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Homework 1 solutions

Reminder: If you choose to view these solutions, please only do so whenever you cannot make further progress on solving a problem.
Make sure you understand firmly what is being written, and make sure that you are writing your own proof in your own words!

1. Consider the following questions concerning bounded sets.

(1) State the definition of a bounded set S ⊂ R.

Remark. See Definition 1.1 in page 10 of Section 1.1 of your professor’s lecture notes.

Definition. A set S ⊂ R is said to be bounded if there exist m,M ∈ R such that m ≤ x ≤ M for all x ∈ S. �

(2) Show that S = {1, . . . ,10} ∪ (−1,1) is bounded.

Proof. Let m = −1 and M = 10. Then we have m ≤ x ≤ M for all x ∈ S. So S ⊂ R is bounded. �

(3) Show that the set of natural numbers N is an unbounded subset of R.

Remark. See the Claim in page 11 of Section 1.1 of your professor’s lecture notes to see the proof showing that Z is
unbounded. The proof to show that N is unbounded is almost identical to the proof showing that Z is unbounded.

Proof. We will use a proof by contradiction. Suppose instead thatN is bounded above by some M . Then we have n ≤ M
for all n ∈ N. But we know that, for all M ∈ R, there exists the least integer greater than or equal to M , which we denote
dMe. So we have n ≤ M ≤ dMe, which implies that dMe is, in fact, a natural number; that is, dMe ∈ N. Furthermore,
adding a natural number by 1 is again a natural number; in other words, we have dMe + 1 ∈ N. And we also get

dMe + 1 > dMe .

At the same time, we assumed earlier that all natural numbers are bounded above by M; that is, we assumed n ≤ M for
all n ∈ N. In particular, as we have just showed dMe + 1 ∈ N, it is bounded above by M; that is, we get

dMe + 1 ≤ dMe .

Therefore, we combine our above two displayed inequalities to conclude

dMe < dMe + 1
≤ dMe,

which is a contradiction. �

(4) Show that the union of two bounded sets is bounded.

Proof. Let S1,S2 ⊂ R be two bounded sets. Since S1 is bounded, there exist m1,M1 ∈ R such that m1 ≤ x ≤ M1 for all
x ∈ S1. Since S2 is bounded, there exist m2,M2 ∈ R such that m2 ≤ y ≤ M2 for all y ∈ S2. Now, let z ∈ S1 ∪ S2. Then
z ∈ S1 or z ∈ S2. Also set m = min{m1,m2} and M = max{M1,M2}.

• Case 1: If z ∈ S1, then we have m1 ≤ z ≤ M1. In fact, we have

m = min{m1,m2}

≤ m1

≤ z

≤ M1

≤ max{M1,M2}

= M .

• Case 2: If z ∈ S2, then we have m2 ≤ z ≤ M2. In fact, we have

m = min{m1,m2}

≤ m2

≤ z

≤ M2

≤ max{M1,M2}

= M .

In either case, we have m ≤ z ≤ M for all z ∈ S1 or for all z ∈ S2. In other words, we have m ≤ z ≤ M for all z ∈ S1∪S2.
Therefore, S1 ∪ S2 is bounded. �



2. The triangle inequality asserts |x + y | ≤ |x | + |y | for all x, y ∈ R.

(1) When does equality hold in triangle inequality?

Remark. This required separating this problem into cases, and I proved each one explicitly. However, you do not need
to prove every case explicitly! Most of the proofs below involve interchanging the roles of x and y, so they come off as
redundant. To shorten your own proof, you can just say “Without loss of generality” for one case, and prove that one
case only, provided that the proofs of other cases are similar. Otherwise, if a proof of another case looks substantially
different, then it might be worth including that in your own proof.

Proof. Equality holds if x, y are both positive, both negative, or at least one of x, y is zero.

• Case 1: Suppose x, y are both positive. Then we have |x | = x and |y | = y. Also, x + y is positive, which means we
have |x + y | = x + y. Therefore, we have

|x + y | = x + y

= |x | + |y |,

as desired.
• Case 2: Suppose x, y are both negative. Then we have |x | = −x and |y | = −y. Also, x + y is negative, which means

we have |x + y | = −(x + y). Therefore, we have

|x + y | = −(x + y)

= (−x) + (−y)

= |x | + |y |,

as desired.
• Case 3: Suppose x = 0. Then we also have |x | = 0. For all y ∈ R, we have

|x + y | = |0 + y |

= |y |

= 0 + |y |

= |x | + |y |,

as desired.
• Case 4: Suppose y = 0. Then we also have |y | = 0. For all x ∈ R, we have

|x + y | = |x + 0|
= |x |

= |x | + 0
= |x | + |y |,

as desired.

These cases complete the proof. �

(2) When is the inequality strict in triangle inequality?

Remark. Same remark as in part (1). This required separating this problem into cases, and I proved each one explicitly.
However, you do not need to prove every case explicitly! Most of the proofs below involve interchanging the roles of x
and y, so they come off as redundant. To shorten your own proof, you can just say “Without loss of generality” for one
case, and prove that one case only, provided that the proofs of other cases are similar. Otherwise, if a proof of another
case looks substantially different, then it might be worth including that in your own proof.

Direct proof. Whenever x is positive and y is negative, or x is negative and y is positive. We will prove by cases. (Or
assume without loss of generality and prove one case only.)

• Case 1: Suppose x is positive and y is negative. Then we have |x | = x and |y | = −y.
– Subcase 1: Suppose x + y ≥ 0. Since y is negative, we have y < 0, which is equivalent to y < −y. So we have

|x + y | = x + y

< x + (−y)

= |x | + |y |,

as desired.



– Subcase 2: Suppose x + y < 0. Since x is positive, we have x > 0, which is equivalent to x > −x. So we have

|x + y | = x + y

< (−x) + y

= |x | + |y |,

as desired.
• Case 2: Suppose x is negative and y is positive. Then we have |x | = −x and |y | = y.

– Subcase 2: Suppose x + y ≥ 0. Since x is negative, we have x < 0, which is equivalent to x < −x. So we have

|x + y | = x + y

< (−x) + y

= |x | + |y |,

as desired.
– Subcase 2: Suppose x + y < 0. Since y is positive, we have y > 0, which is equivalent to y > −y. So we have

|x + y | = x + y

< x + (−y)

= |x | + |y |,

as desired.

Both cases complete the proof. �

Proof by contradiction. Whenever x is positive and y is negative, or x is negative and y is positive. We will prove by
cases. (Or assume without loss of generality and prove one case only.)

• Case 1: Suppose x is positive and y is negative. Then we have |x | = x and |y | = −y. We will prove the strict
inequality |x + y | < |x | + |y | by contradiction. Suppose instead we have |x + y | ≥ |x | + |y |.

– Subcase 1: Suppose |x + y | > |x | + |y |. The triangle inequality states |x + y | ≤ |x | + |y | for all x, y ∈ R.
Therefore, we get

|x | + |y | < |x + y |

≤ |x | + |y |,

which is a contradiction.
– Subcase 2: Suppose |x + y | = |x | + |y |.

* Subsubcase 1: If x + y ≥ 0, then we have |x + y | = x + y. Therefore, we have

x + (−y) = |x | + |y |

= |x + y |

= x + y,

from which we can subtract x from both sides to obtain −y = y, or equivalently y = 0. But we assumed at
the beginning of this proof that y is positive. This means we have that y is zero and positive at the same time,
which is a contradiction.

* Subsubcase 2: If x + y < 0, then we have |x + y | = −(x + y). Therefore, we have

x + (−y) = |x | + |y |

= |x + y |

= −(x + y)

= (−x) + (−y),

from which we can subtract −y from both sides to obtain x = −x, or equivalently x = 0. But we assumed
at the beginning of this proof that x is negative. This means we have that x is zero and negative at the same
time, which is a contradiction.

In both Subcase 1 and Subcase 2 above, we obtained a contradiction. So we conclude |x + y | < |x | + |y |.
• Case 2: Suppose x is negative and y is positive. Then we have |x | = −x and |y | = y. We will prove the strict

inequality |x + y | < |x | + |y | by contradiction. Suppose instead we have |x + y | ≥ |x | + |y |.
– Subcase 1: Suppose |x + y | > |x | + |y |. The triangle inequality states |x + y | ≤ |x | + |y | for all x, y ∈ R.

Therefore, we get

|x | + |y | < |x + y |

≤ |x | + |y |,

which is a contradiction.



– Subcase 2: Suppose |x + y | = |x | + |y |.

* Subsubcase 1: If x + y ≥ 0, then we have |x + y | = x + y. Therefore, we have

(−x) + y = |x | + |y |

= |x + y |

= x + y,

from which we can subtract y from both sides to obtain −x = x, or equivalently x = 0. But we assumed at
the beginning of this proof that x is negative. This means we have that x is zero and negative at the same
time, which is a contradiction.

* Subsubcase 2: If x + y < 0, then we have |x + y | = −(x + y). Therefore, we have

(−x) + y = |x | + |y |

= |x + y |

= −(x + y)

= (−x) + (−y),

from which we can subtract −x from both sides to obtain y = −y, or equivalently y = 0. But we assumed at
the beginning of this proof that y is positive. This means we have that y is zero and positive at the same time,
which is a contradiction.

In both Subcase 1 and Subcase 2 above, we obtained a contradiction. So we conclude |x + y | < |x | + |y |.

These cases complete the proof by contradiction. �

(3) Use the triangle inequality to show that |x − y | ≤ |x | + |y | for all x, y ∈ R.

Proof. The triangle inequality states
|x + y | ≤ |x | + |y |

for all x, y ∈ R. Using this triangle inequality, we get

|x − y | = |x + (−y)|

≤ |x | + | − y |

= |x | + |y |

for all x, y ∈ R. �

(4) Use the triangle inequality to show that | |x | − |y | | ≤ |x − y | for all x, y ∈ R.

Remark. See the Corollary near the top of page 12 in Section 1.1 of your professor’s lecture notes to find this proof.
The proof below is presented in my own words; it is presented differently from the professor’s proof.

Proof. For all x, y ∈ R, we have

|x | − |y | = |(x − y) + y | − |y | add and subtract y
≤ (|x − y | + |y |) − |y | by part (3) on the first term
= |x − y |

and

−(|x | − |y |) = |y | − |x |

= |(y − x) + x | − |x | add and subtract x

≤ (|y − x | + |x |) − |x | by part (3) on the first term
= |y − x |

= |x − y |.

These two inequalities imply

| |x | − |y | | = ±(|x | − |y |)

≤ |x − y |

for all x, y ∈ R. �

3. Consider the following questions concerning the definition of a convergent sequence.

(1) State the definition of a convergent sequence.

Remark. See Definition 1.3 at the top of page 13 in Section 1.2 of your professor’s lecture notes.



Proof. We say that a sequence {an} converges to its limit L ∈ R as n goes to ∞ if, for any ε > 0, there exists a positive
integer n0 such that |an − L | < ε for all n ≥ n0. �

(2) Use the definition to show that, if lim
n→∞

an = L, then lim
n→∞
|an | = |L |.

Proof. Suppose lim
n→∞

an = L. Let ε > 0 be given. (This is another way of saying “for any ε > 0”.) Then there exists

a positive integer n0 such that |an − L | < ε for all n ≥ n0. Furthermore, by Exercise 2, part (4) (the reverse triangle
inequality), we have

| |an | − |L | | ≤ |an − L |

< ε.

In other words, for any ε > 0, there exists a positive integer n0 such that | |an | − |L | | < ε for all n ≥ n0. So we conclude
lim
n→∞
|an | = |L |. �

(3) Is it true that, if lim
n→∞
|an | = |L |, then lim

n→∞
an = L?

Answer. This is not necessarily true. For our counterexample, consider the sequence {an} given by

an =

{
1 if n is even,
−1 if n is odd

for all n ∈ Z+ and L = 1. (Note that we can equivalently write an = (−1)n for all n ∈ Z+.) Then we have

lim
n→∞
|an | = lim

n→∞
|(−1)n |

= lim
n→∞

1

= 1
= |1|
= |L |.

However, as seen in Example 3 on page 14 of Section 1.2 of the lecture notes, the sequence {an} is a divergent sequence.
Indeed, we can consider two subsequences {a2k}, {a2k−1} ⊂ {an} defined by a2k = 1 and a2k−1 = −1 for all k ∈ Z+,
which have their respective limits lim

k→∞
a2k = 1 and lim

k→∞
a2k−1 = −1. These two limits are different, which implies that

the limit of an = (−1)n does not exist. In other words, we cannot write lim
n→∞

an = L for all L ∈ R. �

4. Mimic the class examples to show, using the definition of a convergent sequence, that the following sequences converge to
their limits.

(1) lim
n→∞

1
n2 = 0

Proof. Let ε > 0 be given, and choose a positive integer n0 >
√

1
ε . For all n ≥ n0, we have���� 1

n2 − 0
���� =

���� 1
n2

����
=

1
n2

≤
1
n2

0

<
1( √
1
ε

)2

= ε .

Therefore, by the definition of a convergent sequence, we conclude lim
n→∞

1
n2 = 0. �

(2) lim
n→∞

1
2n

= 0



Proof. Let ε > 0 be given, and choose a positive integer n0 >
1
ε . Notice the inequality 2n ≥ n for all n ∈ Z+. For all

n ≥ n0, we have ���� 1
2n
− 0

���� =

���� 1
2n

����
=

1
2n

≤
1
n

≤
1
n0

= ε .

Therefore, by the definition of a convergent sequence, we conclude lim
n→∞

1
2n

= 0. �

(3) lim
n→∞

n2an = 0 for all 0 < a < 1

Proof. Since 0 < a < 1, we can write, for instance,

a =
1

(1 + h)3

for any h > 0. Bernoulli’s inequality states
(1 + h)n ≥ 1 + nh

for all n ∈ Z+ and for all h > 0. Consequently, we get

an =

(
1

(1 + h)3

)n
=

1
((1 + h)n)3

≤
1

(1 + nh)3

<
1
(nh)3

=
1

n3h3

for all n ∈ Z+. Now, let ε > 0 be given, and for any fixed h > 0, choose a positive integer n0 >
1
εh3 . For all n ≥ n0, we

have

|n2an − 0| = |n2an |

= n2an

< n2
(

1
n3h3

)
=

1
nh3

≤
1

n0h3

<
1

( 1
εh3 )h3

= ε .

Therefore, by the definition of a convergent sequence, we conclude lim
n→∞

n2an = 0 for all 0 < a < 1. �


