Ryan Ta Winter 2021

Higher-Stakes Homework 2 solutions

1. Let $C([a, b]) = \{f : [a, b] \to \mathbb{R}, f \text{ is continuous}\}$. Show that

$$d(f,g) = \int_{a}^{b} \frac{|f(x) - g(x)|}{1 + |f(x) - g(x)|} \, dx$$

is a metric on C([a, b]).

Proof. Let $f, g, h \in X$ be given. For nonnegativity, we have

$$d(f,g) = \int_{a}^{b} \frac{|f(x) - g(x)|}{1 + |f(x) - g(x)|} dx$$

$$\geq \int_{a}^{b} \frac{0}{1 + |f(x) - g(x)|} dx$$

$$= 0$$

and that d(f,g) = 0 if and only if f, g satisfy

$$\int_{a}^{b} \frac{|f(x) - g(x)|}{1 + |f(x) - g(x)|} \, dx = 0,$$

if and only if

$$\frac{|f(x) - g(x)|}{1 + |f(x) - g(x)|} = 0$$

since the integrand is nonnegative (otherwise, a positive integrand in [a, b] results in a positive integral over [a, b]), if and only if |f(x) - g(x)| = 0 for all $x \in [a, b]$, if and only f(x) = g(x) for all $x \in [a, b]$, if and only if f = g. For symmetry, we have

$$d(f,g) = \int_{a}^{b} \frac{|f(x) - g(x)|}{1 + |f(x) - g(x)|} dx$$
$$= \int_{a}^{b} \frac{|g(x) - f(x)|}{1 + |g(x) - f(x)|} dx$$
$$= d(g, f).$$

For triangle inequality, define $F : \mathbb{R} \to \mathbb{R}$ by $F(t) = \frac{t}{1+t}$. Then we have $F'(t) = \frac{1}{(1+t)^2} \ge 0$, meaning that f is increasing; that is, $a \le b$ implies $F(a) \le F(b)$ for any $a, b \in \mathbb{R}$. In particular, since the classical triangle inequality gives

$$|f(x) - g(x)| \le |f(x) - h(x)| + |h(x) - g(x)|,$$

we have

$$F(|f(x) - g(x)|) \le F(|f(x) - h(x)| + |h(x) - g(x)|)$$

So we have

$$\begin{split} d(f,h) &= \int_{a}^{b} \frac{|f(x) - g(x)|}{1 + |f(x) - g(x)|} \, dx \\ &= \int_{a}^{b} F(|f(x) - g(x)|) \, dx \\ &\leq \int_{a}^{b} F(|f(x) - h(x)| + |h(x) - g(x)|) \, dx \\ &= \int_{a}^{b} \frac{|f(x) - h(x)| + |h(x) - g(x)|}{1 + |f(x) - h(x)| + |h(x) - g(x)|} \, dx \\ &= \int_{a}^{b} \frac{|f(x) - h(x)| + |h(x) - g(x)|}{1 + |f(x) - h(x)| + |h(x) - g(x)|} + \frac{|h(x) - g(x)|}{1 + |f(x) - h(x)| + |h(x) - g(x)|} \, dx \\ &= \int_{a}^{b} \frac{|f(x) - h(x)|}{1 + |f(x) - h(x)| + |h(x) - g(x)|} + \int_{a}^{b} \frac{|h(x) - g(x)|}{1 + |f(x) - h(x)| + |h(x) - g(x)|} \, dx \\ &\leq \int_{a}^{b} \frac{|f(x) - h(x)|}{1 + |f(x) - h(x)|} + \int_{a}^{b} \frac{|h(x) - g(x)|}{1 + |h(x) - g(x)|} \, dx \\ &= d(f, h) + d(h, g). \end{split}$$

Therefore, d is a metric, and so (X, d) is a metric space.

2. Consider the sequences $\{f_n\}$ and $\{f'_n\}$, where $f_n(x) = \frac{1}{n} \exp(-n^2 x^2)$ on the interval [-1, 1]. Show whether $\{f_n\}$ converges pointwise, uniformly, or if it diverges at some point. Do the same with $\{f'_n\}$. Justify your answers.

Proof. First, we claim that $\{f_n\}$ converges uniformly to 0 on [-1, 1]. Let $\epsilon > 0$ be arbitrarily small, and choose $N > \frac{\exp(-1)}{\epsilon}$. For all $n \ge N$, then we have $-n \le -N$, and since $\exp(-x^2)$ is a decreasing function of x, we have $\exp(-n^2) \le \exp(-N^2)$. Therefore, we obtain

$$|f_n(x) - f(x)| = \left| \frac{1}{n} \exp(-n^2 x^2) - 0 \right|$$

$$= \frac{1}{n} \exp(-n^2 x^2)$$

$$\leq \frac{1}{n} \max_{x \in [-1,1]} \exp(-n^2 x^2)$$

$$= \frac{1}{n} \exp(-n^2(-1)^2)$$

$$= \frac{1}{n} \exp(-n^2)$$

$$\leq \frac{1}{n} \exp(-1^2)$$

$$= \frac{\exp(-1)}{n}$$

$$\leq \frac{\exp(-1)}{N}$$

$$< \epsilon.$$

Therefore, $\{f_n\}$ converges uniformly to 0 on [-1, 1].

Next, we claim that $\{f'_n\}$ converges pointwise to 0 on [-1, 1]. To this end, first we compute the first derivative of f_n , which is

$$f'_n(x) = \frac{d}{dx} \left(\frac{1}{n} \exp(-n^2 x^2) \right)$$

= $\frac{1}{n} \exp(-n^2 x^2) \frac{d}{dx} (-n^2 x^2)$
= $\frac{1}{n} \exp(-n^2 x^2) (-2n^2 x)$
= $-2nx \exp(-n^2 x^2)$

Now, let $\epsilon > 0$ be given. First suppose $x \in [-1, 1] \setminus \{0\}$, and choose $N > \frac{2}{\epsilon x^2}$. First, notice that $\exp(x) \ge x$ implies in particular $\exp(-x^2) \le \frac{1}{x^2}$ for all $x \in \mathbb{R}$. Therefore, for all $n \ge N$, we have

$$|f'_n(x) - 0| = |-2nx \exp(-n^2 x^2) - 0|$$

= $2n|x| \exp(-n^2 x^2)$
 $\leq 2n(1) \exp(-n^2 x^2)$
 $= 2n \exp(-n^2 x^2)$
 $\leq 2n \frac{1}{n^2 x^2}$
 $= \frac{2}{nx^2}$
 $\leq \frac{2}{Nx^2}$
 $< \epsilon.$

Also, at x = 0, regardless of our choice of $N \in \mathbb{N}$, we have

$$|f'_n(0) - 0| = |-2n(0) \exp(-n^2(0)^2) - 0|$$

= |0 - 0|
= 0
< \epsilon.

Therefore, $\{f'_n\}$ converges pointwise to 0 on [-1, 1]. Now we will establish that the convergence is not uniform. Choose

 $\epsilon := \exp(-1)$ and define the sequence $\{x_n\}$ defined by $x_n = \frac{1}{n}$. Then we have

$$|f'_n(x_n) - 0| = |-2nx_n \exp(-n^2 x_n^2) - 0|$$
$$= 2n\frac{1}{n} \exp\left(-n^2 \left(\frac{1}{n}\right)^2\right)$$
$$= 2\exp(-1)$$
$$> \exp(-1)$$
$$= \epsilon.$$

Therefore, $\{f'_n\}$ does not converge uniformly to 0 on [-1, 1].

3. For what values of a > 0 is the power series $\sum_{n=1}^{\infty} e^{-2n} x^n$ uniformly convergent in the interval [0, a]?

Proof. Notice that we can rewrite the power series as

$$\sum_{n=1}^{\infty} e^{-2n} x^n = \sum_{n=1}^{\infty} (e^{-2}x)^n,$$

which is a geometric series that converges provided that we impose

$$-1 < e^{-2}x < 1$$
,

which is equivalent to

$$-e^2 < x < e^2.$$

In other words, the radius of convergence is $R := e^2$. By Proposition 6.2.11 of the textbook, the series is uniformly convergent on [0, a] for any $0 < a < e^2$.

Alternate proof. If we consider

$$f_k(x) := \sum_{n=1}^k e^{-2n} x^n,$$
$$f(x) := \sum_{n=1}^\infty e^{-2n} x^n,$$

then we claim that $\{f_k\}$ converges uniformly to f on the interval [0, a] for any $0 \le a < e^2$. Let $\epsilon > 0$ be given. First, suppose $x \in (0, a]$ (so that we have $x^0 = 1$; notice that 0^0 is undefined). Then we can write

$$f_k(x) = \sum_{n=1}^k e^{-2n} x^n$$

= $\sum_{n=0}^k e^{-2n} x^n - e^{-2(0)} x^0$
= $\frac{1 - e^{-2(k+1)} x^{k+1}}{1 - e^{-2} x} - 1$

we claim that $\{f_k\}$ converges uniformly to the infinite sum

$$f(x) = \sum_{n=1}^{\infty} e^{-2n} x^n$$
$$= \sum_{n=0}^{\infty} e^{-2n} x^n - e^{-2(0)} x^0$$
$$= \frac{1}{1 - e^{-2x}} - 1$$

for any $x \in (0, a]$. Now choose $K > \log_{e^{-2}a}((1 - e^{-2}a)\epsilon) - 1$. If $k \ge K$, then, by the reverse triangle inequality and since

 $\log_{e^{-2}a}(x)$ is a decreasing function of *x*, we obtain

$$\begin{split} |f_k(x) - f(x)| &= \left| \left(\frac{1 - e^{-2(k+1)} x^{k+1}}{1 - e^{-2} x} - 1 \right) - \left(\frac{1}{1 - e^{-2} x} - 1 \right) \right| \\ &= \left| - \frac{e^{-2(k+1)} x^{k+1}}{1 - e^{-2} x} \right| \\ &= \frac{(e^{-2} |x|)^{k+1}}{|1 - e^{-2} x|} \\ &\leq \frac{(e^{-2} |x|)^{k+1}}{1 - e^{-2} |x|} \\ &\leq \frac{(e^{-2} a)^{k+1}}{1 - e^{-2} a} \\ &\leq \frac{(e^{-2} a)^{K+1}}{1 - e^{-2} a} \\ &\leq \epsilon \end{split}$$

for all $x \in (0, a]$. If x = 0, then we have

$$|f_k(0) - f(0)| = \left| \sum_{n=1}^k e^{-2n} x^n - \sum_{n=1}^\infty e^{-2n} x^n \right|$$
$$= \left| \sum_{n=1}^k e^{-2n} 0^n - \sum_{n=1}^\infty e^{-2n} 0^n \right|$$
$$= |0 - 0|$$
$$= 0$$
$$< \epsilon.$$

Therefore, f_k converges uniformly to f on [0, a], completing the proof.

4. Let X be a metric space, $E \subset X$ be closed, and let $\{x_n\}$ be a sequence in X converging to $p \in X$. Suppose $x_n \in E$ for infinitely many $n \in \mathbb{N}$. Show $p \in E$.

Proof. Suppose by contradiction that we have $p \notin E$. Then we must have $p \in E^c$, where $E^c := X \setminus E$ denotes the set complement of *E*. Since $E \subset X$ is closed, it follows that $E^c \subset X$ is open. So there exists $\delta > 0$ that satisfies $B(x, \delta) \subset E^c$. Since $\{x_n\}$ converges to *p*, for all $\epsilon > 0$, there exists N > 0 that satisfies $|x_n - p| < \epsilon$ for all $n \ge N$. Choose $\epsilon := \delta$, which means $|x_n - p| < \epsilon = \delta$. This implies $x_n \in B(x, \delta)$ for all $n \ge N$. IN other words, we conclude $x_n \in B(x, \delta) \subset E^c$ for infinitely many $n \in \mathbb{N}$, but this contradicts the assumption of $x_n \in E$ for infinitely many $n \in \mathbb{N}$. So we must conclude $p \in E$.