Chebyshev's inequality

Note: Chebyshev's inequality is Theorem 1.10.3 (page 70) of the textbook *Introduction to Mathematical Statistics* (seventh edition) by Robert V. Hogg, Joseph W. McKean, Allen T. Craig. I am following the proof of Theorem 1.10.3 but filling in intermediate steps here, so that the proof is hopefully easier to read.

Theorem (Chebyshev's inequality; Theorem 1.10.3 of Hogg, McKean, Craig). Let the random variable X have a distribution of probability about which we assume only that there is a finite variance σ^2 ; this implies that the mean $\mu = E(X)$ exists. Then, for every k > 0, we have

$$P(|X - \mu| \ge k\sigma) \le \frac{1}{k^2}.$$

Proof. Markov's inequality states: If u(X) be a nonnegative function of the random variable X such that E[u(X)] exists, then, for every positive constant c, we have

$$P[u(X) \ge c] \le \frac{E[u(X)]}{c}.$$

If we let $u(X) = (X - \mu)^2$ and $c = k^2 \sigma^2$, then Markov's inequality implies

$$P[(X - \mu)^2 \ge k^2 \sigma^2] = P[u(X) \ge c]$$
$$\le \frac{E[u(X)]}{c}$$
$$= \frac{E[(X - \mu)^2]}{k^2 \sigma^2}.$$

As we recall

$$E[(X - \mu)^{2}] = E(X^{2} - 2\mu X + \mu^{2})$$

= $E(X^{2}) - 2\mu E(X) + E(\mu^{2})$
= $E(X^{2}) - 2\mu\mu + \mu^{2}$
= $E(X^{2}) - \mu^{2}$
= $E(X^{2}) - (E(X))^{2}$
= $Var(X)$
= σ^{2} .

Finally, we note that we have $|X - \mu| \ge k\sigma$ if and only if we have $(X - \mu)^2 \ge k^2\sigma^2$, which implies the set equality

$$(|X - \mu| \ge k\sigma) = ((X - \mu)^2 \ge k^2 \sigma^2).$$

Therefore, we obtain

$$P[|X - \mu| \ge k\sigma] = P[(X - \mu)^2 \ge k^2 \sigma^2]$$
$$\le \frac{E[(X - \mu)^2]}{k^2 \sigma^2}$$
$$= \frac{\sigma^2}{k^2 \sigma^2}$$
$$= \frac{1}{k^2},$$

which is Chebyshev's inequality, as desired.