Theorem 1.8.2

Note: This is Theorem 1.8.2 (page 55) of the textbook *Introduction to Mathematical Statistics* (seventh edition) by Robert V. Hogg, Joseph W. McKean, Allen T. Craig. I am following the proof of Theorem 1.8.2 but filling in intermediate steps here, so that the proof is hopefully easier to read.

Attention: In discussion, I only proved the existence of the expectation of $k_1g_1(X) + k_2g_2(X)$ in both the continuous and discrete cases. However, I forgot to address in discussion how to establish $E(k_1g_1(X) + k_2g_2(X)) = k_1E(g_1(X)) + k_2E(g_2(X))$. But this equality is addressed in the proof below for both the continuous and discrete cases. Please make sure you know this as well for your midterm!

Theorem. Let $g_1(X)$ and $g_2(X)$ be functions of a random variable X. Suppose the expectations of $g_1(X)$ and $g_2(X)$ exist. Then, for any constants k_1 and k_2 , the expectation of $k_1g_1(X) + k_2g_2(X)$ exists and it is given by

$$E(k_1g_1(X) + k_2g_2(X)) = k_1E(g_1(X)) + k_2E(g_2(X)).$$

Proof. First, we will work in the *continuous case*. Since we assumed that the expectations of $g_1(X)$ and $g_2(X)$ exist, we automatically have

$$|E(g_1(X))| \le \int_{-\infty}^{\infty} |g_1(x)| f_X(x) \, dx < \infty,$$

$$|E(g_2(X))| \le \int_{-\infty}^{\infty} |g_2(x)| f_X(x) \, dx < \infty.$$

Therefore, using the triangle inequality (second step below) linearity of the integral (fourth step below), we have

$$\begin{split} |E(k_1g_1(X)+k_2g_2(X))| &\leq \int_{-\infty}^{\infty} |k_1g_1(x)+k_2g_2(x)|f_X(x)\,dx \\ &\leq \int_{-\infty}^{\infty} (|k_1g_1(x)|+|k_2g_2(x)|)f_X(x)\,dx \\ &\leq \int_{-\infty}^{\infty} |k_1||g_1(x)|f_X(x)+|k_2||g_2(x)|f_X(x)\,dx \\ &= |k_1|\int_{-\infty}^{\infty} |g_1(X)|f_X(x)\,dx+|k_2|\int_{-\infty}^{\infty} |g_2(x)|f_X(x)\,dx \\ &< \infty, \end{split}$$

which means the expectation of $k_1g_1(X) + k_2g_2(X)$ exists. Finally, we use the linearity of the integral to establish

$$E(k_1g_1(X) + k_2g_2(X)) = \int_{-\infty}^{\infty} (k_1g_1(x) + k_2g_2(x))f_X(x) dx$$

$$= \int_{-\infty}^{\infty} k_1g_1(x)f_X(x) + k_2g_2(x)f_X(x) dx$$

$$= k_1 \int_{-\infty}^{\infty} g(x)f_X(x) dx + k_2 \int_{-\infty}^{\infty} g(x)f_X(x) dx$$

$$= k_1 E(g_1(X)) + k_2 E(g_2(X)),$$

as desired.

Next, we will work in the *discrete case*. Since we assumed that the expectations of $g_1(X)$ and $g_2(X)$ exist, we automatically have

$$|E(g_1(X))| \le \sum_{x} |g_1(x)| p_X(x) < \infty,$$

 $|E(g_2(X))| \le \sum_{x} |g_2(x)| p_X(x) < \infty.$

Therefore, using the triangle inequality (second step below) linearity of the sum (fourth step below), we have

$$|E(k_1g_1(X) + k_2g_2(X))| \le \sum_{x} |k_1g_1(x) + k_2g_2(x)|p_X(x)$$

$$\le \sum_{x} (|k_1g_1(x)| + |k_2g_2(x)|)p_X(x)$$

$$\le \sum_{x} (|k_1||g_1(x)|p_X(x) + |k_2||g_2(x)|p_X(x))$$

$$= |k_1| \sum_{x} |g_1(x)|p_X(x) + |k_2| \sum_{x} |g_2(x)|p_X(x)$$

which means the expectation of $k_1g_1(X) + k_2g_2(X)$ exists. Finally, we use the linearity of the sum to establish

$$\begin{split} E(k_1g_1(X) + k_2g_2(X)) &= \sum_x (k_1g_1(x) + k_2g_2(x))p_X(x) \\ &= \sum_x k_1g_1(x)p_X(x) + k_2g_2(x)p_X(x) \\ &= k_1\sum_x g(x)p_X(x) + k_2\sum_x g(x)p_X(x) \\ &= k_1E(g_1(X)) + k_2E(g_2(X)), \end{split}$$

as desired.