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Higher-Stakes Homework 2 solutions

1. Let C([a,b]) ={f : [a,b] — R, f is continuous}. Show that
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is a metric on C([a, b]).

Proof. Let f, g, h € X be given. For nonnegativity, we have
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and that d(f, g) = 0if and only if f, g satisfy
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since the integrand is nonnegative (otherwise, a positive integrand in [a, b] results in a positive integral over [a, b]), if and
only if | f(x) — g(x)| =0 for all x € [a, b], if and only f(x) = g(x) for all x € [a, b], if and only if f = g. For symmetry, we

have
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For triangle inequality, define F : R — R by F(r) = . Then we have F’(r) = W > 0, meaning that f is increasing; that

is, a < b implies F(a) < F(b) for any a, b € R. In particular, since the classical triangle inequality gives
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So we have

) - g0l
d(f’h"/a T+ 1/ - g0 &

b
_ / F(If(x) - g(x)]) dx

ah
< / F(f () = h(x)| + [h(x) — g()]) d
i /b £ = O] + 1h(x) - g )]

e T+ 1) = hOl+ [h() - )]

_ /b () = h(x)] . 1) - 5()] o
o TG =+ [h(x) = g(] T+ 170 = Al + [h(x) — g (0]

_ fb £ () - h(x)| . /b Ih(x) - g(x)| "
e T+ @ = @+ @) -] Je THIF) = k@] + @) — g0)]
D@ -k [P R - g()]

S/a 1+|f(x)—h(X)|+/a T+1h() - g &

=d(f,h)+d(h,g).

Therefore, d is a metric, and so (X, d) is a metric space. O




2. Consider the sequences {f,} and {f,}, where f,(x) = - exp( n’x?) on the interval [-1,1]. Show whether {f,} converges
pointwise, uniformly, or if it diverges at some point. Do the same with {f,}. Justify your answers.

Proof. First, we claim that { f;,} converges uniformly to 0 on [—-1, 1]. Let € > 0 be arbitrarily small, and choose N > w.

For all n > N, then we have —n < —N, and since exp(—x?) is a decreasing function of x, we have exp(-n?) < exp(-N?).
Therefore, we obtain
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Therefore, { f,} converges uniformly to O on [-1, 1].

Next, we claim that { f,} converges pointwise to 0 on [—1, 1]. To this end, first we compute the first derivative of f;,, which is
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Now, let € > 0 be given. First suppose x € [—1,1] \ {0}, and choose N > ﬁ First, notice that exp(x) > x implies in
particular exp(—x?) < % for all x € R. Therefore, for all n > N, we have
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Also, at x = 0, regardless of our choice of N € N, we have
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Therefore, {f,} converges pointwise to 0 on [—1,1]. Now we will establish that the convergence is not uniform. Choose



€ := exp(—1) and define the sequence {x,} defined by x,, = ﬁ Then we have

| £1(x) = O] = |-2nx,, exp(-n*x%) - 0|

2
1 1
=2n—exp (—n2 (—) )
n n

=2exp(-1)
> exp(-1)
= €.
Therefore, {f,} does not converge uniformly to O on [-1, 1]. O
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. For what values of a > 0 is the power series Z e~ >"x" uniformly convergent in the interval [0, a]?
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Proof. Notice that we can rewrite the power series as
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which is a geometric series that converges provided that we impose
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which is equivalent to

—62 <x < 62.

In other words, the radius of convergence is R := ¢%. By Proposition 6.2.11 of the textbook, the series is uniformly convergent
on [0,a] forany 0 < a < €. o

Alternate proof. If we consider
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then we claim that { f; } converges uniformly to f on the interval [0, a] for any 0 < a < e2. Let € > 0 be given. First, suppose
x € (0, a] (so that we have x° = 1; notice that 0° is undefined). Then we can write
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we claim that { fi } converges uniformly to the infinite sum
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for any x € (0,a]. Now choose K > log,,((1 — e 2a)e) — 1. If k > K, then, by the reverse triangle inequality and since



log,-2,(x) is a decreasing function of x, we obtain
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for all x € (0, a]. If x = 0, then we have
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Therefore, f; converges uniformly to f on [0, a], completing the proof. O

4. Let X be a metric space, E C X be closed, and let {x,,} be a sequence in X converging to p € X. Suppose x,, € E for infinitely
many n € N. Show p € E.

Proof. Suppose by contradiction that we have p ¢ E. Then we must have p € E€, where E€ := X \ E denotes the set
complement of E. Since E C X is closed, it follows that E€ C X is open. So there exists § > 0 that satisfies B(x,d) C E€.
Since {x, } converges to p, for all € > 0, there exists N > 0 that satisfies |x, — p| < € for all n > N. Choose € := §, which
means |x, —p| < € = ¢. This implies x,, € B(x, d) forall n > N. IN other words, we conclude x,, € B(x,d) C E€ for infinitely
many n € N, but this contradicts the assumption of x,, € E for infinitely many n € N. So we must concldue p € E. O



