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Markov’s inequality

Note: Markov’s inequality is Theorem 1.10.2 (pages 68-69) of the textbook Introduction to Mathematical Statistics (seventh edition)
by Robert V. Hogg, Joseph W. McKean, Allen T. Craig. I am following the proof of Theorem 1.10.2 but filling in intermediate steps
here, so that the proof is hopefully easier to read.

Theorem (Markov’s inequality; Theorem 1.10.2 of Hogg, McKean, Craig). Let u(X) be a nonnegative function of the random
variable X. If E[u(X)] exists, then, for every positive constant c, we have

Plu(X) > ¢] < E[“C(X)].

Proof. First, we will assume that X is a continuous random variable. Let fx(x) denote the pdf of X. Since the expectation of u(X)
exists, we have
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As fx(x) denotes the pdf of X, by definition fx(x) is nonnegative. As u(X) is also nonnegative, we have
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This means we get
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Next, we will assume that X is a discrete random variable. Let px(x) denote the pmf of X. Since the expectation of u(X) exists,
we have

[E[u(X)]| = | u(x)px(x)
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As px(x) denotes the pmf of X, by definition px(x) is nonnegative. As u(X) is also nonnegative, we have
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This means we get
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