MATH 150A-QUIZ 6, WINTER 2020

Name:

\qquad

1. (5 pts) Let $f, g: I \rightarrow \mathbb{R}$ both be continuous at ξ. Show that the product $f g$ is contiuous at ξ. Here you may either prove it by definition or prove it via the following theorem that we proved in class (Theorem 2.2): $h: I \rightarrow \mathbb{R}$ is conitinuous at $\xi \in I$ if and only if the following statement holds true: for any sequence $\left\{x_{n}\right\}$ in I with $\lim _{n \rightarrow \infty} x_{n}=\xi$, it holds that $\lim _{n \rightarrow \infty} h\left(x_{n}\right)=h(\xi)$.
2. Consider a function $f(x)=\cos (x)$.
(1) (1 pts) State the defintion that f is continous at a $\xi \in \mathbb{R}$. Then state the definition that f is continuous on \mathbb{R}.
(2) (4 pts) Show by definition that f is continuous on \mathbb{R}.

You may need to use the facts: (1) $|\sin (x)| \leq|x|, \forall x \in \mathbb{R} ;(2)|\sin (x)| \leq 1, \forall x \in \mathbb{R}$;
(3) $\cos a-\cos b=-2 \sin \frac{a+b}{2} \cdot \sin \frac{a-b}{2} \forall a, b \in \mathbb{R}$.

