MATH 149A discussion Ryan Ta
University of California, Riverside Fall 2019

Notes for Week 6 discussion on November 5

Definition. Let X| and X, be two random variables associated with some experiment with sample space c. This means we would
have Xi(c) = x1 and X5(c) = xp. We say that (X1, X») is a random vector. Furthermore, the space of (X1, Xy) is the set of ordered
paris D = {(x1,x2) € R? : Xi(c) = x1, X2(c) = x2,¢ € C}.

Definition. 7he cumulative distribution function (cdf) is given by
Fx, x,(x1,x2) = P(X1 £ x1) N (X2 < x2)).
(Chapter 1 analogue: Fx(x) = P(X < x).)
Definition. The joint probability mass function (pmyf) is given by
Px.x(x1,%2) = P(X1 = x1, X5 < x).
(Chapter 1 analogue: px(x) = P(X < x).)
Definition. The joint probability mass function (pdf) is given by

3% Fx, x,(x1,x2)

fxx(x1,x2) = 9210152

(Chapter 1 analogue: fx(x) = dg—)(cx).)
Example (Example 2.1.2 of the textbook). Let

6x12xz if0<x; <1,0<x <1,

f(x1,x) = {

0 otherwise.

(a) Show PO<x1 <1,0<x<1)=1.
Solution. We have
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as desired. O

(b) Compute P(0 < X < %,% <X <?2).



Proof. We have

as desired.
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(c) Find the cdf of X1, X>.

Proof. We have

as desired.
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Example (Example 2.1.5 of the textbook). Let

8xixy if0<x;<x <1,

fxi,x0) = {

0 otherwise.

Find E(X,X3), E(X2), and E(1X, X3 + 5X>).



Solution. We have

E(X1X22)=f / x123 £ (x1,%2) dxa dx
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as desired. We also have
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Consequently, using the linearity of expectation, we have

E(7X\ X5 +5X;) = TE(X1 X3) + SE(X)
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as desired.



