

MATH 151B - Advanced Calculus

HIGHER STAKES HOMEWORK 1-2

Due date: Tuesday, February 16 at 11:59pm

Instructions:

- * Work individually in the problems. You can ask questions to Estela, Chulan, or Ryan
- * You can use any book, article or web-based mathematical material or computational software
- * Chegg, Math Stack Exchange, or any other source where you can copy solutions is not allowed
- * The homework needs to be typeset in "LaTeX" and uploaded through Gradescope in the iLearn Lecture page
- * If a problem is similar to a problem in Hw #3 or Hw #4, you need to adapt the proof for this problem, not just refer or reproduce all the solution of the problem in the homework.

• **Problem 1:** Let $C([a,b]) = \{f : [a,b] \to \mathbb{R}, f \text{ continuous } \}$. Show that

$$d(f,g) = \int_{a}^{b} \frac{|f(x) - g(x)|}{1 + |f(x) - g(x)|} dx$$

is a metric on C([a,b]).

• **Problem 2:** Consider the sequences $\{f_n\}$ and $\{f'_n\}$, where $f_n(x) = \frac{1}{n} \exp(-n^2 x^2)$ on the interval [-1,1]. Show whether $\{f_n\}$ converges pointwise, uniformily, or if it diverges at some point. Do the same with $\{f'_n\}$. Justify your answers.

• **Problem 3:** For what values of a > 0 is the power series $\sum_{n=1}^{\infty} e^{-2n} x^n$ uniformly convergent in the interval [0, a]?

• **Problem 4:** Let *X* be a metric space, $E \subset X$ be closed, and let $\{x_n\}$ be a sequence in *X* converging to $p \in X$. Suppose $x_n \in E$ for infinitely many $n \in \mathbb{N}$. Show $p \in E$.