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Boole’s inequality

Note: Boole’s inequality is Theorem 1.3.7 (pages 17-18) of the textbook Introduction to Mathematical Statistics (seventh edition)
by Robert V. Hogg, Joseph W. McKean, Allen T. Craig. I am following the proof of Theorem 1.3.7 but filling in intermediate steps
here, so that the proof is hopefully easier to read. Yes, there is a proof by induction of Boole’s inequality, which is shorter and
simpler to write than the one presented in the textbook. Please write that induction proof for yourself as an exercise.

Theorem (Boole’s Inequality; Theorem 1.3.8 of Hogg, McKean, Craig). Let {Cn} be an arbitrary sequence of events. Then

P

(
∞⋃
n=1

Cn

)
≤

∞∑
n=1

P(Cn).

Proof. Let

Dn =

n⋃
k=1

Ck,

and note that we can write equivalently Dn = C1 ∪ · · · ∪ Cn. Then {Dn} is an increasing sequence of events; indeed, we have

D1 ⊂ D2 ⊂ D2 ⊂ D4 ⊂ · · · ,

which, by our definition of Dn, is equivalent to saying

C1 ⊂ C1 ∪ C2 ⊂ C1 ∪ C2 ∪ C2 ⊂ C1 ∪ C2 ∪ C3 ∪ C4 ⊂ · · · .

Also, for all k = 2,3, . . . ,n, we have

Dk = C1 ∪ · · · ∪ Ck

= (C1 ∪ · · · ∪ Ck−1) ∪ Ck

= Dk−1 ∪ Ck .

By the inclusion-exclusion principle (Theorem 1.3.5) and the first axiom of probability, we have

P(Dk) = P(Dk−1 ∪ Ck)

= P(Dk−1) + P(Ck) − P(Dk−1 ∩ Ck)

≤ P(Dk−1) + P(Ck) − 0
= P(Dk−1) + P(Ck),

from which we can subtract P(Dk−1) from both sides to conclude

P(Dk) − P(Dk−1) ≤ P(Ck) (∗)

for all k = 2,3, . . . ,n. Next, observe that, since again {Dn} is an increasing sequence of subsets, any union of sets Dn will be the
largest set of the increasing sequence; which means we can express

D1 ∪ · · · ∪ Dn = C1 ∪ (C1 ∪ C2) ∪ · · · ∪ (C1 ∪ · · · ∪ Cn)

= C1 ∪ · · · ∪ Cn.

Additionally, we can express any union of sets Dn as a disjoint union of suitable sets; in other words, we can write

D1 ∪ · · · ∪ Dn = D1 ∪ (D2 \ D1) ∪ (D3 \ D2) ∪ · · · ∪ (Dn−2 \ Dn−1) ∪ (Dn−1 \ Dn).

Indeed, the right-hand side of the above equation is a disjoint union because Dk−1 ∩ (Dk \ Dk−1) = � for all k = 2,3, . . . ,n. The
disjoint union would allow us to apply the third axiom of probability to write

P(D1 ∪ (D2 \ D1) ∪ (D3 \ D2) ∪ · · · ∪ (Dn−2 \ Dn−1) ∪ (Dn−1 \ Dn)) = P(D1) + P(D2 \ D1) + · · · + P(Dn−1 \ Dn).

Now, combining our results, we conclude

C1 ∪ · · · ∪ Cn = D1 ∪ D2 ∪ · · · ∪ Dn

= D1 ∪ (D2 \ D1) ∪ (D3 \ D2) ∪ · · · ∪ (Dn−2 \ Dn−1) ∪ (Dn−1 \ Dn),



and so we have

P

(
n⋃

k=1

Ck

)
= P(C1 ∪ · · · ∪ Cn)

= P(D1 ∪ (D2 \ D1) ∪ (D3 \ D2) ∪ · · · ∪ (Dn−2 \ Dn−1) ∪ (Dn−1 \ Dn))

= P(D1) + P(D2 \ D1) + · · · + P(Dn−1 \ Dn)

= P(D1) +

n∑
k=2

P(Dk \ Dk−1)

= P(D1) +

n∑
k=2

(P(Dk) − P(Dk−1)).

By (∗) from above, we can further obtain

P

(
n⋃

k=1

Ck

)
= P(D1) +

n∑
k=2

(P(Dk) − P(Dk−1))

≤ P(D1) +

n∑
k=2

P(Ck)

= P(C1) +

n∑
k=2

P(Ck)

=

n∑
k=1

P(Ck).

Finally, by Theorem 1.3.6, which allows one to pass the limit inside or outside the probability function P, we conclude

P

(
∞⋃
k=1

Ck

)
= P

(
lim
n→∞

n⋃
k=1

Ck

)
= lim

n→∞
P

(
n⋃

k=1

Ck

)
≤ lim

n→∞

n∑
k=1

P(Ck)

=

∞∑
k=1

P(Ck),

as desired. �


