Directions: Write your solutions to each question on a separate sheet of paper. Once you are finished with the quiz, take pictures of your solutions to each question separately, and submit your quiz solutions on Crowdmark, separated by question (Q1, Q2, Q3). Please note that you must submit your quiz by $1: 10 \mathrm{p} . \mathrm{m}$. deadline, unless I give a time extension to everyone.
(5pts) 1. Unscramble the following anagrams of the last names of mathematicians relevant to the field of Fourier analysis.
(0.5pts) (a) LIERDITCH DIRICHLET
(0.5pts) (b) OURFIRE FOURIER
(0.5 pts) (c) GREENLED LEGENDRE
(0.5 pts) (d) CAPELLA LAPLACE
(0.5pts) (e) LEPRECHALN PLANCHEREL
(0.5pts) (f) SWATCHRZ SCHWARTZ
(0.5pts) (g) POISONS POISSON
(0.5pts) (h) IMANNER RIEMANN
(0.5pts) (i) SAVPEARL PARSEVAL
(0.5pts) (j) IDSLAPU LAPIDUS
(10pts) 2. Consider the vector space \mathcal{R}, the set of complex-valued Riemann integrable functions on $[0,2 \pi]$, equipped with the inner product

$$
(f, g)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(x) \overline{g(x)} d x
$$

and its associated norm

$$
\|f\|=\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}|f(x)|^{2} d x\right)^{\frac{1}{2}}
$$

for any $f, g \in \mathcal{R}$. Prove the Cauchy-Schwarz inequality

$$
|(f, g)| \leq\|f\|\|g\|
$$

and the triangle inequality

$$
\|f+g\| \leq\|f\|+\|g\| .
$$

Proof. First, we will prove the Cauchy-Schwarz inequality. To this end, note that, if we assume $a, b \in R$, then the true statement

$$
(a-b)^{2} \geq 0
$$

is algebraically equivalent to

$$
a b \leq \frac{a^{2}+b^{2}}{2}
$$

We also recall the triangle inequality for integrals, which states

$$
\left|\int_{0}^{2 \pi} h(x) d x\right| \leq \int_{0}^{2 \pi}|h(x)| d x
$$

for any $h \in \mathcal{R}$. We can apply these inequalities to obtain, for all nonzero $f, g \in \mathcal{R}$,

$$
\begin{aligned}
\frac{|(f, g)|}{\|f\|\|g\|} & =\frac{1}{\|f\|\|g\|}\left|\frac{1}{2 \pi} \int_{0}^{2 \pi} f(x) \overline{g(x)} d x\right| \\
& \leq \frac{1}{2 \pi\|f\|\|g\|} \int_{0}^{2 \pi}|f(x) \| \overline{g(x)}| d x \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{|f(x)|}{\|f\|} \frac{|g(x)|}{\|g\|} d x \\
& \leq \frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{1}{2}\left(\left(\frac{|f(x)|}{\|f\|}\right)^{2}+\left(\frac{|g(x)|}{\|g\|}\right)^{2}\right) d x \\
& =\frac{1}{2}\left(\frac{1}{\|f\|^{2}} \frac{1}{2 \pi} \int_{0}^{2 \pi}|f(x)|^{2} d x+\frac{1}{\|g\|^{2}} \frac{1}{2 \pi} \int_{0}^{2 \pi}|g(x)|^{2} d x\right) \\
& =\frac{1}{2}\left(\frac{1}{\|f\|^{2}}\|f\|^{2}+\frac{1}{\|g\|^{2}}\|g\|^{2}\right) \\
& =\frac{1}{2}(1+1) \\
& =1 \\
& =\frac{\|f\|\|g\|}{\|f\|\|g\|},
\end{aligned}
$$

from which we can multiply both sides by $\|f\|\|g\|$ to conclude

$$
|(f, g)| \leq\|f\|\|g\|,
$$

which is the Cauchy-Schwarz inequality. If we have either $f=0$ or $g=0$, then the Cauchy-Schwarz inequality becomes a trivial statement.

Next, we will prove the triangle inequality. Recall that we have

$$
z+\bar{z}=2 \operatorname{Re}(z)
$$

and

$$
\operatorname{Re}(z) \leq|z|
$$

for all $z \in \mathbb{C}$. We can apply these inequalities and the Cauchy-Schwarz inequality to
obtain, for all nonzero $f, g \in \mathcal{R}$,

$$
\begin{aligned}
&\|f+g\|^{2}= \frac{1}{2 \pi} \int_{0}^{2 \pi}|f(x)+g(x)|^{2} d x \\
&= \frac{1}{2 \pi} \int_{0}^{2 \pi}(f(x)+g(x))(\overline{f(x)+g(x)}) d x \\
&= \frac{1}{2 \pi} \int_{0}^{2 \pi}(f(x)+g(x))(\overline{f(x)}+\overline{g(x)}) d x \\
&= \frac{1}{2 \pi} \int_{0}^{2 \pi} f(x) \overline{f(x)}+f(x) \overline{g(x)}+g(x) \overline{f(x)}+g(x) \overline{g(x)} d x \\
&= \frac{1}{2 \pi} \int_{0}^{2 \pi}|f(x)|^{2}+f(x) \overline{g(x)}+g(x) \overline{f(x)}+|g(x)|^{2} d x \\
&= \frac{1}{2 \pi} \int_{0}^{2 \pi}|f(x)|^{2} d x+\frac{1}{2 \pi} \int_{0}^{2 \pi} f(x) \overline{g(x)} d x \\
& \quad+\frac{1}{2 \pi} \int_{0}^{2 \pi} g(x) \overline{f(x)} d x+\frac{1}{2 \pi} \int_{0}^{2 \pi}|g(x)|^{2} d x \\
&=\|f\|^{2}+(f, g)+(g, f)+\|g\|^{2} \\
&=\|f\|^{2}+(f, g)+\overline{(f, g)}+\|g\|^{2} \\
&=\|f\|^{2}+2 \operatorname{Re}((f, g))+\|g\|^{2} \\
& \leq\|f\|^{2}+2|(f, g)|+\|g\|^{2} \\
& \leq\|f\|^{2}+2\|f\|\|g\|+\|g\|^{2} \\
&=(\|f\|+\|g\|)^{2},
\end{aligned}
$$

from which we can take the square root of both sides to conclude

$$
\|f+g\| \leq\|f\|+\|g\|
$$

which is the triangle inequality.

