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Homework 4 solutions

1. Write down the definitions of limit point, limit set, closure, and closed set without consulting any resources. Think about
the relations of these notions. Repeat the process again and again until you are able to write down exactly the same
statements as we did in class or as written in the textbook.

Definitions. Let S ⊆ R be a subset.

• We say α ∈ R is a limit point of S if, for all ε > 0, there exists a ∈ S \ {α} such that |a − α | < ε .

• A limit set of S is a set of all the limit points, which is denoted by S′ = {α ∈ R : α is a limit point of S}.

• The closure of S is denoted by S := S ∪ S′, where S′ is the limit set of S.

• If S′ ⊆ S, or equivalently S = S, then we say that S is a closed set.

These were taken verbatim from your professor’s lecture notes. �

2. Apply Theorem 1.14 (in my lecture notes) to find the closure of the set

S =

{
1
n

: n ∈ Z+

}
.

Remark (from the professor). Note here you need to find all the limit points of S.

Answer. We claim that 0 is the only limit point of S; that is, if S′ denotes the set of all limit points, then S′ = {0}. Then the
closure of S would be

S = S ∪ S′

=

{
1
n

: n ∈ Z+

}
∪ {0}.

To show S′ = {0}, we will need to show that 0 is a limit point and any other point in S is not a limit point. First, we will show
that 0 is a limit point. Let ε > 0 be given, and choose an integer n0 >

1
ε . If n ≥ n0, then����1n − 0

���� =
1
n

≤
1
n0

< ε.

So we are saying that, for any ε > 0, there exists 1
n ∈ S \ {0} for some large enough n (that is, for n ≥ n0) such that | 1n −0| < ε .

Therefore, 0 is a limit point. Next, we will show that 1
n ∈ S for all n ∈ Z+ is not a limit point of S. Suppose m ∈ Z+ \ {n}

(which implies |m − n| ≥ 1), and choose ε = 1
mn . Then we have ε > 0 and, for all 1

m ∈ S \ { 1
n }, we have����1n − 1

m

���� =
|m − n|

mn

≥
1

mn
= ε .

This is the negation of the definition of the limit point, which means 1
n for all n ∈ Z+ is not a limit point of S. Therefore, 0 is

the only limit point of S. �

3. Try the following questions:

(i) Show that a closed interval is a closed set.

Remark. See Example 1, part 2 of Section 1.5 (page 49) of your professor’s lecture notes. As the professor said in his
own remark, he did this proof in class.

Proof. Let I = [a, b] be a closed interval in R, and denote I ′ to be the set of limit points of I. Define the closure I := I∪ I ′

of I. To show that I is a closed set, we need to show I = I, according to Definition 1.7. It suffices to show I ′ ⊂ I, which
would imply I ∪ I ′ = I, or I = I. But showing I ′ ⊂ I is equivalent to showing Ic ⊂ (I ′)c; that is, if x < I, then x < I ′.
Suppose we have x < I. Then either x < a or x > b. (In my presentation of the proof, I will prove by cases below,
but you can also just say "Without loss of generality" and argue for the case x < a only, because the two arguments are
similar.)



• Case 1: Suppose x < a. Set ε = a − x. Then x < a implies ε > 0. Consider the open interval (x − ε, x + ε). For all
y ∈ (x − ε, x + ε), we have

y < x + ε

= x + (a − x)

= a,

which implies y < I. So we conclude (x − ε, x + ε) 1 I, and so (x − ε, x + ε) ∩ I = �. In other words, for all x < a,
there exists ε > 0 (because we have already set ε = a − x) for all z ∈ I \ {x} such that |z − x | ≥ ε . This is a direct
negation of the definition of a limit point of a set I, which means y is not a limit point of I; in other words, we have
y < I ′. Therefore, we conclude Ic ⊂ (I ′)c .

• Case 2: Suppose x > b. Set ε = x − b. Then x > b implies ε > 0. Consider the open interval (x − ε, x + ε). For all
y ∈ (x − ε, x + ε), we have

y > x − ε

= x − (x − b)

= b,

which implies y < I. So we conclude (x − ε, x + ε) 1 I, and so (x − ε, x + ε) ∩ I = �. In other words, for all x > b,
there exists ε > 0 (because we have already set ε = x − b) for all z ∈ I \ {x} such that |z − x | ≥ ε . This is a direct
negation of the definition of a limit point of a set I, which means y is not a limit point of I; in other words, we have
y < I ′. Therefore, we conclude Ic ⊂ (I ′)c .

The cases complete the proof. �

(ii) Show that the set of integers Z is a closed set.

Proof. Denote Z′ to be the set of limit points of Z. Define the closure Z := Z ∪ Z′ of Z. To show that Z is a closed set,
we need to show Z = Z, according to Definition 1.7. It suffices to show Z′ = �, which would imply

Z = Z ∪ Z′

= Z ∪ �

= Z.

To show Z′ = �, we need to show that no point of R is a limit point of Z. If x ∈ R were a limit point of Z, then Definition
1.6 of the professor’s lecture notes states: for all ε > 0, there exists y ∈ Z \ {x} such that |y − x | < ε . We will need to
argue by cases: if x is an integer and if x is not an integer. (Here, the argument by both cases is necessary; this time you
cannot say “Without loss of generality” and prove for one case only.)

• Case 1: Suppose x ∈ Z. Choose ε = 1
2 . (In fact, you can choose any ε = a for all 0 < a ≤ 1.) For all y ∈ Z \ {x},

which implies |y − x | ≥ 1, we have

1
2

= ε

> |y − x |

≥ 1,

which is a contradiction. So x ∈ Z is not a limit point.
• Case 2: Suppose x ∈ R \ Z. Choose ε = 1

2 min{x − bxc, dxe − x}, where bxc, dxe ∈ Z are the floor and ceiling
functions of x, respectively. (In fact, you can choose any ε = a for all 0 < a ≤ min{x − bxc, dxe − x}.) For all
y ∈ Z \ {x}, which implies |y − x | ≥ min{x − bxc, dxe − x}, we have

1
2

min{x − bxc, dxe − x} = ε

> |y − x |

≥ min{x − bxc, dxe − x},

which is a contradiction. So x ∈ R \ Z is not a limit point.

Therefore, x ∈ R is not a limit point. So we conclude Z′ = �. �

(iii) Based on your proof of part (i), find an unbounded set that has no limit point.

Remark. I am not sure what the professor means by the instructions of this part. Instead, I ended up following my own
proof from part (ii) instead. Please ask your professor for clarification.

Answer. The set Z is an unbounded set that has no limit point. My proof of part (ii) already established that Z contains no
limit points. And Z is unbounded; otherwise, if Z were bounded, then there would exist m,M ∈ R such that m ≤ k ≤ M
for all k ∈ Z. But dme − 1, dMe + 1 ∈ Z are not inside the interval m ≤ k ≤ M , contradicting the definition of a bounded
set. �



Remark (from the professor). I have done part (i) in class. I put it here to make sure that you understand my proof. Make
sure that eventually you can prove it without looking at my proof.

4. Try to mimic the proof of Theorem 1.15 to do the following problem:

Let {In}n∈Z+
be a sequence of closed intervals, and denote by λn the length of In. Assume that it’s decreasing in the sense that

I1 ⊇ I2 ⊇ · · · ⊇ In ⊇ In+1 ⊇ · · · .

Show that:

(i) lim
n→∞

λn exists.

Proof. We write In = [an, bn] for all n ∈ Z+. Since we have In ⊇ In+1, or in other words [an, bn] ⊇ [an+1, bn+1], we
have an ≤ an+1 ≤ bn+1 ≤ bn. So we obtain in particular two results:

• {an}∞n=1 is a monotone increasing sequence that is bounded above by b1 (or by any bn). By Theorem 1.11 of the
professor’s lecture notes (Monotone Convergence Theorem), we conclude that {an}∞n=1 is convergent, and so we
can set lim

n→∞
an = ξ.

• {bn}∞n=1 is a monotone decreasing sequence that is bounded below by a1 (or by any an). By Theorem 1.11 of the
professor’s lecture notes (Monotone Convergence Theorem), we conclude that {bn}∞n=1 is convergent, and so we
can set lim

n→∞
bn = η.

Now, as λn denotes the length of In, we can write λn = bn − an. So, by the Sum Law, we have

lim
n→∞

λn = lim
n→∞
(bn − an)

= lim
n→∞

bn − lim
n→∞

an

= η − ξ,

meaning lim
n→∞

λn exists. �

(ii) if lim
n→∞

λn > 0, then the intersection of those intervals,
⋂
n∈Z+

In, is a closed interval with length lim
n→∞

λn.

Proof. Since we have an ≤ bn for all n ∈ Z+, by Theorem 1.10 of the professor’s lecture notes, we obtain lim
n→∞

an ≤
lim
n→∞

bn, or equivalently ξ ≤ η. So we have

lim
n→∞

λn = η − ξ

≥ 0.

However, as we are now assuming lim
n→∞

λn > 0, we must now have ξ , η. Indeed, if ξ = η, then we would have

0 = η − ξ

= lim
n→∞

λn

> 0,

which is a contradiction. With ξ , η, we now conclude the strict inequality ξ < η, which implies that [ξ, η] is a closed
interval with length lim

n→∞
λn = η− ξ. Now, as {an}∞n=1 is a monotone increasing sequence, we have an ≤ ξ for all n ∈ Z+.

Likewise, as {bn}∞n=1 is a monotone decreasing sequence, we have bn ≥ η for all n ∈ Z+. Altogether, we have

an ≤ ξ

< η

≤ bn

for all n ∈ Z+, which implies [ξ, η] ⊆ [an, bn] = In for all n ∈ Z+. This implies
⋂
n∈Z+

In = [ξ, η], which indeed has length

lim
n→∞

λn = η − ξ. �


