Notes for Week 3 discussion on October 15

We addressed primarily only experiments with discrete outcomes. But please understand that there are experiments with continuous outcomes as well. Recall that *C* is the sample space that lists of all possible outcomes *c* of some given experiment. Let $\mathcal{D} := \{x \in \mathbb{R} : X(c) = x, c \in C\}$ be some range of real numbers, where $X : C \to \mathcal{D}$ is a function that we will define below.

Definition. A function $X : C \to D$ defined by X(c) = x for some $c \in C$ and $x \in D$ is called a random variable.

Sometimes, \mathcal{D} may be a finite space, where we can write $\mathcal{D} = \{d_1, \ldots, d_m\}$. In this case, we write $X(c) = d_i$ for any $i = 1, \ldots, m$, rather than X(c) = x in general. Finite spaces appear when we have to deal with experiments—such as rolling dice—that produce discrete outcomes.

Definition. A cumulative distribution function (*c.d.f.*) is a function $F_X : \mathbb{R} \to [0,1]$ defined by

$$F_X(x) := P_X((-\infty, x])$$

= $P(\{c \in C : X(c) \le x\})$
= $P(X < x)$.

where the expression $P(X \le x)$ after the last equality is an informal but frequently-used version of $P(\{c \in C : X(c) \le x\})$.

Note that a c.d.f. always starts at $F_X(x) = 0$ from $x = -\infty$ and ends at $F_X(x) = 1$ towards $x = +\infty$, and that F_X is always increasing—in a continuous and/or discontinuous manner—from 0 to 1 as we traverse from left to right the values of $x \in \mathcal{D}$. For experiments with discrete outcomes such as rolling dice, F_X will always be increasing in a discontinuous manner with jumps. A good step towards finding a c.d.f. is to organize in a table all the values of x and $p_X(x)$, as will be done in the examples below. Our first two examples will focus on only discrete random variables.

Example (Rolling one six-sided die). The sample space for rolling one six-sided die is $C = \{1, 2, 3, 4, 5, 6\}$, with the 6 possible outcomes $c \in C$. In this example, let our range of numbers be exactly the outcomes of this experiment; in other words, here we have $\mathcal{D} = C = \{1, 2, 3, 4, 5, 6\}$. (Note: For other experiments, it is usually the case of $\mathcal{D} \neq C$.) This makes \mathcal{D} a finite space, which means we can write $x = X(c) \in \{d_1, d_2, d_3, d_4, d_5, d_6\}$. Next, we can outline the range x and the probability $p_X(x)$ in the following table.

x	1	2	3	4	5	6
$p_X(x)$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

Output values $p_X(x)$ of the probability mass function (p.m.f.)

Consequently, our c.d.f. is given by

$$F_X(x) = \begin{cases} P(X \le x) = 0 & \text{if } x < 1, \\ P(X \le x) = \frac{1}{6} & \text{if } 1 \le x < 2, \\ P(X \le x) = \frac{2}{6} & \text{if } 2 \le x < 3, \\ P(X \le x) = \frac{3}{6} & \text{if } 3 \le x < 4, \\ P(X \le x) = \frac{4}{6} & \text{if } 4 \le x < 5, \\ P(X \le x) = \frac{5}{6} & \text{if } 5 \le x < 6, \\ P(X \le x) = 1 & \text{if } x \ge 6. \end{cases}$$

It is not required to write $P(X \le x)$ in our expression of the piecewise function F_X , but here we are only writing it in for purposes of clarity. Our c.d.f. for discrete random variables is obtained by adding up all the individual probabilities $p_X(x)$: for instance, for $P(X \le 5.8)$ (I chose 5.8 at random) we have

$$P(X \le 5.8) = p_X(1) + p_X(2) + p_X(3) + p_X(4) + p_X(5)$$
$$= \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6}$$
$$= \frac{5}{6}.$$

The graph of our c.d.f. is given below (next page). Note that the x-axis denotes X(c) = x and the y-axis denotes $F_X(x)$.

Graph of the c.d.f. for the outcomes $i \in \{1, 2, 3, 4, 5, 6\}$ when rolling one six-sided die

Example (Rolling two six-sided dice). The sample space for rolling two six-sided dice is $C = \{(i, j) \in \mathbb{Z} \times \mathbb{Z} : 1 \le i, j \le 6\}$, with the 36 possible outcomes $c = (i, j) \in C$. In this example, we would like to add up the numbers we rolled from the two six-sided dice. The lowest value of 1 + 1 = 2 occurs when rolls a 1 and a 1, giving the outcome (1, 1), and the highest value of 6 + 6 = 12 occurs when rolls a 6 and a 6, giving the outcome (6, 6). It is also possible to obtain numbers i + j between 2 and 12. In other words, we have $\mathcal{D} = \{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$. This makes \mathcal{D} a finite space, which means we can write $x = X(c) \in \{d_1, d_2, d_3, d_4, d_5, d_6, d_7, d_8, d_9, d_{10}, d_{11}\}$ (there are 11 elements of \mathcal{D}). Next, we can display the frequencies of all the possible sums i + j below.

	1	2	3	4	5 6 7 8 9 10 11	6
1	2	3	4	5	6	7
2	3	4	5	6	7	8
3	4	5	6	7	8	9
4	5	6	7	8	9	10
5	6	7	8	9	10	11
6	7	8	9	10	11	12

An array of all the sums i + j

If we count the number of appearances of each sum i + j (for example, 7 appears 6 times out of 36 outcomes, giving the probability $p_X(7) = \frac{6}{36}$), we can outline the range x and the probability $p_X(x)$ in the following table.

x	2	3	4	5	6	7	8	9	10	11	12
$p_X(x)$	$\frac{1}{36}$	$\frac{2}{36}$	$\frac{3}{36}$	$\frac{4}{36}$	$\frac{5}{36}$	$\frac{6}{36}$	$\frac{5}{36}$	$\frac{4}{36}$	$\frac{3}{36}$	$\frac{2}{36}$	$\frac{1}{36}$

Output values $p_X(x)$ of the probability mass function (p.m.f.)

Consequently, our c.d.f. is given by

$$F_X(x) = \begin{cases} P(X \le x) = 0 & \text{if } x < 2, \\ P(X \le x) = \frac{1}{36} & \text{if } 2 \le x < 3, \\ P(X \le x) = \frac{3}{36} & \text{if } 3 \le x < 4, \\ P(X \le x) = \frac{6}{36} & \text{if } 4 \le x < 5, \\ P(X \le x) = \frac{10}{36} & \text{if } 5 \le x < 6, \\ P(X \le x) = \frac{15}{36} & \text{if } 6 \le x < 7, \\ P(X \le x) = \frac{21}{36} & \text{if } 7 \le x < 8, \\ P(X \le x) = \frac{26}{36} & \text{if } 8 \le x < 9, \\ P(X \le x) = \frac{33}{36} & \text{if } 10 \le x < 11, \\ P(X \le x) = \frac{33}{36} & \text{if } 11 \le x < 12, \\ P(X \le x) = 1 & \text{if } x \ge 12. \end{cases}$$

It is not required to write $P(X \le x)$ in our expression of the piecewise function F_X , but here we are only writing it in for purposes of clarity. Our c.d.f. for discrete random variables is obtained by adding up all the individual probabilities $p_X(x)$: for instance, for

$$P(X \le 9.4) = p_X(2) + p_X(3) + p_X(4) + p_X(5) + p_X(6) + p_X(7) + p_X(8) + p_X(9)$$

= 0 + $\frac{1}{36}$ + $\frac{2}{36}$ + $\frac{3}{36}$ + $\frac{4}{36}$ + $\frac{5}{36}$ + $\frac{6}{36}$ + $\frac{5}{36}$ + $\frac{4}{36}$
= $\frac{30}{36}$.

The graph of our c.d.f. is given below. Note that the x-axis denotes X(c) = x and the y-axis denotes $F_X(x)$.

Graph of the c.d.f. for the sum i + j of the outcomes $\{(i, j) \in \mathbb{Z} \times \mathbb{Z} : 1 \le i, j \le 6\}$ when rolling two six-sided dice

Our last example concerns continuous random variables.

Example. Let X be a real number chosen at random between 0 and 1. Then our c.d.f. is given by

$$F_X(x) = \begin{cases} P(X \le x) = 0 & \text{if } x < 0, \\ P(X \le x) = x & \text{if } 0 \le x < 1, \\ P(X \le x) = 1 & \text{if } x \ge 1. \end{cases}$$

It is not required to write $P(X \le x)$ in our expression of the piecewise function F_X , but here we are only writing it in for purposes of clarity. Our c.d.f. for continuous random variables is obtained by reasoniably assigning $P_X([a,b]) = b - a$ for any $0 \le a < b \le 1$ (see Example 1.5.2 on page 33-34 of the textbook); for instance, for $P(X \le 0.75)$ (I chose 0.75 at random), then we have

$$P(X \le 0.75) = P(X < 0) + P(0 \le x \le 0.75)$$

= 0 + (0.75 - 0)
= 0.75.

The graph of our c.d.f. is given below. Note that the x-axis denotes X(c) = x and the y-axis denotes $F_X(x)$.

Graph of the c.d.f. of the real number chosen at random between 0 and 1