Notes for Week 6 discussion on November 5

Definition. Let X_1 and X_2 be two random variables associated with some experiment with sample space c. This means we would have $X_1(c) = x_1$ and $X_2(c) = x_2$. We say that (X_1, X_2) is a random vector. Furthermore, the space of (X_1, X_2) is the set of ordered paris $\mathcal{D} = \{(x_1, x_2) \in \mathbb{R}^2 : X_1(c) = x_1, X_2(c) = x_2, c \in C\}$.

Definition. The cumulative distribution function (cdf) is given by

$$F_{X_1,X_2}(x_1,x_2) = P((X_1 \le x_1) \cap (X_2 \le x_2)).$$

(Chapter 1 analogue: $F_X(x) = P(X \le x)$.)

Definition. The joint probability mass function (pmf) is given by

$$p_{X_1,X_2}(x_1,x_2) = P(X_1 = x_1, X_2 \le x_2).$$

(Chapter 1 analogue: $p_X(x) = P(X \le x)$.)

Definition. The joint probability mass function (pdf) is given by

$$f_{X_1,X_2}(x_1,x_2) = \frac{\partial^2 F_{X_1,X_2}(x_1,x_2)}{\partial x_1 \partial x_2}.$$

(Chapter 1 analogue: $f_X(x) = \frac{dF(x)}{dx}$.)

Example (Example 2.1.2 of the textbook). Let

$$f(x_1, x_2) := \begin{cases} 6x_1^2x_2 & if \ 0 < x_1 < 1, 0 < x_2 < 1, \\ 0 & otherwise. \end{cases}$$

(a) Show $P(0 < x_1 < 1, 0 < x_2 < 1) = 1$.

Solution. We have

$$P(0 < x_1 < 1, 0 < x_2 < 1) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x_1, x_2) dx_1 dx_2$$

$$= \int_{0}^{1} \int_{0}^{1} 6x_1^2 x_2 dx_1 dx_2$$

$$= \int_{0}^{1} 2x_1^3 |_{0}^{1} x_2 dx_2$$

$$= \int_{0}^{1} 2(1^3 - 0^3) x_2 dx_2$$

$$= \int_{0}^{1} 2x_2 dx_2$$

$$= x_2^2 |_{0}^{1}$$

$$= (1^2 - 0^2)$$

$$= 1,$$

as desired.

(b) Compute $P(0 < X_1 < \frac{3}{4}, \frac{1}{2} < X < 2)$.

Proof. We have

$$P(0 < X_{1} < \frac{3}{4}, \frac{1}{3} < X_{2} < 2) = \int_{\frac{1}{3}}^{2} \int_{0}^{\frac{3}{4}} f(x_{1}, x_{2}) dx_{1} dx_{2}$$

$$= \int_{\frac{1}{3}}^{1} \int_{0}^{\frac{3}{4}} f(x_{1}, x_{2}) dx_{1} dx_{2} + \int_{1}^{2} \int_{0}^{\frac{3}{4}} f(x_{1}, x_{2}) dx_{1} dx_{2}$$

$$= \int_{\frac{1}{3}}^{1} \int_{0}^{\frac{3}{4}} 6x_{1}^{2}x_{2} dx_{1} dx_{2} + \int_{1}^{2} \int_{0}^{\frac{3}{4}} 0 dx_{1} dx_{2}$$

$$= \int_{\frac{1}{3}}^{1} \int_{0}^{\frac{3}{4}} 6x_{1}^{2}x_{2} dx_{1} dx_{2}$$

$$= \int_{\frac{1}{3}}^{1} 2x_{1}^{3} \int_{0}^{\frac{3}{4}} x_{2} dx_{2}$$

$$= \int_{\frac{1}{3}}^{1} 2\left(\left(\frac{3}{4}\right)^{3} - (0)^{3}\right) x_{2} dx_{2}$$

$$= \frac{27}{32} \int_{\frac{1}{3}}^{1} x_{2} dx_{2}$$

$$= \frac{27}{32} \frac{1}{2} x_{2}^{2} \Big|_{\frac{1}{3}}^{1}$$

$$= \frac{27}{74} \left((1)^{2} - \left(\frac{1}{3}\right)^{2}\right)$$

$$= \frac{3}{8},$$

as desired.

(c) Find the cdf of X_1, X_2 .

Proof. We have

$$F_{X_1,X_2}(x_1,x_2) = \int_{-\infty}^{x_1} \int_{-\infty}^{x_2} f_{X_1,X_2}(w_1,w_2) dw_1 dw_2$$

$$= \int_{0}^{x_1} \int_{0}^{x_2} 6w_1^2 w_2 dw_1 dw_2$$

$$= \int_{0}^{x_1} 2w_1^3 \Big|_{0}^{x_2} w_2 dw_2$$

$$= \int_{0}^{x_1} 2(x_2^3 - 0^3) w_1 dw_2$$

$$= 2x_2^3 \int_{0}^{x_1} 2w_1 dw_2$$

$$= x_2^3 w_1^2 \Big|_{0}^{x_1}$$

$$= x_2^3 (x_1^2 - 0^2)$$

$$= x_1^2 x_2^3,$$

as desired.

Example (Example 2.1.5 of the textbook). Let

$$f(x_1, x_2) := \begin{cases} 8x_1x_2 & \text{if } 0 < x_1 < x_2 < 1, \\ 0 & \text{otherwise.} \end{cases}$$

Find $E(X_1X_2^2)$, $E(X_2)$, and $E(7X_1X_2^2 + 5X_2)$.

Solution. We have

$$E(X_1 X_2^2) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_1 x_2^2 f(x_1, x_2) \, dx_2 \, dx_1$$

$$= \int_0^1 \int_{x_1}^1 x_1 x_2^2 (8x_1 x_2) \, dx_2 \, dx_1$$

$$= 8 \int_0^1 \int_{x_1}^1 x_1^2 x_2^3 \, dx_2 \, dx_1$$

$$= 2 \int_0^1 x_2 x_2^4 \Big|_{x_1}^1 \, dx_1$$

$$= 2 \int_0^1 x_1^2 (1^4 - x_1^4) \, dx_1$$

$$= 2 \int_0^1 x_1^2 - x_1^6 \, dx_1$$

$$= 2 \left(\left(\frac{x_1^3}{3} - \frac{x_1^7}{7} \right) \right) \Big|_0^1$$

$$= 2 \left(\left(\frac{(1)^3}{3} - \frac{(1)^7}{7} \right) - \left(\frac{(0)^3}{3} - \frac{(0)^7}{7} \right) \right)$$

$$= \frac{8}{21},$$

as desired. We also have

$$E(X_2) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_2 f(x_1, x_2) dx_2 dx_1$$

$$= \int_0^1 \int_{x_1}^1 x_2 (8x_1 x_2) dx_2 dx_1$$

$$= 8 \int_0^1 x_1 \int_{x_1}^1 x_2^2 dx_2 dx_1$$

$$= 8 \int_0^1 x_1 \left(\frac{x_2^3}{3} \right)_{x_1}^1 dx_1$$

$$= 8 \int_0^1 x_1 \left(\frac{(1)^3}{3} - \frac{x_1^3}{3} \right) dx_1$$

$$= \frac{8}{3} \int_0^1 x_1 - x_1^4 dx_1$$

$$= \frac{8}{3} \left(\frac{x_1^2}{2} - \frac{x_1^5}{5} \right) \Big|_0^1$$

$$= \frac{8}{3} \left(\left(\frac{(1)^2}{2} - \frac{(1)^5}{5} \right) - \left(\frac{(0)^2}{2} - \frac{(0)^5}{5} \right) \right)$$

$$= \frac{4}{5}.$$

Consequently, using the linearity of expectation, we have

$$E(7X_1X_2^2 + 5X_2) = 7E(X_1X_2^2) + 5E(X_2)$$
$$= 7\left(\frac{8}{21}\right) + 5\left(\frac{4}{5}\right)$$
$$= \frac{20}{3},$$

as desired.