HOMEWORK ASSIGNMENT FIVE

MATH 150A, WINTER 2020

1. Let $f: I \to \mathbb{R}$ be a function defined on an interval $I \subset \mathbb{R}$. Write down the definitions of $\lim_{x \to \xi} f(x) = A$, $\lim_{x \to \xi^+} f(x) = A$, $\lim_{x \to \xi^-} f(x) = A$, and the definition of f is continuous at ξ . What does it mean by saying f is continuous on I? **Repeat** the process again and again until you can easily write down exactly the same statements as we did in class or as written in the textbook.

- 2. Show by definition that the function $f : \mathbb{R} \to \mathbb{R}$, f(x) = |x|, is continuous on \mathbb{R} . Hint: you may need to use the triangle inequality.
- 3. Define $f : \mathbb{R} \to \mathbb{R}$ to be

$$f(x) = \begin{cases} 1 & \text{if } x \ge 0\\ -1 & \text{if } x < 0. \end{cases}$$

- (1) Show by definition that f is continuous at every $x \neq 0$.
- (2) Compute by definition lim _{x→0+} f(x) and lim _{x→0-} f(x).
 (3) Show that f is discontinuous at x = 0.

Hint: you may need to follow the proof of continuity of constant functions

4. Show by definiton that $f : \mathbb{R} \to \mathbb{R}$, $f(x) = \cos(x)$, is continuous on \mathbb{R} .

Hint: you may need to mimick the proof of conitinuity of $f(x) = \sin(x)$ *on* \mathbb{R} *.*