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Homework 6 solutions

1. Show by defintion that f : R→ R, f (x) = cos(x), is continuous on R.

Hint: You may try to mimic the proof of conitinuity of f (x) = sin(x) on R. You may need to use the formula

cos a − cos b = −2 sin
(

a + b
2

)
sin

(
a − b

2

)
.

Proof. We would like to show that f is continuous at any ξ ∈ R. From Section 2.1 of the professor’s lecture notes (bottom of
page 70 and bottom of page 71), we have

cos a − cos b = −2 sin
(

a + b
2

)
sin

(
a − b

2

)
,

| sin a| ≤ |a|,

| sin a| ≤ 1

for all a, b ∈ R. Now, let ε > 0 be given, and choose δ = ε . For all x ∈ (ξ − δ, ξ + δ) (or if |x − ξ | < δ), we have

| f (x) − f (ξ)| = | cos x − cos ξ |

=

����−2 sin
(

x + ξ

2

)
sin

(
x − ξ

2

)����
= 2

����sin
(

x + ξ

2

)���� ����sin
(

x − ξ
2

)����
≤ 2 · 1

����sin
(

x − ξ
2

)����
= 2

����sin
(

x − ξ
2

)����
≤ 2

���� x − ξ2

����
= |x − ξ |

< δ

= ε .

Therefore, f is continuous on R. �

2. Show by definition that the function f : [0,∞) → R where f (x) =
√

x is continuous on [0,∞).

Hint: You have to consider two different cases: (i) continuity at ξ > 0; (ii) continuity at ξ = 0. Note in the second case, one
can only approach ξ = 0 from right, i.e. case (ii) is basically lim

x→0+
f (x) = f (0).

Proof. We will consider two cases: if ξ = 0 and if ξ > 0.

• Case 1: Suppose ξ = 0. Let ε > 0 be given, and choose δ = ε2. For all x ∈ [0,0 + δ) (or if 0 ≤ x < δ), we have

| f (x) − f (0)| = |
√

x −
√

0|

=
√

x

<
√
δ

=
√
ε2

= ε .

So f is continuous at ξ = 0.

• Case 2: Suppose ξ > 0. Let ε > 0 be given, and choose δ = min{ ξ2 ,
√
ξε}, which implies (ξ − δ, ξ + δ) ⊂ [0,∞) and



δ ≤
√
ξε). For all x ∈ (ξ − δ, ξ + δ) (or if |x − ξ | < δ), we have

| f (x) − f (ξ)| = |
√

x −
√
ξ |

= |
√

x −
√
ξ |
|
√

x +
√
ξ |

|
√

x +
√
ξ |

=
|x − ξ |
|
√

x +
√
ξ |

=
|x − ξ |
√

x +
√
ξ

≤
|x − ξ |
√
ξ

<
δ
√
ξ

≤

√
ξε
√
ξ

= ε .

So f is continuous at every ξ > 0.

Therefore, f is continuous on [0,∞). �

Remark. For Case 2, it is slightly imprecise to choose δ =
√
ξε; one should indeed choose δ = min{ ξ2 ,

√
ξε} because you

want to preclude any possibility of constructing an interval (ξ − δ, ξ + δ) centered at ξ > 0 that is not contained in [0,∞), the
domain of f given by f (x) =

√
x. However, this is a subtle issue that you do not need to be too concerned about in this class;

the professor and I will give full credit even if you just wrote δ =
√
ξε .

3. Consider the function f (x) : (0,∞) → R where f (x) = 1
x .

(a) Show by definition that f is continuous at every ξ > 0.

Proof. Suppose ξ > 0. Let ε > 0 be given, and choose δ = min{ ξ2 ,
ξ2

2 ε}, which implies δ ≤ ξ
2 and δ ≤ ξ2

2 ε . For all
x ∈ (ξ − δ, ξ + δ) (or if |x − ξ | < δ), we get x > ξ − δ ≥ ξ −

ξ
2 =

ξ
2 , and so we have

| f (x) − f (ξ)| =
����1x − 1

ξ

����
=

���� ξxξ − x
xξ

����
=
|x − ξ |

xξ

<
|x − ξ |

(
ξ
2 )ξ

<
δ

(
ξ
2 )ξ

=
2
ξ2 δ

≤
2
ξ2

(
ξ2

2
ε

)
= ε .

So f is continuous at any ξ > 0. �

(b) Show that f does not have a right-sided limit at ξ = 0. Here you may use Theorem 2.2 and its corollaries.

Proof. Suppose instead there exists A ∈ R such that lim
x→0+

f (x) = A. By Theorem 2.2, if {xn}∞n=1 is a sequence that

satisfies xn > 0 for all n ∈ Z+ and lim
n→∞

xn = 0, then we also have lim
n→∞

f (xn) = A. Let xn = 1
n for all n ∈ Z+, then we

would have

lim
n→∞

xn = lim
n→∞

1
n

= 0.



We also have

f (xn) =
1
xn

=
1
1
n

= n,

which means { f (xn)}∞n=1 is an unbounded sequence. Therefore, { f (xn)}∞n=1 is a divergent sequence, and so the right-
sided limit lim

x→0+
f (x) does not exist. �

4. Prove Theorem 2.4 via Theorem 2.2.

Statement of Theorem 2.2 (page 73 of the professor’s lecture notes): Let f : I → R be a function. Let ξ ∈ I. Then f is
continuous at ξ if and only if the following statement is true: For all {xn}∞n=1 on I with lim

n→∞
xn = ξ, { f (xn)}∞n=1 is convergent

and lim
n→∞

f (xn) = f (ξ).

Statement of Theorem 2.4 (page 79 of the professor’s lecture notes): If f ,g : I → R are continuous at ξ ∈ I, then f g is
continuous at I.

Proof. Since f ,g are continuous at ξ, by Theorem 2.2, the following statement is true: For all {xn}∞n=1 on I with lim
n→∞

xn = ξ,

{ f (xn)}∞n=1, {g(xn)}
∞
n=1 are convergent, lim

n→∞
f (xn) = f (ξ), and lim

n→∞
g(xn) = g(ξ). By the Product Law, { f g(xn)}∞n=1 is also a

convergent sequence that satisfies
lim
n→∞
( f (xn)g(xn)) = ( lim

n→∞
f (xn))( lim

n→∞
g(xn)).

In fact, we have

lim
n→∞
( f g)(xn) = lim

n→∞
( f (xn)g(xn))

= ( lim
n→∞

f (xn))( lim
n→∞

g(xn))

= f (ξ)g(ξ)

= ( f g)(ξ).

By Theorem 2.2, f g is continuous at ξ. �


