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Homework 8 solutions

Reminder: If you choose to view these solutions, please only do so whenever you cannot make further progress on solving a problem.
Make sure you understand firmly what is being written, and make sure that you are writing your own proof in your own words!

1. Let f be a continuous function defined on a closed, bounded interval I = [a, b]. Suppose that f assumes its maximum M at
some ξ ∈ (a, b). Show that f cannot be one-to-one. Similarly, if f assumes its minimum m at some ξ ∈ (a, b), then f cannot
be one-to-one.

Hint: You need to use the Intermediate Value Theorem.

Proof. First, suppose f assumes its maximum M at ξ ∈ (a, b). Then we have f (x) ≤ f (ξ) for all x ∈ I = [a, b], prompting us
to consider the following cases.

• Case 1: Suppose f (a) = f (ξ). As (a, b) is an open interval, note that ξ ∈ (a, b) implies the inequality a < ξ, which in
turn implies a , ξ. But we also have f (a) = f (ξ) by our assumption for this case. Therefore, f is not one-to-one.

• Case 2: Suppose f (b) = f (ξ). As (a, b) is an open interval, note that ξ ∈ (a, b) implies the inequality ξ < b, which in
turn implies ξ , b. But we also have f (ξ) = f (b) by our assumption for this case. Therefore, f is not one-to-one.

• Case 3: Suppose f (a) < f (ξ) and f (b) < f (ξ). Let γ be some number such that max{ f (a), f (b)} < γ < f (ξ). By
the Intermediate Value Theorem, there exists c1 ∈ (a, ξ) ⊂ I such that f (c1) = γ. Also by the Intermediate Value
Theorem, there exists c2 ∈ (ξ, b) ⊂ I such that f (c2) = γ. Note that c1 < ξ < c2 implies c1 , c2. But we also have
f (c1) = γ = f (c2). Therefore, f is not one-to-one.

In all three cases, we have proved that f is not one-to-one.

Next, suppose f assumes its minimum m at ξ ∈ (a, b). Then we have f (x) ≥ f (ξ) for all x ∈ I = [a, b], prompting us to
consider the following cases.

• Case 1: Suppose f (a) = f (ξ). As (a, b) is an open interval, note that ξ ∈ (a, b) implies the inequality a < ξ, which in
turn implies a , ξ. But we also have f (a) = f (ξ) by our assumption for this case. Therefore, f is not one-to-one.

• Case 2: Suppose f (b) = f (ξ). As (a, b) is an open interval, note that ξ ∈ (a, b) implies the inequality ξ < b, which in
turn implies ξ , b. But we also have f (ξ) = f (b) by our assumption for this case. Therefore, f is not one-to-one.

• Case 3: Suppose f (a) > f (ξ) and f (b) > f (ξ). Let γ be some number such that min{ f (a), f (b)} > γ > f (ξ). By
the Intermediate Value Theorem, there exists c1 ∈ (a, ξ) ⊂ I such that f (c1) = γ. Also by the Intermediate Value
Theorem, there exists c2 ∈ (ξ, b) ⊂ I such that f (c2) = γ. Note that c1 < ξ < c2 implies c1 , c2. But we also have
f (c1) = γ = f (c2). Therefore, f is not one-to-one.

In all three cases, we have proved that f is not one-to-one. �

Remark. The reason we needed to break our argument into cases is that, given the interval I = [a, b], the Intermediate Value
Theorem can only be used for continuous functions f : I → R that satisfy f (a) , f (b). If a continuous function f : I → R
satisfies f (a) = f (b) instead, then the Intermediate Value Theorem does not apply for this f , and we would have to employ a
different argument without using the theorem.

2. Let f be a continuous function defined on a closed, bounded interval I = [a, b]. Assume that f is one-to-one. Let m
(respectively, M) be the minimum (respectively, maximum) of f . Then by Exercise 1, we know that either f (a) = m and
f (b) = M , or f (a) = M and f (b) = m. If f (a) = m and f (b) = M , then show that f is strictly monotone increasing. If
f (a) = M and f (a) = m, then show that f is strictly monotone decreasing.

Hint: You need to use the Intermediate Value Theorem and argue by contradiction.

Remark (from the professor). Exercise 2 basically states that the only way for a continuous function to be one-to-one is to
be strictly monotone. In other words, only a strictly monotone continuous function has its inverse. This is actually a theorem
in our textbook.

Proof. First, we will prove that, if f (a) = m and f (b) = M , then f is strictly monotone increasing. Suppose instead that f
is not strictly monotone increasing on I = [a, b]. Then there exists x1, x2 ∈ I such that x1 < x2 and f (x1) ≥ f (x2). Now,
f (x1) ≥ f (x2) splits into the two cases f (x1) = f (x2) and f (x1) > f (x2), and we seek to obtain a contradiction in each of
these cases.

• Case 1: Suppose x1 < x2 and f (x1) = f (x2). Note that x1 < x2 implies x1 , x2. But we also have f (x1) = f (x2) by our
assumption for this case. This contradicts our assumption that f is one-to-one.



• Case 2: Suppose x1 < x2 and f (x1) > f (x2). First, we note that x1, x2 ∈ I with x1 < x2 is equivalent to saying
a ≤ x1 < x2 ≤ b. In fact, we claim that x1, x2 cannot lie on the endpoints of the interval I; in other words, all the
inequalities are strict: a < x1 < x2 < b. To prove our claim, we will argue that the cases x1 = a and x2 = b are
impossible. Indeed, if x1 = a, then we would have

f (x2) < f (x1)

= f (a)

= m,

which contradicts the assumption that m is the minimum of f on I. If x2 = b, then we would have

f (x1) > f (x2)

= f (b)

= M,

which contradicts the assumption that M is the maximum of f on I. So we have justified our claim. With all this said,
the rest of this argument will be similar to the proof of Exercise 1. Note that our chain of inequalities

f (a) = m ≤ f (x2)

< f (x1)

≤ M = f (b)

implies

f (a) , f (x1),

f (x1) , f (x2),

f (x2) , f (b),

which allows us to apply the Intermediate Value Theorem on the closed intervals [a, x1], [x1, x2], [x2, b], although we only
require any two of these three closed intervals to complete our argument for this case. For instance, I choose to work
with [a, x1] and [x1, x2]. Let γ be some number such that f (x2) = max{ f (a), f (x2)} < γ < f (x1). By the Intermediate
Value Theorem, there exists c1 ∈ [a, x1] such that f (c1) = γ. Also by the Intermediate Value Theorem, there exists
c2 ∈ [x1, x2] such that f (c2) = γ. Note that c1 < x1 < c2 implies c1 , c2. But we also have f (c1) = γ = f (c2). This
contradicts our assumption that f is one-to-one.

From these two cases, we have established that x1 < x2 and f (x1) ≥ f (x2) is not possible, given the hypotheses on f . So we
must conclude that, if x1 < x2, then f (x1) < f (x2). In other words, we conclude that f is strictly monotone increasing.

Next, we will prove that, if f (a) = M and f (b) = m, then f is strictly monotone decreasing. Suppose instead that f is
not strictly monotone decreasing on I = [a, b]. Then there exists x1, x2 ∈ I such that x1 < x2 and f (x1) ≤ f (x2). Now,
f (x1) ≤ f (x2) splits into the two cases f (x1) = f (x2) and f (x1) < f (x2), and we seek to obtain a contradiction in each of
these cases.

• Case 1: Suppose x1 < x2 and f (x1) = f (x2). Note that x1 < x2 implies x1 , x2. But we also have f (x1) = f (x2) by our
assumption for this case. This contradicts our assumption that f is one-to-one.

• Case 2: Suppose x1 < x2 and f (x1) < f (x2). First, we note that x1, x2 ∈ I with x1 < x2 is equivalent to saying
a ≤ x1 < x2 ≤ b. In fact, we claim that x1, x2 cannot lie on the endpoints of the interval I; in other words, all the
inequalities are strict: a < x1 < x2 < b. To prove our claim, we will argue that the cases x1 = a and x2 = b are
impossible. Indeed, if x1 = a, then we would have

f (x2) > f (x1)

= f (a)

= M,

which contradicts the assumption that M is the maximum of f on I. If x2 = b, then we would have

f (x1) < f (x2)

= f (b)

= m,

which contradicts the assumption that m is the minimum of f on I. So we have justified our claim. With all this said,
the rest of this argument will be similar to the proof of Exercise 1. Note that our chain of inequalities

f (a) = M ≥ f (x2)

> f (x1)

≥ m = f (b)



implies

f (a) , f (x1),

f (x1) , f (x2),

f (x2) , f (b),

which allows us to apply the Intermediate Value Theorem on the closed intervals [a, x1], [x1, x2], [x2, b], although we only
require any two of these three closed intervals to complete our argument for this case. For instance, I choose to work
with [a, x1] and [x1, x2]. Let γ be some number such that f (x2) = min{ f (a), f (x2)} > γ > f (x1). By the Intermediate
Value Theorem, there exists c1 ∈ [a, x1] such that f (c1) = γ. Also by the Intermediate Value Theorem, there exists
c2 ∈ [x1, x2] such that f (c2) = γ. Note that c1 < x1 < c2 implies c1 , c2. But we also have f (c1) = γ = f (c2). This
contradicts our assumption that f is one-to-one.

From these two cases, we have established that x1 < x2 and f (x1) ≥ f (x2) is not possible, given the hypotheses on f . So we
must conclude that, if x1 < x2, then f (x1) > f (x2). In other words, we conclude that f is strictly monotone decreasing. �

Remark. It may be a good idea to draw a picture of some graph of f that meets all the stated criteria, as it may help you
formulate a correct proof. For instance, when I was writing this proof, I had to draw some graph of f that satisfies f (a) = m,
f (b) = M, a < x1 < x2 < b, and f (x1) > f (x2); staring at this graph would prompt me to employ the Intermediate Value
Theorem like one has to for Exercise 1.

3. Consider f : I → R. Let J be an interval containing f (I). Let g : J → R. Consider the composition of f and g, i.e.
g ◦ f : I → R. Show that:

(1) If both f and g are strictly monotone increasing, then g ◦ f : I → R is strictly monotone increasing.

Proof. Let x1, x2 ∈ I be such that x1 < x2. Note that x1, x2 ∈ I implies f (x1), f (x2) ∈ f (I) ⊂ J. Since f is strictly
monotone increasing, we have f (x1) < f (x2). Since g is strictly monotone increasing, we have g ◦ f (x1) < g ◦ f (x2).
Therefore, g ◦ f is strictly monotone increasing. �

(2) If both f and g are strictly monotone decreasing, then g ◦ f : I → R is strictly monotone increasing.

Proof. Let x1, x2 ∈ I be such that x1 < x2. Note that x1, x2 ∈ I implies f (x1), f (x2) ∈ f (I) ⊂ J. Since f : I → R
is strictly monotone increasing, we have f (x1) > f (x2), which is equivalent to f (x2) < f (x1). Since g : J → R is
strictly monotone decreasing, we have g ◦ f (x2) > g ◦ f (x1), which is equivalent to g ◦ f (x1) < g ◦ f (x2). Therefore,
g ◦ f : I → R is strictly monotone increasing. �

(3) If one of f and g is strictly monotone increasing and the other is strictly monotone decreasing, then g ◦ f : I → R is
strictly monotone decreasing.

Proof. Let x1, x2 ∈ I be such that x1 < x2. Note that x1, x2 ∈ I implies f (x1), f (x2) ∈ f (I) ⊂ J. To say that one of f
and g is strictly monotone increasing and the other is strictly monotone decreasing is equivalent to saying f is strictly
monotone increasing (respectively, decreasing) and g is strictly monotone decreasing (respectively, increasing). This
motivates us to prove by cases.

• Case 1: Suppose f : I → R is strictly monotone increasing and g : I → R is strictly monotone decreasing.
Since f : I → R is strictly monotone increasing, we have f (x1) < f (x2). Since g : J → R is strictly monotone
decreasing, we have g ◦ f (x1) > g ◦ f (x2).
• Case 2: Suppose f : I → R is strictly monotone decreasing and g : I → R is strictly monotone increasing. Since

f : I → R is strictly monotone decreasing, we have f (x1) > f (x2), which is equivalent to f (x2) < f (x1). Since
g : J → R is strictly monotone increasing, we have g◦ f (x2) < g◦ f (x1), which is equivalent to g◦ f (x1) > g◦ f (x2).

In both cases, we obtained g ◦ f (x1) > g ◦ f (x2). Therefore, g ◦ f : I → R is strictly monotone decreasing. �

4. Let f : R→ R to be a continuous, strictly monotone function. Let f (R) = R. Then its inverse f −1 is defined on R. Show that
f −1 : R→ R continuous on R.

Hint: Note that Theorem 2.10 only deals with the case where the domain is a closed, bounded interval. So you cannot apply
it directly to this exercise. But you may follow the proof of continuity for g : [0,∞) → [0,∞) defined by g(x) =

√
x, which is

the inverse of f : [0,∞) → [0,∞) defined by f (x) = x2.

Proof. We will show that f −1 is continuous on R. Let γ ∈ R be given; that is, we will construct an argument that holds for all
γ ∈ R. Restrict f −1 to the closed interval [−M,M] ⊂ R for some M > γ (so that we have γ ∈ [−M,M]), and call this new
function f −1 |[−M ,M]. Since f is strictly monotone, the interval [ f −1(−M), f −1(M)]makes sense, and f −1 |[−M ,M] is the inverse
of f |[ f −1(−M), f −1(M)]. Since we were given that f is a continuous, strictly monotone function on R, it follows in particular that
f is a continuous, strictly monotone function on [ f −1(−M), f −1(M)]. By Theorem 2.10 (page 101) of the professor’s lecture
notes, its inverse f −1 is also a continuous, strictly monotone function on [−M,M]. In particular, f −1 is a continuous, strictly
monotone function at some γ ∈ [−M,M]. But we actually recall γ ∈ R from earlier, not just γ ∈ [−M,M]. Since γ ∈ R is
arbitrary (in other words, we argued for all γ ∈ R), we conclude that f −1 is a continuous, strictly monotone function on R. �



Remark. For ease of notation, you can let g = f −1 and use g for the rest of the proof, and the professor certainly does this in
his lecture notes. For me, as I stuck with f −1 all the way, I chose not to introduce g in my solutions, because I do not believe
in introducing more notation unless absolutely necessary. In any case, feel free to use whatever notation that will work best
for you, but stay consistent with your notation!


