HOMEWORK ASSIGNMENT TWO

MATH 150A, WINTER 2020

1. Try to mimick the class examples to show convergence of the following sequences by definition.

- (1) $\lim_{n \to \infty} \frac{1}{n^2} = 0.$ (2) $\lim_{n \to \infty} \frac{1}{2^n} = 0.$ (3) Let 0 < a < 1. Show that $\lim_{n \to \infty} n^2 a^n = 0.$ (4) Try this one if you are ambious (it won't be on the quiz): Let 0 < a < 1 and $k \in \mathbb{Z}_+$. Show that $\lim_{n \to \infty} n^k a^n = 0$.

2. Show that if $\{a_n\}$ is bounded and $\{b_n\}$ converges to 0, then $\lim_{n \to \infty} (a_n b_n) = 0$.

Remark: This fact may be viewed as a supplementary theorem to Theorem 1.6-the product law. Because here we do not need the convergence of $\{a_n\}$ while we do require that $\lim_{n \to \infty} b_n = 0.$

- 3. Consider the following questions.
 - (1) Let $\{a_n\}$ and $\{b_n\}$ be two convergent sequences. Let α and $\beta \in \mathbb{R}$ be two constants. Apply the product and sum laws to show that

$$\lim_{n \to \infty} (\alpha a_n + \beta b_n) = \alpha \lim_{n \to \infty} a_n + \beta \lim_{n \to \infty} b_n.$$

Remark: This says that the operation of taking limits is linear. By induction, one can extend this property to: the limit of any linear combination of convergent sequences is the linear combination of the limits.

(2) Use part (4) of problem 1 and part (1) of porblem 3 (or rather its remark) to show that

$$\lim_{n \to \infty} \left(p(n)a^n \right) = 0,$$

where $p(n) = \sum_{k=0}^{m} a_k n^k$ is a polynomial in n and 0 < a < 1 is a constant.

Remark: As we mentioned in class, this fact tells us that exponential decaying (given by a^n) always beats polynomial growth (given by p(n)).

4. Consider the following quesitons:

- (1) Find an example where $\{a_n\}$ and $\{b_n\}$ are both divergent, but $\{a_n + b_n\}$ is convergent.
- (2) If $\{a_n\}$ is convergent and $\{b_n\}$ is divergent, can $\{a_n + b_n\}$ be convergent? Use the sum law to explain your answer.

Remark: One can ask similar questions concerning the product of two sequences.