HOMEWORK ASSIGNMENT ONE

MATH 150A, WINTER 2020

- 1. Consider the following quesitons concerning bounded set.
 - (1) State the definition of a bounded set $S \subset \mathbb{R}$.
 - (2) Show that $S = \{1, ..., 10\} \cup (-1, 1)$ is bounded.
 - (3) Show that the set of natural numbers \mathbb{N} is an unbounded subset of \mathbb{R} .
 - (4) Show that the union of two bounded set is bounded.
- 2. We have triangle inequality: $|x + y| \le |x| + |y|$ for all $x, y \in \mathbb{R}$.
 - (1) When the inequality becomes equality, i.e. |x + y| = |x| + |y|?
 - (2) When it becomes a strict inequality, i.e. |x + y| < |x| + |y|?
 - (3) Show that $|x y| \le |x| + |y|$ for all $x, y \in \mathbb{R}$ via the triangle inequality.
 - (4) Show that $||x| |y|| \le |x y|$ for all $x, y \in \mathbb{R}$ via the triangle inequality.

3. Consider the following questions concerning the defition of convergent sequences.

- (1) State the definition of convergent sequences.
- (2) Use the definition to show that if $\lim_{n \to \infty} a_n = L$, then $\lim_{n \to \infty} |a_n| = |L|$. (3) Is it true that if $\lim_{n \to \infty} |a_n| = |L|$, then $\lim_{n \to \infty} a_n = L$? Why?

4. Try to mimick the class examples to show convergence of the following sequences by definition.

- (1) $\lim_{n \to \infty} \frac{1}{n^2} = 0.$ (2) $\lim_{n \to \infty} \frac{1}{2^n} = 0$ (3) Let 0 < a < 1. Show that $\lim_{n \to \infty} n^2 a^n = 0.$