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Homework 2 solutions

Reminder: If you choose to view these solutions, please only do so whenever you cannot make further progress on solving a problem.
Make sure you understand firmly what is being written, and make sure that you are writing your own proof in your own words!

1. Mimic the class examples to show, using the definition of a convergent sequence, that the following sequences converge to
their limits.

(1) lim
n→∞

1
n2 = 0

Proof. Let ε > 0 be given, and choose a positive integer n0 >
√

1
ε . For all n ≥ n0, we have���� 1

n2 − 0
���� =

���� 1
n2

����
=

1
n2

≤
1
n2

0

<
1( √
1
ε

)2

= ε .

Therefore, by the definition of a convergent sequence, we conclude lim
n→∞

1
n2 = 0. �

(2) lim
n→∞

1
2n

= 0

Proof. Let ε > 0 be given, and choose a positive integer n0 >
ε
2 . One can prove by induction the inequality 2n−1 ≥ n for

all n ∈ Z+. Note that 2n−1 ≥ n implies 2n = 2 · 2n−1 ≥ 2n. For all n ≥ n0, we have���� 1
2n
− 0

���� =

���� 1
2n

����
=

1
2n

≤
1

2n

≤
1

2n0

< ε.

Therefore, by the definition of a convergent sequence, we conclude lim
n→∞

1
2n

= 0. �

(3) lim
n→∞

n2an = 0 for all 0 < a < 1

Proof. Since 0 < a < 1, we can write, for instance,

a =
1

(1 + h)3

for any h > 0. By the binomial expansion, we have

(1 + h)n =

n∑
k=0

(
n
k

)
hk1n−k

=

(
n
0

)
1nh0 +

(
n
1

)
1n−1h1

≥ 1 + nh



for all n ∈ Z+ and for all h > 0. Consequently, we get

an =

(
1

(1 + h)3

)n
=

1
((1 + h)n)3

≤
1

(1 + nh)3

<
1
(nh)3

=
1

n3h3

for all n ∈ Z+. Now, let ε > 0 be given, and for any fixed h > 0, choose a positive integer n0 >
1
εh3 . For all n ≥ n0, we

have

|n2an − 0| = |n2an |

= n2an

< n2
(

1
n3h3

)
=

1
nh3

≤
1

n0h3

<
1

( 1
εh3 )h3

= ε .

Therefore, by the definition of a convergent sequence, we conclude lim
n→∞

n2an = 0 for all 0 < a < 1. �

(4) Let 0 < a < 1 and k ∈ Z+. Show that lim
n→∞

nkan = 0.

Direct proof. Since 0 < a < 1, we can write, for instance,

a =
1

(1 + h)k+1

for any h > 0 and for all positive integers k. The binomial expansion implies

(1 + h)n =

n∑
k=0

(
n
k

)
hk1n−k

≥

(
n
0

)
h01n−0 +

(
n
1

)
h11n−1

= 1 + nh

for all n ∈ Z+ and for all h > 0. Consequently, we get

an =

(
1

(1 + h)k+1

)n
=

1
((1 + h)n)k+1

≤
1

(1 + nh)k+1

<
1

(nh)k+1

=
1

nk+1hk+1

for all n ∈ Z+. Now, let ε > 0 be given, and for any fixed h > 0, choose a positive integer n0 >
1

εhk+1 . For all n ≥ n0, we



have

|nkan − 0| = |nkan |

= nkan

< nk
(

1
nk+1hk+1

)
=

1
nhk+1

≤
1

n0hk+1

<
1

( 1
εhk+1 )hk+1

= ε .

Therefore, by the definition of a convergent sequence, we conclude lim
n→∞

nkan = 0 for all 0 < a < 1 and for all positive
integers k. �

Proof by induction. To prove the base case, we would need to show that the statement for n = 1—that is, lim
n→∞

nan = 0
for all 0 < a < 1—holds true. But you can just follow the argument of part (3), though you need to make the necessary
adjustments. (I am leaving that part up to you to do it yourself.) So now it remains to complete the induction step.
Assume that the statement holds true for n = k—that is, assume lim

k→∞
nkan = 0—for any chosen integer k ≥ 2. We will

prove that the statement holds true for n = k + 1. By applying the Quotient Law (Theorem 1.8 of the professor’s lecture
notes), we observe that, for all 0 < a < 1,

lim
n→∞

nk+1an = lim
n→∞

nk+1

a−n

=

lim
n→∞

nk+1

lim
n→∞

a−n

=
∞

∞

is an indeterminate form. So we can apply l’Hôpital’s rule to obtain

lim
n→∞

nk+1an = lim
n→∞

nk+1

a−n

= lim
n→∞

d
dnnk+1

d
dna−n

= lim
n→∞

(k + 1)nk

−a−n ln a

= −
k + 1
ln a

lim
n→∞

nk

a−n

= −
k + 1
ln a

lim
n→∞

nkan

= −
k + 1
ln a

· 0

= 0,

which means the statement holds true for n = k + 1. This completes the proof by induction. �

2. Show that if {an}∞n=1 is bounded and {bn}∞n=1 converges to 0, then lim
n→∞
(anbn) = 0.

Remark (from the professor). This fact may be viewed as a supplementary theorem to Theorem 1.6 (the product law). Because
here we do not need the convergence of {an}∞n=1 while we do require that lim

n→∞
bn = 0.

Proof. Since we assume that {an}∞n=1 is a sequence of bounded terms an, there exists M > 0 such that |an | ≤ M for all
n ∈ Z+. Now, let ε > 0 be given. Since we assume that lim

n→∞
bn = 0, there exists n0 ∈ Z+ such that |bn−0| < ε

M for all n ≥ n0.



So we have

|anbn − 0| = |anbn |

= |an | |bn |

= |an | |bn − 0|
≤ M |bn − 0|

< M
( ε

M

)
= ε .

Therefore, we conclude lim
n→∞
(anbn) = 0. �

3. Consider the following questions.

(1) Let {an}∞n=1 and {bn}∞n=1 be two convergent sequences. Let α, β ∈ R be two constants. Apply the product and sum laws
to show that

lim
n→∞
(αan + βbn) = α lim

n→∞
an + β lim

n→∞
bn.

Remark (from the professor). This says that the operation of taking limits is linear. By induction, one can extend this
property to: the limit of any linear combination of convergent sequences is the linear combination of the limits.

Proof. By the Corollary of the Product Law, if {an}∞n=1 is a convergent sequence and c ∈ R is a constant, then {can}∞n=1
is also a convergent sequence that satisfies

lim
n→∞
(can) = c lim

n→∞
an.

In particular, since α, β ∈ R are two constants, {αan}∞n=1, {βbn}∞n=1 are two convergent sequences that satisfy

lim
n→∞
(αan) = α lim

n→∞
an,

lim
n→∞
(βbn) = β lim

n→∞
bn.

Then the Sum Law asserts that {αan + βbn}∞n=1 is a convergent sequence that satisfies

lim
n→∞
(αan + βbn) = lim

n→∞
(αan) + lim

n→∞
(βbn).

Therefore, we have

lim
n→∞
(αan + βbn) = lim

n→∞
(αan) + lim

n→∞
(βbn)

= α lim
n→∞

an + β lim
n→∞

bn,

as desired. �

(2) Use part (4) of Exercise 1 and part (1) of Exercise 3 (or rather its remark) to show that

lim
n→∞
(p(n)an) = 0,

where p(n) =
∑m

k=0 aknk is a polynomial in n and 0 < a < 1 is a constant.

Remark (from the professor). As we mentioned in class, this fact tells us that exponential decaying (given by an) always
beats polynomial growth (given by p(n)).

Proof. By applying part (1) of Exercise 3 repeatedly (or prove formally by induction), we obtain(
m∑
k=0

aknk
)

an = (a0 + a1n + a2n2 + · · · + amnm)an

= a0an + a1nan + a2n2an + · · · + amnman

=

m∑
k=0

aknkan

Part (4) of Exercise 1 states
lim
n→∞
(nkan) = 0



for all k ∈ Z+. Therefore, we have

lim
n→∞
(p(n)an) = lim

n→∞

(
m∑
k=0

aknk
)

an

= lim
n→∞

m∑
k=0

aknkan

=

m∑
k=0

ak lim
n→∞
(nkan)

=

m∑
k=0

ak · 0

= 0,

as desired. �

4. Consider the following questions:

(1) Find an example where {an}∞n=1 and {bn}∞n=1 are both divergent, but {an + bn}∞n=1 is convergent.

Remark. What I showed below is just one example that works. There are, of course, infinitely many examples that also
answer this question.

Proof. Define the two sequences {an}∞n=1 and {bn}∞n=1 by

an =

{
1 if n is even,
−1 if n is odd

and

bn =

{
−1 if n is even,
1 if n is odd.

Then {an}∞n=1 and {bn}∞n=1 are both divergent sequences. However, {an + bn}∞n=1 is then given by

an + bn =

{
(−1) + 1 if n is even,
1 + (−1) if n is odd.

=

{
0 if n is even,
0 if n is odd.

= 0

for all n ∈ Z+. Furthermore, we have

lim
n→∞
(an + bn) = lim

n→∞
0

= 0,

meaning that the limit of an + bn exists, and so {an + bn}∞n=1 is a convergent sequence. �

(2) If {an}∞n=1 is convergent and {bn}∞n=1 is divergent, can {an + bn}∞n=1 be convergent? Use the sum law to explain your
answer.

Proof. No, if {an}∞n=1 is convergent and {bn}∞n=1 is divergent, then {an + bn}∞n=1 cannot be convergent. To prove this, we
will argue by contradiction. Suppose instead that {an + bn}∞n=1 is convergent. Since {an}∞n=1 is convergent, the Corollary
of the Product Law (with c = −1) asserts that {−an}∞n=1 is also convergent. Now, we can write

bn = (an + bn) + (−an)

for all n ∈ Z+; in other words, we can write

{bn}∞n=1 = {(an + bn) + (−an)}∞n=1,

which is the addition of the two convergent sequences {an + bn}∞n=1 and {−an}∞n=1. By the Sum Law, we conclude that
{bn}∞n=1 is a convergent sequence. But this contradicts our assumption that {bn}∞n=1 is divergent. �

Remark (from the professor). One can ask similar questions concerning the product of two sequences.


