Homework 6 solutions

Show by definition that f : R → R, f(x) = cos(x), is continuous on R.
Hint: You may try to mimic the proof of conitinuity of f(x) = sin(x) on R. You may need to use the formula

$$\cos a - \cos b = -2\sin\left(\frac{a+b}{2}\right)\sin\left(\frac{a-b}{2}\right).$$

Proof. We would like to show that f is continuous at any $\xi \in \mathbb{R}$. From Section 2.1 of the professor's lecture notes (bottom of page 70 and bottom of page 71), we have

$$\cos a - \cos b = -2\sin\left(\frac{a+b}{2}\right)\sin\left(\frac{a-b}{2}\right)$$
$$|\sin a| \le |a|,$$
$$|\sin a| \le 1$$

for all $a, b \in \mathbb{R}$. Now, let $\epsilon > 0$ be given, and choose $\delta = \epsilon$. For all $x \in (\xi - \delta, \xi + \delta)$ (or if $|x - \xi| < \delta$), we have

$$\begin{split} |f(x) - f(\xi)| &= |\cos x - \cos \xi| \\ &= \left| -2\sin\left(\frac{x+\xi}{2}\right)\sin\left(\frac{x-\xi}{2}\right) \right| \\ &= 2\left|\sin\left(\frac{x+\xi}{2}\right)\right| \left|\sin\left(\frac{x-\xi}{2}\right)\right| \\ &\leq 2 \cdot 1\left|\sin\left(\frac{x-\xi}{2}\right)\right| \\ &= 2\left|\sin\left(\frac{x-\xi}{2}\right)\right| \\ &= 2\left|\sin\left(\frac{x-\xi}{2}\right)\right| \\ &\leq 2\left|\frac{x-\xi}{2}\right| \\ &\leq \delta \\ &= \epsilon. \end{split}$$

Therefore, f is continuous on \mathbb{R} .

Show by definition that the function f : [0,∞) → ℝ where f(x) = √x is continuous on [0,∞).
Hint: You have to consider two different cases: (i) continuity at ξ > 0; (ii) continuity at ξ = 0. Note in the second case, one can only approach ξ = 0 from right, i.e. case (ii) is basically lim f(x) = f(0).

Proof. We will consider two cases: if $\xi = 0$ and if $\xi > 0$.

• Case 1: Suppose $\xi = 0$. Let $\epsilon > 0$ be given, and choose $\delta = \epsilon^2$. For all $x \in [0, 0 + \delta)$ (or if $0 \le x < \delta$), we have

$$|f(x) - f(0)| = |\sqrt{x} - \sqrt{0}|$$
$$= \sqrt{x}$$
$$< \sqrt{\delta}$$
$$= \sqrt{\epsilon^2}$$
$$= \epsilon.$$

So *f* is continuous at $\xi = 0$.

• Case 2: Suppose $\xi > 0$. Let $\epsilon > 0$ be given, and choose $\delta = \min\{\frac{\xi}{2}, \sqrt{\xi}\epsilon\}$, which implies $(\xi - \delta, \xi + \delta) \subset [0, \infty)$ and

 $\delta \leq \sqrt{\xi}\epsilon$). For all $x \in (\xi - \delta, \xi + \delta)$ (or if $|x - \xi| < \delta$), we have

$$\begin{split} |f(x) - f(\xi)| &= |\sqrt{x} - \sqrt{\xi}| \\ &= |\sqrt{x} - \sqrt{\xi}| \frac{|\sqrt{x} + \sqrt{\xi}|}{|\sqrt{x} + \sqrt{\xi}|} \\ &= \frac{|x - \xi|}{|\sqrt{x} + \sqrt{\xi}|} \\ &= \frac{|x - \xi|}{\sqrt{x} + \sqrt{\xi}} \\ &\leq \frac{|x - \xi|}{\sqrt{\xi}} \\ &\leq \frac{|x - \xi|}{\sqrt{\xi}} \\ &\leq \frac{\delta}{\sqrt{\xi}} \\ &\leq \frac{\delta}{\sqrt{\xi}} \\ &= \epsilon. \end{split}$$

So *f* is continuous at every $\xi > 0$.

Therefore, f is continuous on $[0, \infty)$.

Remark. For Case 2, it is slightly imprecise to choose $\delta = \sqrt{\xi}\epsilon$; one should indeed choose $\delta = \min\{\frac{\xi}{2}, \sqrt{\xi}\epsilon\}$ because you want to preclude any possibility of constructing an interval $(\xi - \delta, \xi + \delta)$ centered at $\xi > 0$ that is <u>not</u> contained in $[0, \infty)$, the domain of f given by $f(x) = \sqrt{x}$. However, this is a subtle issue that you do not need to be too concerned about in this class; the professor and I will give full credit even if you just wrote $\delta = \sqrt{\xi}\epsilon$.

- 3. Consider the function $f(x): (0, \infty) \to \mathbb{R}$ where $f(x) = \frac{1}{x}$.
 - (a) Show by definition that f is continuous at every $\xi > 0$.

Proof. Suppose $\xi > 0$. Let $\epsilon > 0$ be given, and choose $\delta = \min\{\frac{\xi}{2}, \frac{\xi^2}{2}\epsilon\}$, which implies $\delta \le \frac{\xi}{2}$ and $\delta \le \frac{\xi^2}{2}\epsilon$. For all $x \in (\xi - \delta, \xi + \delta)$ (or if $|x - \xi| < \delta$), we get $x > \xi - \delta \ge \xi - \frac{\xi}{2} = \frac{\xi}{2}$, and so we have

$$\begin{split} |f(x) - f(\xi)| &= \left| \frac{1}{x} - \frac{1}{\xi} \right| \\ &= \left| \frac{\xi}{x\xi} - \frac{x}{x\xi} \right| \\ &= \frac{|x - \xi|}{x\xi} \\ &< \frac{|x - \xi|}{(\frac{\xi}{2})\xi} \\ &< \frac{\delta}{(\frac{\xi}{2})\xi} \\ &= \frac{2}{\xi^2} \delta \\ &\leq \frac{2}{\xi^2} \left(\frac{\xi^2}{2} \epsilon \right) \\ &= \epsilon. \end{split}$$

So *f* is continuous at any $\xi > 0$.

Proof. Suppose instead there exists $A \in \mathbb{R}$ such that $\lim_{x\to 0^+} f(x) = A$. By Theorem 2.2, if $\{x_n\}_{n=1}^{\infty}$ is a sequence that satisfies $x_n > 0$ for all $n \in \mathbb{Z}_+$ and $\lim_{n\to\infty} x_n = 0$, then we also have $\lim_{n\to\infty} f(x_n) = A$. Let $x_n = \frac{1}{n}$ for all $n \in \mathbb{Z}_+$, then we would have

$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} \frac{1}{n}$$
$$= 0.$$

$$f(x_n) = \frac{1}{x_n}$$
$$= \frac{1}{\frac{1}{n}}$$
$$= n,$$

which means $\{f(x_n)\}_{n=1}^{\infty}$ is an unbounded sequence. Therefore, $\{f(x_n)\}_{n=1}^{\infty}$ is a divergent sequence, and so the right-sided limit $\lim_{x\to 0^+} f(x)$ does not exist.

4. Prove Theorem 2.4 via Theorem 2.2.

Statement of Theorem 2.2 (page 73 of the professor's lecture notes): Let $f : I \to \mathbb{R}$ be a function. Let $\xi \in I$. Then f is continuous at ξ if and only if the following statement is true: For all $\{x_n\}_{n=1}^{\infty}$ on I with $\lim_{n\to\infty} x_n = \xi$, $\{f(x_n)\}_{n=1}^{\infty}$ is convergent and $\lim_{n\to\infty} f(x_n) = f(\xi)$.

Statement of Theorem 2.4 (page 79 of the professor's lecture notes): If $f,g: I \to \mathbb{R}$ are continuous at $\xi \in I$, then fg is continuous at I.

Proof. Since f, g are continuous at ξ , by Theorem 2.2, the following statement is true: For all $\{x_n\}_{n=1}^{\infty}$ on I with $\lim_{n \to \infty} x_n = \xi$, $\{f(x_n)\}_{n=1}^{\infty}, \{g(x_n)\}_{n=1}^{\infty}$ are convergent, $\lim_{n \to \infty} f(x_n) = f(\xi)$, and $\lim_{n \to \infty} g(x_n) = g(\xi)$. By the Product Law, $\{fg(x_n)\}_{n=1}^{\infty}$ is also a convergent sequence that satisfies

$$\lim_{n \to \infty} (f(x_n)g(x_n)) = (\lim_{n \to \infty} f(x_n))(\lim_{n \to \infty} g(x_n)).$$

In fact, we have

$$\lim_{n \to \infty} (fg)(x_n) = \lim_{n \to \infty} (f(x_n)g(x_n))$$
$$= (\lim_{n \to \infty} f(x_n))(\lim_{n \to \infty} g(x_n))$$
$$= f(\xi)g(\xi)$$
$$= (fg)(\xi).$$

By Theorem 2.2, fg is continuous at ξ .