,

which establishes the first part of the textbook hint. Next, we follow the remainder of the textbook hint and apply the
integration by parts = times in order to compute our integral. If we integrate by parts once, we obtain the iterative



relationship∫ 1

−1
(G2 − 1)= 3G =

∫ 1

−1
(G + 1)= (G − 1)= 3G

=
(G + 1)= (G − 1)=+1

= + 1

����1
−1
− =

= + 1

∫ 1

−1
(G + 1)=−1 (G − 1)=+1 3G

=
(1 + 1)= (1 − 1)=+1 − (−1 + 1)= (−1 − 1)=+1

= + 1
− =

= + 1

∫ 1

−1
(G + 1)=−1 (G − 1)=+1 3G

=
2=0=+1 − 0= (−2)=+1

= + 1
− =

= + 1

∫ 1

−1
(G + 1)=−1 (G − 1)=+1 3G

= − =

= + 1

∫ 1

−1
(G + 1)=−1 (G − 1)=+1 3G.

This means that to integrate by parts = times, we need to iterate this process = times; we obtain∫ 1

−1
(G2 − 1)= 3G = − =

= + 1

∫ 1

−1
(G + 1)=−1 (G − 1)=+1 3G

=

(
− =

= + 1

) (
−= − 1
= + 2

∫ 1

−1
(G + 1)=−2 (G − 1)=+2 3G

)
=

(
− =

= + 1

) (
−= − 1
= + 2

) (
−= − 2
= + 3

∫ 1

−1
(G + 1)=−2 (G − 1)=+2 3G

)
... We iterated 2 times so far. So we continue this process = − 2 more times.

=

(
− =

= + 1

) (
−= − 1
= + 2

) (
−= − 2
= + 3

)
· · ·

(
−= − (= − 1)

= + =

∫ 1

−1
(G + 1)=−= (G − 1)=+= 3G

)
=

(−1)==!
(2=) · · · (= + 3) (= + 2) (= + 1)

∫ 1

−1
(G − 1)2= 3G

=
(−1)= (=!)2

(2=) · · · (= + 3) (= + 2) (= + 1)=!
(G − 1)2=+1

2= + 1

����1
−1

=
(−1)= (=!)2
(2=)!

(1 − 1)2=+1 − (−1 − 1)2=+1
2= + 1

=
(−1)= (=!)2
(2=)!

02=+1 − (−2)2=+1
2= + 1

=
(−1)= (=!)2
(2=)!

−(−2) (−2)2=
2= + 1

=
(−1)= (=!)2
(2=)!

2(2)2=
2= + 1

=
(−1)= (=!)222=+1

(2=)!(2= + 1) .

Finally, we conclude

‖!=‖2 = (−1)= (2=)!
∫ 1

−1
(G2 − 1)= (2=)! 3G

= (−1)= (2=)! (−1)= (=!)222=+1

(2=)!(2= + 1)

=
(−1)2= (=!)222=+1

2= + 1

=
(=!)222=+1

2= + 1
,

as desired. �

(c) Prove that any polynomial of degree = that is orthogonal to 1, G, G2, . . . , G=−1 is a constant multiple of !=.

Solution. I do not know the answer to this one. This “proof” is probably invalid. Let ?= be a polynomial of degree = on
[−1, 1] that is orthogonal to 1, G, G2, . . . , G=−1. Then we must have∫ 1

−1
?(G)G: 3G = 0.



for any : = 0, 1, 2, . . . , =− 1. Suppose by contradiction that such a polyonimal ?= is not a constant multiple of !=. Then
we would have

?= (G) ≠ _!= (G)

for all _ ∈ R and for all G ∈ [−1, 1]. But then by part (a) we would have∫ 1

−1
?(G)G: 3G ≠

∫ 1

−1
_!= (G)G: 3G

= _

∫ 1

−1
!= (G)G: 3G

= _ · 0
= 0,

but this contradicts our assumption that ?= is orthogonal to G: for any : = 0, 1, 2, . . . , = − 1. �

(d) Let L= = !=
‖!= ‖ , which are the normalized Legendre polynomials. Prove that {L=} is the family obtained by applying

the “Gram-Schmidt process” to {1, G, G2, . . . , G=, . . .}, and conclude that every Riemann integrable function 5 on [−1, 1]
has a Legendre expansion

∞∑
==0

〈 5 ,L=〉L=

which converges to 5 in the mean-square sense.

Solution. Since the Gram-Schmit process was not defined anywhere in the textbook, I will follow the process outlined
on the corresponding Wikipedia article. To prove that {L=} is the family means, in this context, to prove that {L=} is
orthonormal. Since we have

‖L=‖ =
 !=

‖!=‖


=
‖!=‖
‖!=‖

= 1,

we already see that L= is normal. To show that {L=} is orthonormal, we apply the “Gram-Schmidt process” to
{1, G, G2, . . . , G=, . . .} to construct an orthonormal basis {F0 (G), F1 (G), F2 (G), . . . , F= (G), . . .} given by

F0 (G) := 1

and

F1 (G) := G − 〈G, F0 (G)〉
‖F0 (G)‖2

F0 (G)

= G −
∫ 1
−1 G · 1 3G∫ 1
−1 1 3G

1

= G − 0
2

1

= G

and

F2 (G) := G2 − 〈G
2, F0 (G)〉
‖F0 (G)‖2

F0 (G) −
〈G2, F1 (G)〉
‖F1 (G)‖2

F1 (G)

= G2 −
∫ 1
−1 G

2 · 1 3G∫ 1
−1 12 3G

1 −
∫ 1
−1 G

2G 3G∫ 1
−1 G

2 3G
G

= G2 −
2
3

2
1 − 0

2
3

G

= G2 − 1
3

https://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process


and

F3 (G) := G3 − 〈G
3, F0 (G)〉
‖F0 (G)‖2

F0 (G) −
〈G3, F1 (G)〉
‖F1 (G)‖2

F1 (G) −
〈G3, F2 (G)〉
‖F2 (G)‖2

F2 (G)

= G3 −
∫ 1
−1 G

3 · 1 3G∫ 1
−1 12 3G

1 −
∫ 1
−1 G

3G 3G∫ 1
−1 G

2 3G
G −

∫ 1
−1 G

3 (G2 − 1
3 ) 3G∫ 1

−1 (G2 − 1
3 )2 3G

(
G2 − 1

3

)
= G3 − 0

2
3

1 −
2
5
2
3

G − 0
8
45

(
G2 − 1

3

)
= G3 − 3

5
G

and so on. We also have

!0 (G) =
30

3G0 (G
2 − 1)0

= (G2 − 1)0

= 1
= F0 (G)

and

!1 (G) =
31

3G1 (G
2 − 1)1

=
3

3G
(G2 − 1)

= 2G
= 2F1 (G)

and

!2 (G) =
32

3G2 (G
2 − 1)2

= 12G2 − 4

= 12
(
G2 − 1

3

)
= 12F2 (G)

and

!3 (G) =
33

3G3 (G
2 − 1)3

= 120G3 − 72G

= 120
(
G3 − 3

5
G

)
= 120F3 (G),

and so on. We can continue these processes infinitely many times—computing in general the =th terms F= (G) and
!= (G)—to see that each term != (G) is a scalar multiple of F= (G). Therefore, since {F0 (G), F1 (G), F2 (G), . . . , F= (G), . . .}
is an orthonormal basis, it follows that {!0 (G), !1 (G), !2 (G), . . . , != (G), . . .} is an orthogonal basis, from which we can
immediately conclude that {L0,L1,L2, . . . ,L=, . . .} is an orthonormal basis.
Next, we will establish the Legendre expansion

5 =

∞∑
==0

〈 5 ,L=〉L=

by showing that the sum

(# ( 5 ) :=
#∑
==0

〈 5 ,L=〉L=

converges to 5 in the mean-square sense. To this end, let n > 0 be given. By the Weierstrass Approximation Theorem,
there exists a polynomial ?(G) of degree = defined on [−1, 1] that satisfies ‖ 5 − ?‖ < n . By part (c), any polynomial is
a constant multiple of !=, and in turn a constant multiple of L=. In particular, we have

‖ 5 − (# ( 5 )‖ < n,

which means (# ( 5 ) converges to 5 in the mean-square sense, as desired. �



3.4.3. Let U be a complex number not equal to an integer.

(a) Calculate the Fourier series of the 2c-periodic functiondefined on [−c, c] by 5 (G) = cos(UG).

Solution. For all U ∈ C \ Z, we have the Fourier cosine coefficient

0= =
2

2c

∫ c

−c
5 (G) cos(=G) 3G

=
1
c

∫ c

−c
cos(UG) cos(=G) 3G

=
1
c

∫ c

−c

1
2
(cos(UG + =G) + cos(UG − =G)) 3G

=
1

2c

∫ c

−c
cos((= + U)G) + cos((U − =)G) 3G

=
1

2c

(
sin((= + U)G)

= + U + sin((U − =)G)
U − =

)����c
−c

=
1

2c

(
sin(UG + =G)

= + U + sin(UG − =G)
U − =

)����c
−c

=
1

2c

(
sin(UG) cos(=G) + sin(=G) cos(UG)

= + U + sin(UG) cos(=G) − sin(=G) cos(UG)
U − =

)����c
−c

=
1

2c

(
sin(Uc) cos(=c) + sin(=c) cos(Uc)

= + U − sin(U(−c)) cos(=(−c)) + sin(=(−c)) cos(U(−c))
= + U

+ sin(Uc) cos(=c) − sin(=c) cos(Uc)
U − = − sin(U(−c)) cos(=(−c)) − sin(=(−c)) cos(U(−c))

U − =

)
=

1
2c

(
sin(Uc) (−1)= + 0 cos(Uc)

= + U − − sin(Uc) (−1)= + 0 cos(Uc)
= + U

+ sin(Uc) (−1)= − 0 cos(Uc)
U − = − − sin(Uc) (−1)= − 0 cos(Uc)

U − =

)
=
(−1)=

2c

(
2 sin(Uc)
= + U + 2 sin(Uc)

U − =

)
=
(−1)=

2c
4U sin(Uc)
U2 − =2

=
(−1)=2U sin(Uc)
c(U2 − =2)



and the Fourier sine coefficient

1= =
2

2c

∫ c

−c
5 (G) sin(=G) 3G

=
1
c

∫ c

−c
cos(UG) sin(=G) 3G

=
1
c

∫ c

−c

1
2
(sin(UG + =G) + sin(UG − =G)) 3G

=
1

2c

∫ c

−c
sin((= + U)G) + sin((U − =)G) 3G

=
1

2c

(
−cos((= + U)G)

= + U − cos((U − =)G)
U − =

)����c
−c

= − 1
2c

(
cos(UG + =G)

= + U + cos(UG − =G)
U − =

)����c
−c

= − 1
2c

(
cos(UG) cos(=G) − sin(=G) sin(UG)

= + U + cos(UG) cos(=G) + sin(=G) sin(UG)
U − =

)����c
−c

=
1

2c

(
cos(Uc) cos(=c) − sin(=c) sin(Uc)

= + U − cos(U(−c)) cos(=(−c)) − sin(=(−c)) sin(U(−c))
= + U

+ cos(Uc) cos(=c) + sin(=c) sin(Uc)
U − = − cos(U(−c)) cos(=(−c)) + sin(=(−c)) sin(U(−c))

U − =

)
=

1
2c

(
cos(Uc) (−1)= + 0 sin(Uc)

= + U − cos(Uc) (−1)= + 0 sin(Uc)
= + U

+ cos(Uc) (−1)= − 0 sin(Uc)
U − = − cos(Uc) (−1)= − 0 sin(Uc)

U − =

)
=

1
2c

(
0

= + U +
0

U − =

)
= 0,

which implies the complex Fourier coefficient

2= =
1

2c

∫ c

−c
5 (G)4−8=G 3G

=
1

2c

∫ c

−c
5 (G) (cos(=G) − 8 sin(G)) 3G

=
1

2c

∫ c

−c
5 (G) cos(=G) 3G − 8 1

2c

∫ c

−c
5 (G) sin(G) 3G

=
0=

2
− 8 1=

2

=
1
2
(−1)=2U sin(Uc)
c(U2 − =2)

− 8 0
2

=
(−1)=U sin(Uc)
c(U2 − =2)



for all integers =. The Fourier series in sine-cosine form is

5 (G) ∼
∞∑

==−∞
2=4

8=G

=

∞∑
==−∞

(−1)=U sin(Uc)
c(U2 − =2)

48=G

=

∞∑
==−∞

(−1)=U sin(Uc)
c(U2 − =2)

(cos(=G) + 8 sin(=G))

=

∞∑
==−∞

(−1)=U sin(Uc)
c(U2 − =2)

cos(=G) + 8
∞∑

==−∞

(−1)=U sin(Uc)
c(U2 − =2)

sin(=G)

=

−1∑
==−∞

(−1)=U sin(Uc)
c(U2 − =2)

cos(=G) + (−1)0U sin(Uc)
c(U2 − 02)

cos(0G) +
∞∑
==1

(−1)=U sin(Uc)
c(U2 − =2)

cos(=G)

+ 8
( −1∑
==−∞

(−1)=U sin(Uc)
c(U2 − =2)

sin(=G) + (−1)0U sin(Uc)
c(U2 − 02)

sin(0G) +
∞∑
==1

(−1)=U sin(Uc)
c(U2 − =2)

sin(=G)
)

=

∞∑
==1

(−1)−=U sin(Uc)
c(U2 − (−=)2)

cos(−=G) + sin(Uc)
Uc

+
∞∑
==1

(−1)=U sin(Uc)
c(U2 − =2)

cos(=G)

+ 8
( ∞∑
==1

(−1)−=U sin(Uc)
c(U2 − (−=)2)

sin(−=G) + 0 +
∞∑
==1

(−1)=U sin(Uc)
c(U2 − =2)

sin(=G)
)

=

∞∑
==1

(−1)=U sin(Uc)
c(U2 − =2)

cos(=G) + sin(Uc)
Uc

+
∞∑
==1

(−1)=U sin(Uc)
c(U2 − =2)

cos(=G)

+ 8
(
−
∞∑
==1

(−1)=U sin(Uc)
c(U2 − =2)

sin(=G) +
∞∑
==1

(−1)=U sin(Uc)
c(U2 − =2)

sin(=G)
)

=
sin(Uc)
Uc

+ 2U
∞∑
==1

(−1)= sin(Uc)
c(U2 − =2)

cos(=G) + 80

=
sin(Uc)
Uc

+ 2U
∞∑
==1

(−1)= sin(Uc)
c(U2 − =2)

cos(=G)

for all U ∈ C \ Z. �

(b) Prove the following formulas due to Euler:

∞∑
==1

1
=2 − U2 =

1
2U2 −

c

2U tan(Uc) .

For all D ∈ C \ =Z,

cot(D) = 1
D
+ 2

∞∑
==1

D

D2 − =2c2 .

Solution. At G = c, we have 5 (c) = cos(Uc), and the Fourier series becomes

5 (c) = sin(Uc)
Uc

+ 2U
∞∑
==1

(−1)= sin(Uc)
c(U2 − =2)

cos(=c)

=
sin(Uc)
Uc

+ 2U
∞∑
==1

(−1)= sin(Uc)
c(U2 − =2)

(−1)=

=
sin(Uc)
Uc

+ 2U
∞∑
==1

(−1)2= sin(Uc)
c(U2 − =2)

=
sin(Uc)
Uc

+ 2U
∞∑
==1

sin(Uc)
c(U2 − =2)

=
sin(Uc)
Uc

− 2U sin(Uc)
c

∞∑
==1

1
=2 − U2 .



So we conclude

∞∑
==1

1
=2 − U2 =

c

2U sin(Uc)

(
sin(Uc)
Uc

− 5 (c)
)

=
c

2U sin(Uc)

(
sin(Uc)
Uc

− cos(Uc)
)

=
1

2U2 −
c cos(Uc)
2U sin(Uc)

=
1

2U2 −
c

2U tan(Uc)

for all U ∈ C \ Z, which is the first identity. Furthermore, if we substitute D = Uc, then the first identity becomes

∞∑
==1

1
=2 − ( D

c
)2
=

1
2( D

c
)2
− c

2 D
c

tan(D) ,

which can be rewritten as
∞∑
==1

c2

=2c2 − D2 =
c2

2D2 −
c2

2D tan(D) ,

from which we candivide both sides by c2 to obtain

∞∑
==1

1
=2c2 − D2 =

1
2D2 −

1
2D tan(D) .

So we conclude

cot(D) = 1
tan(D)

=
2D

2D tan(D)

= 2D

(
1

2D2 −
∞∑
==1

1
=2c2 − D2

)
= 2D

(
1

2D2 +
∞∑
==1

1
D2 − =2c2

)
=

1
D
+ 2

∞∑
==1

D

D2 − =2c2

for all D ∈ C \ =Z, which is the second identity. �

(c) Show that for all U ∈ C \ Z we have
Uc

sin(Uc) = 1 + 2U2
∞∑
==1

(−1)=−1

=2 − U2 .

Solution. At G = 0, we have 5 (c) = cos(U(0)) = 1, and the Fourier series becomes

5 (c) = sin(Uc)
Uc

+ 2U
∞∑
==1

(−1)= sin(Uc)
c(U2 − =2)

cos(=(0))

=
sin(Uc)
Uc

+ 2U
∞∑
==1

(−1)= sin(Uc)
c(U2 − =2)

=
sin(Uc)
Uc

+ 2U sin(Uc)
c

∞∑
==1

(−1)=−1 (−1)
U2 − =2

=
sin(Uc)
Uc

+ 2U sin(Uc)
c

∞∑
==1

(−1)=−1

=2 − U2 .



So we conclude
Uc

sin(Uc) =
Uc

sin(Uc) · 1

=
Uc

sin(Uc) 5 (c)

=
Uc

sin(Uc)

(
sin(Uc)
Uc

+ 2U sin(Uc)
c

∞∑
==1

(−1)=−1

=2 − U2

)
= 1 + 2U2

∞∑
==1

(−1)=−1

=2 − U2

for all U ∈ C \ Z. �

(d) For all 0 < U < 1, show that ∫ ∞

0

CU−1

C + 1
3C =

c

sin(Uc) .

[Hint: Split the integral as
∫ 1

0 +
∫ ∞

1 and change variables C = 1
D

in the second integral. Now both integrals are of the
form ∫ 1

0

CW−1

1 + C 3C

for all 0 < W < 1, which one can show is equal to
∑∞
==0

(−1)=
=+W . Use part (c) to conclude the proof.]

Solution. Following the hint, we split the integral by writing∫ ∞

0

CU−1

C + 1
3C =

∫ 1

0

CU−1

C + 1
3C +

∫ ∞

1

CU−1

C + 1
3C.

Employing the substitution C = 1
D

, which implies 3C = − 1
D2 3D, our second integral becomes∫ ∞

1

CU−1

C + 1
3C =

∫ 0

1

( 1
D
)U−1

1
D
+ 1

(
− 1
D2 3D

)
=

∫ 1

0

( 1
D
)U−1

1
D
+ 1

1
D2 3D

=

∫ 1

0

1
DU (1 + D) 3D

=

∫ 1

0

D (1−U)−1

D + 1
3D

=

∫ 1

0

C (1−U)−1

C + 1
3C.

Therefore, we can express our integral as∫ ∞

0

CU−1

C + 1
3C =

∫ 1

0

CU−1

C + 1
3C +

∫ ∞

1

CU−1

C + 1
3C

=

∫ 1

0

CU−1

C + 1
3C +

∫ 1

0

C (1−U)−1

C + 1
3C,

meaning that the requested integral is expressed as the sum of two integrals of the form
∫ 1

0
CW−1

C+1 3C for any 0 < W < 1.
Next, we will continue following the given hint by establishing∫ 1

0

CW−1

C + 1
3C =

∞∑
==0

(−1)=
= + W

for any 0 < W < 1. Fix 0 < B < 1 and observe that for all 0 ≤ C ≤ B, we invoke the geometric sum formula to obtain

∞∑
==0

(−1)=C= =
∞∑
==0

(−C)=

=
1

1 − (−C)

=
1

C + 1
,



which implies ∫ B

0

CW−1

C + 1
3C =

∫ B

0
CW−1

∞∑
==0

(−1)=C= 3C

=

∞∑
==0

(−1)=
∫ B

0
C=+W−1 3C

=

∞∑
==0

(−1)= C
=+W

= + W

�����B
0

=

∞∑
==0

(−1)= B
=+W − 0=+W

= + W

=

∞∑
==0

(−1)= B
=+W

= + W .

Furthermore, this series is Abel summable, and so by Abel’s Theorem we obtain∫ 1

0

CW−1

C + 1
3C = lim

B→1−

∫ B

0

CW−1

C + 1
3C

= lim
B→1−

∞∑
==0

(−1)= B
=+W

= + W

=

∞∑
==0

(−1)= 1=+W

= + W

=

∞∑
==0

(−1)=
= + W .

Finally, we conclude ∫ ∞

0

CU−1

C + 1
3C =

∫ 1

0

CU−1

C + 1
3C +

∫ 1

0

C (1−U)−1

C + 1
3C

=

∞∑
==0

(−1)=
= + U +

∞∑
==0

(−1)=
= + (1 − U)

=

∞∑
==0

(−1)=
= + U +

∞∑
==0

(−1) (=+1)−1

(= + 1) − U

=

∞∑
==0

(−1)=
= + U +

∞∑
==1

(−1)=−1

= − U

=

(
(−1)0
0 + U +

∞∑
==1

(−1)=
= + U

)
+
∞∑
==1

(−1)=−1

= − U

=
1
U
+
∞∑
==1

(−1)=−1 (−1)
= + U +

∞∑
==1

(−1)=−1

= − U

=
1
U
−
∞∑
==1

(−1)=−1

= + U +
∞∑
==1

(−1)=−1

= − U

=
1
U
+
∞∑
==1

(−1)=−1
(

1
= − U −

1
= + U

)
=

1
U
+ 2U

∞∑
==1

(−1)=−1

=2 − U2

=
1
U

(
1 + 2U2

∞∑
==1

(−1)=−1

=2 − U2

)
=

1
U

Uc

sin(Uc)
=

c

sin(Uc) ,

where we invoked part (c) for our second-to-last last equality above, as given by the final part of the textbook hint. �


