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Homework 3 solutions

Reminder: If you choose to view these solutions, please only do so whenever you cannot make further progress on solving a problem.
Make sure you understand firmly what is being written, and make sure that you are writing your own proof in your own words!

1. Try to write down the proof of the sum and product limit laws without consulting any resources.

Remark. The Sum Law and Product Law are Theorem 1.4 and Theorem 1.6 of the professor’s lecture notes, respectively.

Theorem (Sum Law). Let {an}∞n=1 and {bn}∞n=1 be two convergent sequences. Then {an + bn}∞n=1 is convergent and satisfies

lim
n→∞
(an + bn) = lim

n→∞
an + lim

n→∞
bn.

Proof. Let ε > 0 be given, and let a = lim
n→∞

an and b = lim
n→∞

bn be the respective limits of the sequences {an}∞n=1 and {bn}∞n=1.

Since we assume a = lim
n→∞

an, there exists n1 > 0 such that |an − a| < ε
2 for all n ≥ n1. Since we assume b = lim

n→∞
bn, there

exists n2 > 0 such that |bn − b| < ε
2 for all n ≥ n2. Now let n0 = max{n1,n2}. Then we have

|(an + bn) − (a + b)| = |an + bn − a − b|

= |an − a + bn − b|

= |(an − a) + (bn − b)|

≤ |an − a| + |bn − b|

<
ε

2
+
ε

2
= ε .

So we have proved lim
n→∞
(an + bn) = a + b. In other words, we have

lim
n→∞
(an + bn) = a + b

= lim
n→∞

an + lim
n→∞

bn,

as desired. �

Theorem (Product Law). Let {an}∞n=1 and {bn}∞n=1 be two convergent sequences. Then {anbn}∞n=1 is convergent and satisfies

lim
n→∞
(anbn) = ( lim

n→∞
an)( lim

n→∞
bn).

Proof. Let ε > 0 be given, and let a = lim
n→∞

an and b = lim
n→∞

bn be the respective limits of the sequences {an}∞n=1 and {bn}∞n=1.

Since we assume a = lim
n→∞

an, there exists n1 > 0 such that |an − a| < ε
2 |b |+1 for all n ≥ n1. Since we assume b = lim

n→∞
bn,

there exists n2 > 0 such that |bn − b| < ε
2M for all n ≥ n2. Finally, according to Theorem 1.5 of the professor’s lecture notes,

since {an}∞n=1 is a convergent sequence, it is also bounded; there exists M ∈ R such that |an | ≤ M for all positive integers n.
Now let n0 = max{n1,n2}. Then we have

|anbn − ab| = |anbn − anb + anb − ab|

= |an(bn − b) + (an − a)b|

≤ |an(bn − b)| + |(an − a)b|

≤ |an | |bn − b| + |an − a| |b|

≤ M |bn − b| + |an − a| |b|

< M
ε

2M
+

ε

2|b| + 1
|b|

= ε .

So we have proved lim
n→∞
(anbn) = ab. In other words, we have

lim
n→∞
(anbn) = ab

= ( lim
n→∞

an)( lim
n→∞

bn),

as desired. �



2. Determine whether the following sequences are convergent. If a sequence is convergent, compute its limit and justify your
steps. If the sequence is divergent, explain your reasoning. You may directly use the class examples or the examples from
previous homework assignments.

(a)
{

n3n + n22n + 5n
5n + n3

}∞
n=1

Proof. This sequence is convergent, and we will find its limit. By multiplying and dividing by ( 15 )
n, we obtain

n3n + n22n + 5n
5n + n3 =

n3n + n22n + 5n
5n + n3

( 15 )
n

( 15 )
n

=
n( 35 )

n + n2( 25 )
n + 5n( 15 )

n

1 + n3( 15 )
n

.

Now, we recall Exercise 1, part (4), of Homework 2, which states that, if 0 < a < 1 and k ∈ Z+, then lim
n→∞

nkan = 0.
Invoking that exercise, we have in particular the following:

lim
n→∞

n
(

3
5

)n
= 0,

lim
n→∞

n2
(

2
5

)n
= 0,

lim
n→∞

n
(

1
5

)n
= 0,

lim
n→∞

n3
(

1
5

)n
= 0.

Therefore, using the Sum, Product, and Quotient Laws, we see that the limit is

lim
n→∞

n3n + n22n + 5n
5n + n3 = lim

n→∞

n( 35 )
n + n2( 25 )

n + 5n( 15 )
n

1 + n3( 15 )
n

=

lim
n→∞
(n( 35 )

n + n2( 25 )
n + 5n( 15 )

n)

lim
n→∞
(1 + n3( 15 )

n)

=

lim
n→∞

n( 35 )
n + lim

n→∞
n2( 25 )

n + 5 lim
n→∞

n( 15 )
n

lim
n→∞

1 + lim
n→∞

n3( 15 )
n

=
0+0+5(0)

1 + 0
= 0,

as desired. �

(b) {
√

n + 2 −
√

n}∞n=1

Proof. This sequence is convergent, and we will find its limit. By multiplying and dividing by
√

n + 2 +
√

n, which is
the conjugate of

√
n + 2 −

√
n, we obtain

√
n + 2 −

√
n = (

√
n + 2 −

√
n)

√
n + 2 +

√
n

√
n + 2 +

√
n

=
(n + 2) − n
√

n + 2 +
√

n

=
2

√
n + 2 +

√
n

=
2

√
n + 2 +

√
n

1√
n

1√
n

=

2√
n√

1 + 2
n + 1

.

Next, we observe

1 ≤

√
1 +

2
n
≤ 1 +

2
n



for all n ∈ Z+. Since lim
n→∞

1 = 1 and lim
n→∞
(1 + 2

n ) = 1, we can use Theorem 1.9 of the professor’s lecture notes (Squeeze

Theorem) to conclude lim
n→∞

√
1 + 2

n = 1. Therefore, using the Quotient and Sum Laws, we see that the limit is

lim
n→∞
(
√

n + 2 −
√

n) = lim
n→∞

2√
n√

1 + 2
n + 1

=

lim
n→∞

2√
n

lim
n→∞
(

√
1 + 2

n + 1)

=

lim
n→∞

2√
n

lim
n→∞

√
1 + 2

n + lim
n→∞

1

=
0

1 + 1
= 0,

as desired. �

(c)
{

n2 + 1
n

}∞
n=1

Proof. For all n ∈ Z+, we can rewrite

n2 + 1
n

=
n2

n
+

1
n

= n +
1
n

≥ n.

This signifies that the sequence
{
n2+1
n

}∞
n=1

is unbounded, and so it is divergent. �

3. Use the class example e = lim
n→∞
(1 + 1

n )
n and the formula

1 +
3
n

=

(
1 +

1
n

) (
1 +

1
n + 1

) (
1 +

1
n + 2

)
to show

lim
n→∞

(
1 +

3
n

)n
= e3.

Proof. First, we will work with the factor 1 + 1
n+1 . Let ` = n + 1. Then n→∞ implies ` →∞, and by the Quotient Law and

the class example e = lim
n→∞
(1 + 1

n )
n, we obtain

lim
n→∞

(
1 +

1
n + 1

)n
= lim

n→∞

(1 + 1
n+1 )

n+1

1 + 1
n+1

=

lim
n→∞
(1 + 1

n+1 )
n+1

lim
n→∞
(1 + 1

n+1 )

=

lim
`→∞
(1 + 1

` )
`

lim
`→∞
(1 + 1

` )

=
e
1

= e.

Next, we will work with the factor 1 + 1
n+2 . Let m = n + 2. Then n → ∞ implies m → ∞, and by the Quotient Law and the



class example e = lim
n→∞
(1 + 1

n )
n, we obtain

lim
n→∞

(
1 +

1
n + 2

)n
= lim

n→∞

(1 + 1
n+2 )

n+2

(1 + 1
n+1 )

2

=

lim
n→∞
(1 + 1

n+2 )
n+2

lim
n→∞
(1 + 1

n+2 )
2

=

lim
m→∞
(1 + 1

m )
m

lim
m→∞
(1 + 1

m )
2

=
e
1

= e.

Therefore, by the Product Law, we conclude

lim
n→∞

(
1 +

3
n

)n
= lim

n→∞

((
1 +

1
n

) (
1 +

1
n + 1

) (
1 +

1
n + 2

))n
= lim

n→∞

(
1 +

1
n

)n (
1 +

1
n + 1

)n (
1 +

1
n + 2

)n
=

(
lim
n→∞

(
1 +

1
n

)n) (
lim
n→∞

(
1 +

1
n + 1

)n) (
lim
n→∞

(
1 +

1
n + 2

)n)
= (e)(e)(e)

= e3,

as desired. �

4. Define a sequence by a1 =
√

2 and an+1 =
√

2 + an for all integers n ≥ 1. Prove by induction that {an}∞n=1 is monotone
increasing and bounded above by 2 so that it’s convergent. Compute its limit.

Proof. First, we will prove by induction showing that {an}∞n=1 is bounded above by 2; that is, an < 2 for all positive integers
n. The base case is straightforward: for n = 1, we have a1 =

√
2 < 2. For the induction step, we assume that the statement

for n = k is true: ak < 2, and we will prove that the statement for n = k + 1 is true. Indeed, the square root function is an
increasing function (that is, if x, y ∈ R satisfies x < y, then

√
x <
√
y), which allows us to say

ak+1 =
√

2 + ak

<
√

2 + 2

=
√

4
= 2.

This completes the proof by induction showing that {an}∞n=1 is bounded above by 2. Next, we will prove by induction that
{an}∞n=1 is monotone increasing. For the base case, we have

a1 =
√

2

≤

√
2 +
√

2

=
√

2 + a1

= a2.

For the induction step, we assume that the statement for n = k is true: ak ≤ ak+1, and we will prove that the statement for
n = k + 1 is true. Indeed, because the square root function is an increasing function, inequality is preserved (the inequality
sign does not flip), and so we have

ak+1 =
√

2 + ak

≤
√

2 + ak+1

= ak+2,

as desired. This completes the proof by induction that {an}∞n=1 is monotone increasing. So we have established that {an}∞n=1 is
both monotone increasing and bounded above by 2. By Theorem 1.11 of the professor’s lecture notes (Monotone Convergence



Theorem), we conclude that {an}∞n=1 is convergent. Finally, we will compute the limit of {an}∞n=1. Let L = lim
n→∞

an be the

limit of {an}∞n=1. Then the recursive relation an+1 =
√

2 + an and the Sum and Product Laws imply

L2 = ( lim
n→∞

an+1)
2

= lim
n→∞

a2
n+1

= lim
n→∞
(
√

2 + an)2

= lim
n→∞
(2 + an)

= lim
n→∞

2 + lim
n→∞

an

= 2 + L,

from which we obtain the quadratic equation L2 − L − 2 = 0. Solving this quadratic equation, we obtain the solutions L = 2
and L = −1. However, L = −1 is not the limit of {an}∞n=1 because the sequence is increasing and the first term a1 is positive,
implying that every term an is positive, and so lim

n→∞
an is positive, assuming the limit exists. So we conclude that L = 2 is the

limit of {an}∞n=1; in other words, we conclude lim
n→∞

an = 2. �


