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University of California, Riverside Winter 2020

Homework 9 solutions

Reminder: If you choose to view these solutions, please only do so whenever you cannot make further progress on solving a problem.
Make sure you understand firmly what is being written, and make sure that you are writing your own proof in your own words!

1. We proved in class the following lemma: “Between any two real numbers there is a rational number.” Use this fact to show
by definition that Q′ = R. In other words, every real number is a limit point of the set of rational numbers.

Proof. Let ε > 0 be givenn, and let x ∈ R be arbitrary. Then we also have x − ε, x + ε ∈ R. By the fact given in the problem
statement, there exists y ∈ (x − ε, x) ∩ Q or y ∈ (x, x + ε) ∩ Q. In other words, there exists y ∈ Q \ {x} such that |y − x | < ε .
Therefore, x ∈ R is a limit point of Q. Finally, as x ∈ R is chosen arbitrarily, we conclude Q′ = R. �

2. Use the following procedure to show that f is continuous. Note for a > 1, we showed that f : R → R defined by f (x) = ax

is strictly monotone increasing on R.

(1) Show that the sequence {a
1
n }∞n=1 is monotone decreasing and bounded below by 1.

Proof. First, we will show that {a
1
n }∞n=1 is monotone decreasing. For all n ∈ Z+, we have n < n + 1, which is equivalent

to 1
n+1 < 1

n . According to Lemma 2 of Section 2.6 (page 109) of the professor’s lecture notes, f is strictly monotone
increasing on R. So we have f ( 1

n+1 ) < f ( 1
n ). In other words, we have

a
1
n = f

(
1
n

)
> f

(
1

n + 1

)
= a

1
n+1

for all n ∈ Z+. Therefore, {a
1
n }∞n=1 is monotone decreasing.

Next, we will show that {a
1
n }∞n=1 is bounded below by 1. That is, we will show a

1
n > 1 for all n ∈ Z+. Suppose instead

there exists n ∈ Z+ such that a
1
n ≤ 1. Recall that power functions are increasing functions for all n ∈ Z+; that is, if

x, y ∈ R satisfies x < y, then we also have xn < yn for all n ∈ Z+. With all this said, we have

a = (a
1
n )n

≤ 1n

= 1,

which contradicts our assumption a > 1. Therefore, we conclude a
1
n > 1 for all n ∈ Z+; that is, {a

1
n }∞n=1 is bounded

below by 1. �

Remark. The proof showing that {a
1
n }∞n=1 is bounded below by 1 is taken directly from the proof of Lemma 2 of Section

2.6 (page 109) of the professor’s lecture notes, although I paraphrased it in my own words.

(2) Show that 1 is the greatest lower bound of {a
1
n }∞n=1. Thus,

lim
n→∞

a
1
n = 1.

Then show that for any a > 0, it holds that lim
n→∞

a
1
n = lim

n→∞
a−

1
n = 1.

Proof. We showed already in part (1) that 1 is a lower bound of {a
1
n }∞n=1. To show that 1 is the greatest lower bound of

{a
1
n }∞n=1, it remains to show that, if b is any lower bound of {a

1
n }∞n=1, then b ≤ 1. Suppose instead we have b > 1. As b

is a lower bound of {a
1
n }∞n=1, we have a

1
n > b, or equivalently a > bn, for all n ∈ Z+. Since b > 1, the sequence {bn}∞n=1

is unbounded, and so it is divergent, which implies that the statement a > bn for all n ∈ Z+ is actually a contradiction.
Therefore, we must have b ≤ 1, meaning that 1 is the greatest lower bound of {a

1
n }∞n=1. �

Remark. I am honestly not sure how to show lim
n→∞

a
1
n = lim

n→∞
a−

1
n = 1. Please ask the professor in his online office

hours.

(3) Use part (2) above and the monotonicity of f to show by definition that f is continuous at x = 0.



Proof. Let {xn}∞n=1 be a sequence in R defined by xn = 1
n . Then we have

lim
n→∞

xn = lim
n→∞

1
n

= 0.

If a > 0, then, by part (2), we also have

lim
n→∞

f (xn) = lim
n→∞

f
(

1
n

)
= lim

n→∞
a

1
n

= 1

= a0

= f (0).

Similarly, let {yn}∞n=1 be a sequence in R defined by yn = − 1
n . Then we have

lim
n→∞

yn = lim
n→∞

(
−

1
n

)
= − lim

n→∞

1
n

= 0.

If a > 0, then, by part (2), we also have

lim
n→∞

f (yn) = lim
n→∞

f
(
−

1
n

)
= lim

n→∞
a−

1
n

= 1

= a0

= f (0).

Therefore, f is continuous at x = 0, according to Definition 2.2 (page 62) of the professor’s lecture notes. �

(4) Use the formula axay = ax+y for all x, y ∈ R and part (3) above to show that f is continuous on R.

Proof. To show that f is continuous on R, we need to show that f is continuous at any ξ ∈ R. Let {xn}∞n=1 be a sequence
that satisfies lim

n→∞
xn = ξ. If we let yn := xn − ξ, then the Sum Law for limits implies

lim
n→∞

yn = lim
n→∞
(xn − ξ)

= lim
n→∞

xn + lim
n→∞
(−ξ)

= ξ + (−ξ)

= 0.

As we know already from part (3) that f is continuous at 0, we also have lim
n→∞

f (yn) = f (0). Now, applying the formula

axay = ax+y , we have

f (xn) = axn

= aξ+(xn−ξ)

= aξ+yn

= aξayn

= f (ξ) f (yn),

and so by the Product Law for limits we have

lim
n→∞

f (xn) = lim
n→∞
( f (ξ) f (yn))

= ( lim
n→∞

f (ξ))( lim
n→∞

f (yn))

= f (ξ) lim
n→∞

f (yn)

= f (ξ) f (0)

= f (ξ)a0

= f (ξ) · 1
= f (ξ).



Therefore, f is continuous at ξ ∈ R, according to Definition 2.2 (page 62) of the professor’s lecture notes. So f is
continuous on R. �

Remark. For the professor’s version, which is simpler than mine, see Theorem 2.12 (page 116) of the professor’s lecture
notes.

Alternate proof (unnecessary, difficult, perhaps confusing). This is an ε-δ argument. To show that f is continuous on
R, we need to show that f is continuous at any ξ ∈ R. Let ε > 0 be given, and choose δ = loga(

ε
aξ + 1). (Note

that f (ξ) = aξ is non-zero because exponential functions are always positive.) Then, for all x ∈ (ξ − δ, ξ + δ) (or if
|x − ξ | < δ), we can apply the formula axay = ax+y to obtain

f (x) − f (ξ) = ax − aξ

= aξ+(x−ξ) − aξ

= aξax−ξ − aξ

= aξ (ax−ξ − 1).

Next, we claim that, if a > 1, then the inequality

|ay − 1| ≤ a |y | − 1

holds for all y ∈ R. To prove this claim, we should separate our argument into three distinct cases: y > 0, y = 0, y < 0.

• Case 1: Suppose y > 0. Then we have |y | = y. Since f is strictly monotone increasing, we have f (y) > f (0), or
equivalently

ay = f (y)

> f (0)

= a0

= 1,

which is in turn equivalent to ay − 1 > 0, which implies |ay − 1| = ay − 1. So we conclude

|ay − 1| = ay − 1

= a |y | − 1,

which is the equality case of the inequality.
• Case 2: Suppose y = 0. Then we have

ay − 1 = a0 − 1
= 1 − 1
= 0,

and so we conclude trivially

|ay − 1| = |0|
= 0
= ay − 1,

which is the equality case of the inequality.
• Case 3: Suppose y < 0. Then we have |y | = −y. Since f is strictly monotone increasing, we have f (y) < f (0), or

equivalently

ay = f (y)

< f (0)

= a0

= 1,

which is in turn equivalent to ay − 1 < 0, which implies |ay − 1| = −(ay − 1). So we conclude

|ay − 1| = −(ay − 1)
= 1 − ay

≤ a−y − 1

= a |y | − 1,



which is the inequality case of the inequality. But to establish our desired claim for this case, we have just used

1 − ay ≤ a−y − 1,

which is algebraically equivalent to
ay + a−y

2
≥ 1,

but this inequality is not obvious (except maybe visually, when you view the graph of ay+a−y

2 ). So we need to justify
this inequality. Let p,q ∈ R+ be arbitrary. Then we have

0 ≤ (p − q)2

= p2 − 2pq + q2

= (p2 + 2pq + q2) − 4pq

= (p + q)2 − 4pq,

which we can algebraically rearrange to deduce

(p + q)2

4
≥ pq.

We take the square root of both sides (and the inequality sign does not flip because the square root function is a
strictly monotone increasing function on its domain [0,∞)) to further obtain

p + q
2
≥
√

pq.

(This is a special inequality called the inequality of arithmetic and geometric means.) Finally, as we made p,q ∈ R+

to be arbitrary, we can let p := ay and q := a−y . Then our inequality becomes

ay + a−y

2
≥
√

aya−y

=
√

ay+(−y)

=
√

a0

=
√

1
= 1,

and this proves the inequality that we originally said was not obvious.

In all the cases, we have proved our claim. For y := x − ξ, our claim becomes

|ax−ξ − 1| ≤ a |x−ξ | − 1.

Also, as f is strictly monotone increasing on R and |x − ξ | < δ, we have f (|x − ξ |) < f (δ), or equivalently

a |x−ξ | = f (|x − ξ |)

< f (δ)

= aδ .

Finally, we have

| f (x) − f (ξ)| = |aξ (ax−ξ − 1)|

= aξ |ax−ξ − 1|

≤ aξ (a |x−ξ | − 1)

< aξ (aδ − 1)

= aξ (aloga (
ε

aξ +1)
− 1)

= aξ
(( ε

aξ
+ 1

)
− 1

)
= ε .

Therefore, f is continuous at ξ ∈ R, and so f is continuous on R. �

Remark. The alternate proof using the ε-δ definition of continuity for the exponential function is presented here only
for your amusement. If you are studying for the final exam, please ignore this proof. I guarantee that you will not see
this proof on your final exam.

https://en.wikipedia.org/wiki/Inequality_of_arithmetic_and_geometric_means


3. We showed in class that

ax+y = axay,

(ax)y = axy .

for all a > 0 and all x, y ∈ R. Fix a > 0 and a , 1. Then g : R+ → R defined by g(x) = loga(x) is the inverse function of
f : R→ R+ given by f (x) = ax . Use the formulas above and the definition of f to show

loga(xy) = loga(x) + loga(y),

loga(x
y) = y loga(x)

for all x, y ∈ R+.

Proof. Define f : R→ R+ and g : R+ → R by

f (x) := ax,

g(x) := loga(x).

Then f and g are inverses of each other, which means we have

aloga (x) = ag(x)

= f ◦ g(x)

= x

for all x ∈ R+ and

loga(a
x) = loga( f (x))

= g ◦ f (x)

= x

for all x ∈ R. So, for all x, y ∈ R+, we have

loga(xy) = loga(a
loga xaloga y)

= loga(a
loga (x)+loga (y))

= loga(x) + loga(y),

as desired. Also, for all x ∈ R+ and y ∈ R, we have

loga(x
y) = loga((a

loga (x))y)

= loga(a
y loga (x))

= y loga(x),

as desired. �

4. Fix a ∈ R and define fa : R+ → R by fa(x) = xa.

(1) Use Exercise 3 to show xa = ea ln(x) for all x > 0.

Proof. Note that we have
eln(x) = x

for all x ∈ R. By Exercise 3, we have
ln(xa) = a ln(x)

for all x ∈ R and for all a ∈ R. Therefore, we have

ea ln(x) = eln(xa )

= xa,

as desired. �

Remark. Recall that the natural logarithm is defined as the logarithm with base e; that is, ln y = loge y for all y ∈ R+.

(2) Use the equality from part (1) show that fa is continuous on R+.



Proof. Define ga : R→ R by ga(x) = ax, h1 : R+ → R, and h2 : R→ R+ by

ga(x) = ax,

h1(x) = ln(x),
h2(x) = ex .

It is already shown in both your lecture and Exercise 3 that exponential functions are continuous, which means h2 is
continuous. As h2 is continuous on R, it is in particular continuous on a bounded domain I ⊂ R. Since h2 are also strictly
monotone increasing on R, by Theorem 2.10 (page 101) of the professor’s lecture notes, the inverse h1 is continuous on
f −1(I) ⊂ R+. Then we can extend this argument to show that h1 is continuous on all of R+. Finally, for any fixed a ∈ R,
it was shown already in your lecture that power functions are continuous; that is, ga is continuous. Now, by part (1), we
have

fa(x) = xa

= ea ln x

= eah1(x)

= ega◦h1(x)

= h2 ◦ ga ◦ h1(x)

for all x ∈ R+. So fa = h2 ◦ ga ◦ h1 is a composition of continuous functions. By Theorem 2.6 (pages 82-83) of
the professor’s lecture notes, the composition of continuous functions is a continuous function; in other words, fa is
continuous on R+. �

(3) Use the equality from part (1) again to show that:

(a) If a > 0, then fa is strictly monotone increasing.
Proof. As in the proof of part (2), define ga : R→ R by ga(x) = ax, h1 : R+ → R, and h2 : R→ R+ by

ga(x) = ax,

h1(x) = ln(x),
h2(x) = ex .

If a > 0, then ga is a strictly monotone increasing function on R. Also, h1 is a strictly monotone increasing function
on R+, and h2 is a strictly monotone increasing function on R. We also recall fa = h2 ◦ ga ◦ h1. By Exercise 3,
part (1) of Homework 8, ga ◦ h1 is strictly monotone decreasing. Furthermore, by that same homework exercise, we
conclude that fa = h2 ◦ ga ◦ h1 is strictly monotone increasing. �

(b) If a < 0, then fa is strictly monotone decreasing.
Proof. As in the proof of part (2), define ga : R→ R by ga(x) = ax, h1 : R+ → R, and h2 : R→ R+ by

ga(x) = ax,

h1(x) = ln(x),
h2(x) = ex .

If a < 0, then ga is a strictly monotone decreasing function on R. Also, h1 is a strictly monotone increasing function
on R+, and h2 is a strictly monotone increasing function on R. We also recall fa = h2 ◦ ga ◦ h1. By Exercise 3,
part (3) of Homework 8, ga ◦ h1 is strictly monotone decreasing. Furthermore, by that same homework exercise, we
conclude that fa = h2 ◦ ga ◦ h1 is strictly monotone decreasing. �

Remark. I used the notations ga, h1, h2 to write fa as a composition of strictly monotone increasing/decreasing
functions. My choice of notation is arbitrary; feel free to use your own notation for the functions if you would like.

(4) By part (3), we know that fa has an inverse for any a , 0. Compute its inverse.

Proof. Define ga : R→ R+ by ga(x) = x
1
a . For all x ∈ R, we have

fa ◦ ga(x) = fa(x
1
a )

= (x
1
a )a

= x.

For all x ∈ R+, we have

ga ◦ fa(x) = ga(xa)

= (xa)
1
a

= x.

So ga is the inverse of fa. �


