HOMEWORK ASSIGNMENT SEVEN

MATH 150A, WINTER 2020

1. Compute the following limit

$$\lim_{x \to 0} \frac{\sqrt{x^2 + 1} - 1}{x}$$

Hint: Note this function is not defined at x = 0. But you may try to convert it into a function that is continuous on \mathbb{R} . Then use that function to compute the limit.

2. Prove that if $f: I \to \mathbb{R}$ is continuous on I, then $|f|: I \to \mathbb{R}$ where

$$|f|(x) := |f(x)| \ \forall x \in I$$

is continuous on I. Then find a function f(x) so that |f(x)| is continuous at some ξ while f(x) is discontinuou at ξ .

3. Show that the functions $f(x) = \cos(\sqrt{x^2 + (\frac{\pi}{2})^2})$ is continuous on \mathbb{R} . Then compute the following limit

$$\lim_{n \to \infty} \cos\left(\sqrt{\frac{1}{n^2} + \left(\frac{\pi}{2}\right)^2}\right)$$

4. Construct following three types of functions.

- (1) $f: I \to \mathbb{R}$ is continuous and I is bounded. But f is unbounded.
- (2) $f: I \to \mathbb{R}$ where I is closed and bounded. But f is unbounded.
- (3) $f: I \to \mathbb{R}$ is continuous and I is bounded. f has a minimum point but doesn't have a maximum point.