MATH 150A-QUIZ 6, WINTER 2020

Name:	

1. (5 pts) Let $f, g: I \to \mathbb{R}$ both be continuous at ξ . Show that the product fg is continuous at ξ .

Here you may either prove it by definition or prove it via the following theorem that we proved in class (Theorem 2.2): $h: I \to \mathbb{R}$ is continuous at $\xi \in I$ if and only if the following statement holds true: for any sequence $\{x_n\}$ in I with $\lim_{n\to\infty} x_n = \xi$, it holds that $\lim_{n\to\infty} h(x_n) = h(\xi)$.

- 2. Consider a function $f(x) = \cos(x)$.
 - (1) (1 pts) State the definition that f is continuous at a $\xi \in \mathbb{R}$. Then state the definition that f is continuous on \mathbb{R} .
 - (2) (4 pts) Show by definition that f is continuous on \mathbb{R} .

You may need to use the facts: $(1) |\sin(x)| \le |x|, \forall x \in \mathbb{R}; (2) |\sin(x)| \le 1, \forall x \in \mathbb{R};$

(3)
$$\cos a - \cos b = -2\sin\frac{a+b}{2} \cdot \sin\frac{a-b}{2} \ \forall a, b \in \mathbb{R}.$$