Math 150A, Winter 2020-Final Exam

Except for the extra credit problem, this exam has 6 problems worth 60 points distributed
over 10 pages, including this one and one blank page. The extra credit problem is at the
last page 11. Please read the following instruction very carefully.

Instruction: This is a three-hour open notes exam. Please give yourself 3 hours between
2:50pm and 6:10pm on March 20, 2020. That means, once you open this exam, you have
to finish it within 3 hours. You have to email it back to me by 6:10pm. No late submission
will be accepted. You may consult your notes or textbook during the exam. But you may
not use anything else. In particular, you have to work independently. Highly similar exams
will be reported as cheating cases to the Student Conduct & Academic Integrity Programs.

Show all of your work on each problem and carefully justify all answers. Points will be
deducted for irrelevant, incoherent or incorrect statements, and no points will be awarded
for illegible work. If you run out of room, you may work answers on the blank page. Be
sure to clearly indicate when work is continued on another page.

NAME (please print): Z . Z

NetID (please print):

Honor Pledge

On my honor, I have neither given nor received any unauthorized aid on this exam.

Signature:



Math 150A Final

Question | Points | Score
1 10 T.A.
2 10 TA
3 10 R.T.
4 10 R.T.
5 10 R.T
6 10 Z.Z
Total: 60

Extron Credt Problem 2.2
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Math 150A Final

1. (a) (5 points) Consider the sequence {a, = %}nez .. Show by definition
that it’s convergent.
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(b) (5 points) Consider the sequence {a, = (—1)"- HLH}HGZ+. Is it divergent or
convergent? Explain your reasoning?
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Math 150A Final 4

2. (10 points) Show by definition that f(z) = |cos(z)| : R — R is continuous on R.
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3. Consider a function f(z) =tan"'(z>+1): R — R.
(a) (4 points) Show that f is continuous on R.
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(b) (6 points) Use the fact from part (1) to compute lim tan™ (J5 + 1). Justify
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4. (10 points) Does f(z) = sin (-%5) : (1,00) — R have a right limit at z = 17 If
yes, compute the limit. If not, explam why it doesn’t exist.
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5. In this question, we fix a > 1 and you may use the following three facts:

1. a® : R — (0,00) is continuous and strictly monotone increasing on R,
2. log, () : (0,00) — R is the inverse function of a®, and
3. log,(z¥) = ylog,(x) for all x > 0 and all y € R.

Consider the following two questions.

(a) (4 points) Show that log,(z) is continuous and strictly monotone increasing
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(b) (6 points) Consider the function f(z) = zV2 : (0, 00) — (0, 00). Show that
f(z) is continuous and stictly monotone increasing on (0, co).
Here you may the conclusion of part (a) as well, even though you are not
able to give the full details of part (a).
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6. (a) (4 points) Consider a subset S C [a,b]. Suppose S is an infinite set. Is it
possible that its limit set S’ is empty? Why?
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(b) (6 points) Is there an infinite subset S of R which has no limit point, i.e.
S" = @7 If yes, give such an example and show why your S satisfies S’ = &.

If no, explain your reasoning.
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This problem worths 5 extra points. Note this 5 point is not part of your final
exam score. It will be added to your standard final letter grade. For this problem,
either you have a perfect solution then you will get a 5, or you will get a 0.

Extra credit problem: let f : I — R be a continuous function defined on a closed,
bounded interval I = [a,b]. Assume that f(a) = f(b) and m < f(a) < M where
m and M are the minimum and maximum of f on [a, b], respectively. Show that
for each v € (m, M), there are at least two different points z; # x5 € [a, b] such

that f(z1) = f(z2) = 1.
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