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Chapter 1 exercises of “Introduction to Mathematical Statistics” (seventh edition) by Hogg, McKean, and Craig.

Suggested problems: 1.3.4, 1.3.5, 1.3.10*, 1.3.15*, 1.4.1*, 1.4.11, 1.4.14
*The exercises marked with an asterisk are not suggested by Yunied, but in my opinion they may be interesting anyway.

1.3.4. If the sample space if C = C1 ∪ C2 and if P(C1) = 0.8 and P(C2) = 0.5, find P(C1 ∩ C2).

Solution. We recall Theorem 1.3.5 on page 12 of the textbook, which asserts that for any events C1 and C2, we have

P(C1 ∪ C2) = P(C1) + P(C2) − P(C1 ∩ C2)

Therefore, we conclude

P(C1 ∩ C2) = P(C1) + P(C2) − P(C1 ∪ C2)

= P(C1) + P(C2) − P(C)

= 0.8 + 0.5 − 1
= 0.3,

as desired. �

1.3.5. Let the sample space be C = {c : 0 < c < ∞}. Let C ⊂ C be defined by C = {c : 4 < c < ∞} and take P(C) =
∫
C

e−x dx.
Show that P(C) = 1. Evaluate P(C), P(Cc), and P(C ∪ Cc).

Solution. The probability of the sample space C is

P(C) =

∫
C

e−x dx

=

∫ ∞

0
e−x dx

= lim
a→∞
−e−x |a0

= ( lim
a→∞
(−e−a)) − (−e0)

= 0 − (−1)
= 1.

The probability of event C is

P(C) =

∫
C

e−x dx

=

∫ ∞

4
e−x dx

= lim
a→∞
−e−x |a4

= ( lim
a→∞
(−e−a)) − (−e4)

= 0 − (−e4)

= e4.

Since we have C = (4,∞), we must have Cc = C \ C = [0,4]. So the probability of event Cc is

P(Cc) =

∫
C

e−x dx

=

∫ 4

0
e−x dx

= −e−x |40
= (−e−4) − (−e−0)

= −e−4 − (−1)

= 1 − e−4.



Finally, the probability of event C ∪ Cc is

P(C ∪ Cc) = P(C) + P(Cc)

= e4 + (1 − e−4)

= 1,

which coincides with the probability of the entire sample space C. �

1.3.10.* A bowl contains 16 chips, of which 6 are red, 7 are white, and 3 are blue. If four chips are taken at random and without
replacement, find the probability that:

(a) each of the four chips is red;

Solution. We recall in general that the binomial coefficient
(n
k

)
represents choosing k objects out of the n available

objects. For taking 4 chips out of the 16 chips in the bowl, there are
(16

4

)
= 16!

4!(16−4)! = 1820 possibilities. For taking 4

red chips out of the 6 red chips in the bowl, there are
(6
4

)
= 6!

4!(6−4)! = 15 possibilities. So we have

P(all 4 red chips) =
15

1820

=
3

364
,

which is the probability that each of the four chips taken at random and without replacement is red. �

(b) none of the four chips is red;

Solution. In this context, saying that none of the four chips is red is equivalent to saying that all four of the chips are
either white or blue. As in the solution to part (a), for taking 4 chips out of the 16 chips in the bowl, there are 1820
possibilities. There are 7 white and 3 blue chips in the bowl, which is equivalent to saying there are 7 + 3 = 10 white
or blue chips in the bowl. For taking 4 white or blue chips out of the 10 white or blue chips in the bowl, there are(10

4

)
= 10!

4!(10−4)! = 210 possibilities. So we have

P(all 4 white or blue chips) =
210

1820

=
3

26
,

which is the probability that none of the four chips taken at random and without replacement is red. �

(c) there is at least one chip of each color.

Solution. We need to take four chips, but there are only the three colors of red, white, and blue. This means that, if we
require to take at least one chip of each color, we will need one chip of the first color, one chip of the second color, and
two chips of the third color. There are three scenarios for which this is possible.

• First, we will work with the case of 2 red chips, 1 white chip, and 1 blue chip.
– For taking 2 red chips out of the 6 red chips in the bowl, there are

(6
2

)
= 6!

2!(6−2)! = 15 possibilities.

– For taking 1 white chip out of the 7 white chips, there are
(7
1

)
= 7!

1!(7−1)! = 7 possibilities.

– For taking 1 blue chip out of the 3 blue chips, there are
(3
1

)
= 3!

1!(3−1)! = 3 possibilities.
So there are (15)(7)(3) = 315 possibilities of taking taking 2 red chips, 1 white chip, and 1 blue chip without
replacement, which means that the probability of this occurring is

P(2 red chips, 1 white chip, 1 blue chip) =
315

1820

=
9

52
.

• Next, we will work with the case of 1 red chip, 2 white chips, and 1 blue chip.
– For taking 1 red chip out of the 6 red chips in the bowl, there are

(6
1

)
= 6!

1!(6−1)! = 6 possibilities.

– For taking 2 white chips out of the 7 white chips, there are
(7
2

)
= 7!

2!(7−2)! = 21 possibilities.

– For taking 1 blue chip out of the 3 blue chips, there are
(3
1

)
= 3!

1!(3−1)! = 3 possibilities.
So there are (6)(21)(3) = 378 possibilities of taking taking 1 red chip, 2 white chips, and 1 blue chip without
replacement, which means that the probability of this occurring is

P(1 red chip, 2 white chips, 1 blue chip) =
378

1820

=
27

130
.



• Finally, we will work with the case of 1 red chip, 1 white chip, and 2 blue chips.
– For taking 1 red chip out of the 6 red chips in the bowl, there are

(6
1

)
= 6!

1!(6−1)! = 6 possibilities.

– For taking 1 white chip out of the 7 white chips, there are
(7
1

)
= 7!

1!(7−1)! = 7 possibilities.

– For taking 2 blue chips out of the 3 blue chips, there are
(3
2

)
= 3!

2!(3−2)! = 3 possibilities.
So there are (6)(7)(3) = 126 possibilities of taking taking 1 red chip, 1 white chip, and 2 blue chips without
replacement, which means that the probability of this occurring is

P(1 red chip, 1 white chip, 2 blue chips) =
126

1820

=
9

130
.

Therefore, we have

P(at least one chip of each color) = P(2 red chips, 1 white chip, 1 blue chip)
+ P(1 red chip, 2 white chips, 1 blue chip)
+ P(1 red chip, 1 white chip, 2 blue chips)

=
9
52

+
27

130
+

9
130

=
9
20
,

which is the probability that there is at least one chip of each color in the four chips taken at random and without
replacement. �

1.3.15.* In a lot of 50 light bulbs, there are 2 bad bulbs. An inspector examines five bulbs, which are selected at random and without
replacement.

(a) Find the probability of at least one defective bulb among the five.

Solution. For taking 5 light bulbs out of the 50 bulbs in the lot, there are
(50

5

)
= 50!

5!(50−5)! = 2118760 possibilities. There
are 2 defective bulbs by assumption, which means there are 48 working bulbs. For taking 5 light bulbs out of the 48
working bulbs, there are

(48
5

)
= 48!

5!(48−5)! = 1712304 possibilities. Therefore, the probability of having zero defective
bulbs among the five is

P(no defective bulbs) =
1712304
2118760

=
198
245
,

which means that

P(at least one defective bulb) = 1 − P(no defective bulbs)

= 1 −
198
245

=
47

245
.

is the probability of having at least one defective bulb among the five. �

(b) How many bulbs should be examined so that the probability of finding at least one bad bulb exceeds 1
2 ?

Solution. For taking n light bulbs out of the 50 bulbs in the lot, there are
(50
n

)
= 50!

n!(50−n)! possibilities. There are 2
defective bulbs by assumption, which means there are 48 working bulbs. For taking n light bulbs out of the 48 working
bulbs, there are

(48
n

)
= 48!

n!(48−n)! possibilities. Therefore, the probability of having zero defective bulbs among the n bulbs
taken from the lot is

P(no defective bulbs) =

(48
n

)(50
n

)
=

48!
n!(48−n)!

50!
n!(50−n)!

=
48!

n!(48 − n)!
n!(50 − n)!

50!

=
48!
50!
(50 − n)!
(48 − n)!

=
48!

(50)(49)48!
(50 − n)(49 − n)(48 − n)!

(48 − n)!

=
(50 − n)(49 − n)
(50)(49)

.



So the probability of finding at least one defective bulb among the n bulbs taken from the lot is

P(at least one defective bulb) = 1 − P(no defective bulbs)

= 1 −
(50 − n)(49 − n)
(50)(49)

.

The problem statement requires that the probability of finding at least one bad bulb exceed 1
2 , which means we require

P(at least one defective bulb) >
1
2
.

Therefore, we have the inequality

1 −
(50 − n)(49 − n)
(50)(49)

>
1
2
,

from which we can solve algebraically to obtain the interval of solutions

14.4964 ≈
99 − 13

√
29

2
< n <

99 + 13
√

29
2

≈ 84.5036.

The upper bound of n makes no sense in this context because we can only take up to 50 light bulbs from the 50 total
in the lot. So we go with the lower bound n > 99−13

√
29

2 ≈ 14.4964. The smallest integer for this lower bound is 15,
meaning that we must take at least 15 light bulbs in order to meet the criterion that the probability of finding at least one
bad bulb exceeds 1

2 . �

1.4.1.* If P(C1) > 0 and if C2,C3,C4, . . . are mutually disjoint sets, show that

P(C2 ∪ C3 ∪ · · · |C1) = P(C2 |C1) + P(C3 |C1) + · · · .

Proof. By the definition of the definition of conditional probability, we have

P(C2 ∪ C3 ∪ · · · |C1) =
P(C1 ∩ (C2 ∪ C3 ∪ · · · ))

P(C1)
.

Because set intersections distribute over set unions, we can write

C1 ∩ (C2 ∪ C3 ∪ · · · ) = (C1 ∩ C2) ∪ (C1 ∩ C3) ∪ · · · .

Finally, since we are given that C2,C3,C4, . . . are mutually disjoint, it follows that C1∩C2,C1∩C3,C1∩C4, . . . are also mutually
disjoint; indeed, by the distributive property of set intersections, we observe

(C1 ∩ C2) ∩ (C1 ∩ C3) ∩ (C1 ∩ C4) ∩ · · · = C1 ∩ (C2 ∩ C3 ∩ C4 ∩ · · · )

= C1 ∩ �

= �.

So we can invoke the third axiom of probability to write

P((C1 ∩ C2) ∪ (C1 ∩ C3) ∪ · · · ) = P(C1 ∩ C2) + P(C1 ∩ C3) + · · · .

Putting our results together, we conclude

P(C2 ∪ C3 ∪ · · · |C1) =
P(C1 ∩ (C2 ∪ C3 ∪ · · · ))

P(C1)

=
P((C1 ∩ C2) ∪ (C1 ∩ C3) ∪ · · · )

P(C1)

=
P(C1 ∩ C2) + P(C1 ∩ C3) + · · ·

P(C1)

=
P(C1 ∩ C2)

P(C1)
+

P(C1 ∩ C3)

P(C1)
+ · · ·

= P(C2 |C1) + P(C3 |C1) + · · · ,

as desired. �

1.4.11. If C1 and C2 are independent events, show that the following pairs of events are also independent:

(a) C1 and Cc
2

Hint: Write P(C1 ∩ Cc
2 ) = P(C1)P(Cc

2 |C1) = P(C1)(1 − P(C2 |C1)). From the independence of C1 and C2, we have
P(C2 |C1) = P(C2).



Proof. Following the given hint and using the definition of conditional probability, we have

P(C1 |Cc
2 ) =

P(C1 ∩ Cc
2 )

P(Cc
2 )

=
P(C1)P(Cc

2 |C1)

P(Cc
2 )

=
P(C1)(1 − P(C2 |C1)

1 − P(C2)

=
P(C1)(1 − P(C2))

1 − P(C2)

= P(C1),

which means C1 and Cc
2 are independent. �

(b) Cc
1 and C2

Proof. The idea here is to follow the proof of part (a), but interchange the roles of C1 and C2; in other words, we will
reproduce the proof of part (a), but replace all instances of C1 with C2 and C2 with C1. Using the definition of conditional
probability, we have

P(C2 |Cc
1 ) =

P(C2 ∩ Cc
1 )

P(Cc
1 )

=
P(C2)P(Cc

1 |C2)

P(Cc
1 )

=
P(C2)(1 − P(C1 |C2)

1 − P(C1)

=
P(C2)(1 − P(C1))

1 − P(C1)

= P(C2),

which means C2 and Cc
1 are independent, which, in turn, is obviously equivalent to saying Cc

1 and C2 are independent. �

(c) Cc
1 and Cc

2

Proof. One of De Morgan’s Laws (see Example 1.2.17 on page 6 of the textbook) asserts that, if C1 and C2 are sets, then
we have

(C1 ∪ C2)
c = Cc

1 ∩ Cc
2 .

We also recall Theorem 1.3.5 on page 12 of the textbook, which asserts that for any events C1 and C2, we have

P(C1 ∪ C2) = P(C1) + P(C2) − P(C1 ∩ C2)

Finally, since we assumed in the hypothesis that C1 and C2 are independent events, we have P(C2 |C1) = P(C2), and so
the definition of conditional probability implies

P(C1 ∩ C2) = P(C1)P(C2 |C1)

= P(C1)P(C2).



Applying all of the above and the definition of conditional probability, we have

P(Cc
2 |C

c
1 ) =

P(Cc
2 ∩ Cc

1 )

P(Cc
1 )

=
P((C1 ∪ C2)

c)

P(Cc
1 )

=
1 − P(C1 ∪ C2)

P(Cc
1 )

=
1 − (P(C1) + P(C2) − P(C1 ∩ C2))

P(Cc
1 )

=
1 − P(C1) − P(C2) + P(C1 ∩ C2)

P(Cc
1 )

=
1 − P(C1) − P(C2) + P(C1)P(C2)

P(Cc
1 )

=
(1 − P(C1))(1 − P(C2))

P(Cc
1 )

=
P(Cc

1 )P(C
c
2 )

P(Cc
1 )

= P(Cc
2 ),

which means Cc
1 and Cc

2 are independent. �

1.4.14. Each of four persons fires one shot at a target. Let Ck denote the event that the target is hit by person k, k = 1,2,3,4. If
C1,C2,C3,C4 are independent and if P(C1) = P(C2) = 0.7, P(C3) = 0.9, and P(C4) = 0.4, compute the probability that

(a) all of them hit the target;

Solution. We have

P(all of C1,C2,C3,C4 hit) = P(C1 ∩ C2 ∩ C3 ∩ C4)

= P(C1)P(C2)P(C3)P(C4)

= (0.7)(0.7)(0.9)(0.4)
= 0.1764,

meaning that there is a 17.64% chance that all of them hit the target. �

(b) exactly one hits the target;

Solution. The probability that only person 1 hits the target is

P(C1 hits and C2,C3,C4 miss) = P(C1 ∩ Cc
2 ∩ Cc

3 ∩ Cc
4 )

= P(C1)P(Cc
2 )P(C

c
3 )P(C

c
4 )

= P(C1)(1 − P(C2))(1 − P(C3))(1 − P(C4))

= (0.7)(1 − 0.7)(1 − 0.9)(1 − 0.4)
= 0.0126.

The probability that only person 2 hits the target is

P(C2 hits and C1,C3,C4 miss) = P(Cc
1 ∩ C2 ∩ Cc

3 ∩ Cc
4 )

= P(Cc
1 )P(C2)P(Cc

3 )P(C
c
4 )

= (1 − P(C1))P(C2)(1 − P(C3))(1 − P(C4))

= (1 − 0.7)(0.7)(1 − 0.9)(1 − 0.4)
= 0.0126.

The probability that only person 3 hits the target is

P(C3 hits and C1,C2,C4 miss) = P(Cc
1 ∩ Cc

2 ∩ C3 ∩ Cc
4 )

= P(Cc
1 )P(C

c
2 )P(C3)P(Cc

4 )

= (1 − P(C1))(1 − P(C2))P(C3)(1 − P(C4))

= (1 − 0.7)(1 − 0.7)(0.9)(1 − 0.4)
= 0.0486.



The probability that only person 4 hits the target is

P(C4 hits and C1,C2,C3 miss) = P(Cc
1 ∩ Cc

2 ∩ Cc
3 ∩ C4)

= P(Cc
1 )P(C

c
2 )P(C

c
3 )P(C4)

= (1 − P(C1))(1 − P(C2))(1 − P(C3))P(C4)

= (1 − 0.7)(1 − 0.7)(1 − 0.9)(0.4)
= 0.0036.

Therefore, the probability that exactly one person out of any of these four people hit the target is

P(exactly one of C1,C2,C3,C4 hits) = P(C1 hits and C2,C3,C4 miss) + P(C2 hits and C1,C3,C4 miss)
+ P(C3 hits and C1,C2,C4 miss) + P(C4 hits and C1,C2,C3 miss)

= 0.0126 + 0.0126 + 0.0486 + 0.0036
= 0.0774,

meaning that there is a 7.74% chance that exactly one hits the target. �

(c) no one hits the target;

Solution. Saying that no one hits the target is equivalent to saying that all of them miss the target. Also, since
C1,C2,C3,C4 are independent events, it follows by an application of Exercise 1.4.11(c) that Cc

1 ,C
c
2 ,C

c
3 ,C

c
4 are also

independent events. So we have

P(all of C1,C2,C3,C4 miss) = P(Cc
1 ∩ Cc

2 ∩ Cc
3 ∩ Cc

4 )

= P(Cc
1 )P(C

c
2 )P(C

c
3 )P(C

c
4 )

= (1 − P(C1))(1 − P(C2))(1 − P(C3))(1 − P(C4))

= (1 − 0.7)(1 − 0.7)(1 − 0.9)(1 − 0.4)
= 0.0054,

meaning that there is a 0.54% chance that no one hits the target. �

(d) at least one hits the target.

Solution. Observe that the probability that at least one hits the target is the compliment of the probability that no one
hits the target. In other words, we have

P(at least one of C1,C2,C3,C4 hits) = 1 − P(all of C1,C2,C3,C4 miss)
= 1 − 0.0054
= 0.9946,

meaning that there is a 99.46% chance that at least one hits the target. �


