Theorem 2.3.1

Note: This is Theorem 2.3.1 (page 98) of the textbook *Introduction to Mathematical Statistics* (seventh edition) by Robert V. Hogg, Joseph W. McKean, Allen T. Craig. I am following the proof of Theorem 2.3.1 but filling in intermediate steps here, so that the proof is hopefully easier to read.

Theorem (Theorem 2.3.1 of Hogg, McKean, Craig). Let (X_1, X_2) be a random vector such that the variance of X_2 is finite. Then we have:

- (a) $E[E(X_2|X_1)] = E(X_2)$,
- (b) $Var[E(X_2|X_1)] \le Var(X_2)$.

Proof. First, we will prove statement (a). For the continuous case, we have

$$\begin{split} E(X_2) &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_2 f_{X_1, X_2}(x_1, x_2) \, dx_2 \, dx_1 \\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_2 f_{X_1, X_2}(x_1, x_2) \frac{f_{X_1}(x_1)}{f_{X_1}(x_1)} \, dx_2 \, dx_1 \\ &= \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} x_2 \frac{f_{X_1, X_2}(x_1, x_2)}{f_{X_1}(x_1)} \, dx_2 \right) f_{X_1}(x_1) \, dx_1 \\ &= \int_{-\infty}^{\infty} E(X_2 | x_1) f_{X_1}(x_1) \, dx_1 \\ &= E[E(X_2 | X_1)]. \end{split}$$

For the discrete case, we have

$$E(X_2) = \sum_{x_1} \sum_{x_2} x_2 p_{X_1, X_2}(x_1, x_2)$$

$$= \sum_{x_1} \sum_{x_2} x_2 p_{X_1, X_2}(x_1, x_2) \frac{p_{X_1}(x_1)}{p_{X_1}(x_1)}$$

$$= \sum_{x_1} \left(\sum_{x_2} x_2 \frac{p_{X_1, X_2}(x_1, x_2)}{p_{X_1}(x_1)} \right) p_{X_1}(x_1)$$

$$= \sum_{x_1} E(X_2 | X_1) p_{X_1}(x_1)$$

$$= E[E(X_2 | X_1)].$$

This completes our proof of statement (a).

Next, we will prove statement (b). We recall that expectation of a variable is the mean; for instance, we consider $\mu_2 = E(X_2)$. Then, by the linearity of expectation, we have

$$Var(X_2) = E[(X_2 - \mu_2)^2]$$

$$= E[((X_2 - E(X_2|X_1)) + (E(X_2|X_1) - \mu_2))^2]$$

$$= E[(X_2 - E(X_2|X_1))^2 + 2(X_2 - E(X_2|X_1))(E(X_2|X_1) - \mu_2) + (E(X_2|X_1) - \mu_2)^2]$$

$$= E[(X_2 - E(X_2|X_1))^2] + 2E[(X_2 - E(X_2|X_1))(E(X_2|X_1) - \mu_2)] + E[(E(X_2|X_1) - \mu_2)^2].$$

We also note that, since we notice $(X_2 - E(X_2|X_1))^2 \ge 0$ and $f_{X_1,X_2}(x_1,x_2) \ge 0$, it follows that the first term $E[(X_2 - E(X_2|X_1)^2]]$ in our latest expression of $Var(X_2)$ satisfies

$$E[(X_2 - E(X_2|X_1)^2] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x_2 - E(X_2|x_1))^2 f_{X_1, X_2}(x_1, x_2) dx_2 dx_1$$

$$\geq \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} 0 dx_2 dx_1$$

$$= 0.$$

Therefore, we have

$$Var(X_2) = E[(X_2 - E(X_2|X_1))^2] + 2E[(X_2 - E(X_2|X_1))(E(X_2|X_1) - \mu_2)] + E[(E(X_2|X_1) - \mu_2)^2]$$

$$= E[(X_2 - E(X_2|X_1))^2] + 2(0) + E[(E(X_2|X_1) - \mu_2)^2]$$

$$\geq 0 + 2(0) + E[(E(X_2|X_1) - \mu_2)^2]$$

$$= E[(E(X_2|X_1) - \mu_2)^2]$$

$$= Var(E(X_2|X_1)),$$

as desired.