HOMEWORK ASSIGNMENT NINE

MATH 150A, WINTER 2020

1. We've proved in class the follow lemma: between any two real numbers there is a rational number. Use this fact to show by definition that $\mathbb{Q}' = \mathbb{R}$. In other words, every real number is a limit point of the set of rational numbers.

2. Use the following strategy to show continuity of f(x). Note for a > 1, we've showed that $f(x) = a^x : \mathbb{R} \to \mathbb{R}$ is strictly monotone increasing on \mathbb{R} . Show that:

- (1) the sequence $\{a^{\frac{1}{n}}\}\$ is monotone decreasing and bounded below by 1.
- (2) 1 is the greatest lower bound of $\{a^{\frac{1}{n}}\}$. Thus,

$$\lim_{n \to \infty} a^{\frac{1}{n}} = 1$$

- Then show that for any a > 0, it holds that $\lim_{n \to \infty} a^{\frac{1}{n}} = \lim_{n \to \infty} a^{-\frac{1}{n}} = 1$. (3) Use part (2) above and the monotonicity of $f(x) = a^x$ to show by definition that $f(x) = a^x$ is continuous at x = 0.
- (4) Use the formula $a^{x}a^{y} = a^{x+y}$ for all $x, y \in \mathbb{R}$ and part (3) above to show that f(x) is continuous on \mathbb{R} .

3. We've showed in class that or all a > 0 and all $x, y \in \mathbb{R}$ that

$$a^{x+y} = a^x a^y$$
 and $(a^x)^y = a^{xy}$.

Fix a > 0 and $a \neq 1$. Then we can define $f(x) = \log_a(x) : \mathbb{R}_+ \to \mathbb{R}$ to be the inverse function of $a^x : \mathbb{R} \to \mathbb{R}_+$. Use formulas above and definition of f(x) to show that

 $\log_a(xy) = \log_a(x) + \log_a(y)$ and $\log_a(x^y) = y \log_a(x) \ \forall x, y \in \mathbb{R}_+.$

4. For each $a \in \mathbb{R}$ and x > 0, we have defined what is x^a . Fix $a \in \mathbb{R}$ and we consider x^a as a function in $x \in \mathbb{R}_+$, i.e.

$$f_a(x) = x^a : \mathbb{R}_+ \to \mathbb{R}.$$

- (1) Use problem 3 to show that $x^a = e^{a \ln(x)}$ for all x > 0.
- (2) Use the above equality to show that $f_a(x) = x^a$ is continuous on \mathbb{R}_+ .
- (3) Again use the equality from part (1) to show that: if a > 0, then $f_a(x) =$ a^x is strictly monotone increasing; if a < 0, then $f_a(x) = x^a$ is strictly monotone decreasing.
- (4) By part (3), we know that $f_a(x)$ has an inverse for any $a \neq 0$. Compute its inverse.