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Higher-Stakes Homework 2 solutions

1. Let � ( [0, 1]) = { 5 : [0, 1] → R, 5 is continuous}. Show that

3 ( 5 , 6) =
∫ 1

0

| 5 (G) − 6(G) |
1 + | 5 (G) − 6(G) | 3G

is a metric on � ( [0, 1]).

Proof. Let 5 , 6, ℎ ∈ - be given. For nonnegativity, we have

3 ( 5 , 6) =
∫ 1

0

| 5 (G) − 6(G) |
1 + | 5 (G) − 6(G) | 3G

≥
∫ 1

0

0
1 + | 5 (G) − 6(G) | 3G

= 0

and that 3 ( 5 , 6) = 0 if and only if 5 , 6 satisfy ∫ 1

0

| 5 (G) − 6(G) |
1 + | 5 (G) − 6(G) | 3G = 0,

if and only if
| 5 (G) − 6(G) |

1 + | 5 (G) − 6(G) | = 0

since the integrand is nonnegative (otherwise, a positive integrand in [0, 1] results in a positive integral over [0, 1]), if and
only if | 5 (G) − 6(G) | = 0 for all G ∈ [0, 1], if and only 5 (G) = 6(G) for all G ∈ [0, 1], if and only if 5 = 6. For symmetry, we
have

3 ( 5 , 6) =
∫ 1

0

| 5 (G) − 6(G) |
1 + | 5 (G) − 6(G) | 3G

=

∫ 1

0

|6(G) − 5 (G) |
1 + |6(G) − 5 (G) | 3G

= 3 (6, 5 ).

For triangle inequality, define � : R→ R by � (C) = C
1+C . Then we have � ′(C) = 1

(1+C)2 ≥ 0, meaning that 5 is increasing; that
is, 0 ≤ 1 implies � (0) ≤ � (1) for any 0, 1 ∈ R. In particular, since the classical triangle inequality gives

| 5 (G) − 6(G) | ≤ | 5 (G) − ℎ(G) | + |ℎ(G) − 6(G) |,

we have
� ( | 5 (G) − 6(G) |) ≤ � ( | 5 (G) − ℎ(G) | + |ℎ(G) − 6(G) |)

So we have

3 ( 5 , ℎ) =
∫ 1

0

| 5 (G) − 6(G) |
1 + | 5 (G) − 6(G) | 3G

=

∫ 1

0

� ( | 5 (G) − 6(G) |) 3G

≤
∫ 1

0

� ( | 5 (G) − ℎ(G) | + |ℎ(G) − 6(G) |) 3G

=

∫ 1

0

| 5 (G) − ℎ(G) | + |ℎ(G) − 6(G) |
1 + | 5 (G) − ℎ(G) | + |ℎ(G) − 6(G) | 3G

=

∫ 1

0

| 5 (G) − ℎ(G) |
1 + | 5 (G) − ℎ(G) | + |ℎ(G) − 6(G) | +

|ℎ(G) − 6(G) |
1 + | 5 (G) − ℎ(G) | + |ℎ(G) − 6(G) | 3G

=

∫ 1

0

| 5 (G) − ℎ(G) |
1 + | 5 (G) − ℎ(G) | + |ℎ(G) − 6(G) | +

∫ 1

0

|ℎ(G) − 6(G) |
1 + | 5 (G) − ℎ(G) | + |ℎ(G) − 6(G) | 3G

≤
∫ 1

0

| 5 (G) − ℎ(G) |
1 + | 5 (G) − ℎ(G) | +

∫ 1

0

|ℎ(G) − 6(G) |
1 + |ℎ(G) − 6(G) | 3G

= 3 ( 5 , ℎ) + 3 (ℎ, 6).

Therefore, 3 is a metric, and so (-, 3) is a metric space. �



2. Consider the sequences { 5=} and { 5 ′=}, where 5= (G) = 1
=

exp(−=2G2) on the interval [−1, 1]. Show whether { 5=} converges
pointwise, uniformly, or if it diverges at some point. Do the same with { 5 ′=}. Justify your answers.

Proof. First, we claim that { 5=} converges uniformly to 0 on [−1, 1]. Let n > 0 be arbitrarily small, and choose # >
exp(−1)
n

.
For all = ≥ # , then we have −= ≤ −# , and since exp(−G2) is a decreasing function of G, we have exp(−=2) ≤ exp(−#2).
Therefore, we obtain

| 5= (G) − 5 (G) | =
����1= exp(−=2G2) − 0

����
=

1
=

exp(−=2G2)

≤ 1
=

max
G∈[−1,1]

exp(−=2G2)

=
1
=

exp(−=2 (−1)2)

=
1
=

exp(−=2)

≤ 1
=

exp(−12)

=
exp(−1)

=

≤ exp(−1)
#

< n.

Therefore, { 5=} converges uniformly to 0 on [−1, 1].
Next, we claim that { 5 ′=} converges pointwise to 0 on [−1, 1]. To this end, first we compute the first derivative of 5=, which is

5 ′= (G) =
3

3G

(
1
=

exp(−=2G2)
)

=
1
=

exp(−=2G2) 3
3G
(−=2G2)

=
1
=

exp(−=2G2) (−2=2G)

= −2=G exp(−=2G2)

Now, let n > 0 be given. First suppose G ∈ [−1, 1] \ {0}, and choose # > 2
n G2 . First, notice that exp(G) ≥ G implies in

particular exp(−G2) ≤ 1
G2 for all G ∈ R. Therefore, for all = ≥ # , we have

| 5 ′= (G) − 0| = |−2=G exp(−=2G2) − 0|
= 2=|G | exp(−=2G2)
≤ 2=(1) exp(−=2G2)
= 2= exp(−=2G2)

≤ 2=
1
=2G2

=
2
=G2

≤ 2
#G2

< n.

Also, at G = 0, regardless of our choice of # ∈ N, we have

| 5 ′= (0) − 0| =
��−2=(0) exp(−=2 (0)2) − 0

��
= |0 − 0|
= 0
< n.

Therefore, { 5 ′=} converges pointwise to 0 on [−1, 1]. Now we will establish that the convergence is not uniform. Choose



n := exp(−1) and define the sequence {G=} defined by G= = 1
=

. Then we have

| 5 ′= (G=) − 0| = |−2=G= exp(−=2G2
=) − 0|

= 2=
1
=

exp

(
−=2

(
1
=

)2
)

= 2 exp(−1)
> exp(−1)
= n .

Therefore, { 5 ′=} does not converge uniformly to 0 on [−1, 1]. �

3. For what values of 0 > 0 is the power series
∞∑
==1

4−2=G= uniformly convergent in the interval [0, 0]?

Proof. Notice that we can rewrite the power series as

∞∑
==1

4−2=G= =

∞∑
==1

(4−2G)=,

which is a geometric series that converges provided that we impose

−1 < 4−2G < 1,

which is equivalent to
−42 < G < 42.

In other words, the radius of convergence is ' := 42. By Proposition 6.2.11 of the textbook, the series is uniformly convergent
on [0, 0] for any 0 < 0 < 42. �

Alternate proof. If we consider

5: (G) :=
:∑
==1

4−2=G=,

5 (G) :=
∞∑
==1

4−2=G=,

then we claim that { 5: } converges uniformly to 5 on the interval [0, 0] for any 0 ≤ 0 < 42. Let n > 0 be given. First, suppose
G ∈ (0, 0] (so that we have G0 = 1; notice that 00 is undefined). Then we can write

5: (G) =
:∑
==1

4−2=G=

=

:∑
==0

4−2=G= − 4−2(0)G0

=
1 − 4−2(:+1)G:+1

1 − 4−2G
− 1

we claim that { 5: } converges uniformly to the infinite sum

5 (G) =
∞∑
==1

4−2=G=

=

∞∑
==0

4−2=G= − 4−2(0)G0

=
1

1 − 4−2G − 1

for any G ∈ (0, 0]. Now choose  > log4−20 ((1 − 4−20)n) − 1. If : ≥  , then, by the reverse triangle inequality and since



log4−20 (G) is a decreasing function of G, we obtain

| 5: (G) − 5 (G) | =
����(1 − 4−2(:+1)G:+1

1 − 4−2G
− 1

)
−

(
1

1 − 4−2G
− 1

)����
=

����− 4−2(:+1)G:+1

1 − 4−2G

����
=
(4−2 |G |):+1
|1 − 4−2G |

≤ (4
−2 |G |):+1

1 − 4−2 |G |

≤ (4
−20):+1

1 − 4−20

≤ (4
−20) +1

1 − 4−20

< n

for all G ∈ (0, 0]. If G = 0, then we have

| 5: (0) − 5 (0) | =
����� :∑
==1

4−2=G= −
∞∑
==1

4−2=G=

�����
=

����� :∑
==1

4−2=0= −
∞∑
==1

4−2=0=
�����

= |0 − 0|
= 0
< n.

Therefore, 5: converges uniformly to 5 on [0, 0], completing the proof. �

4. Let - be a metric space, � ⊂ - be closed, and let {G=} be a sequence in - converging to ? ∈ - . Suppose G= ∈ � for infinitely
many = ∈ N. Show ? ∈ � .

Proof. Suppose by contradiction that we have ? ∉ � . Then we must have ? ∈ �2 , where �2 := - \ � denotes the set
complement of � . Since � ⊂ - is closed, it follows that �2 ⊂ - is open. So there exists X > 0 that satisfies �(G, X) ⊂ �2 .
Since {G=} converges to ?, for all n > 0, there exists # > 0 that satisfies |G= − ? | < n for all = ≥ # . Choose n := X, which
means |G=− ? | < n = X. This implies G= ∈ �(G, X) for all = ≥ # . IN other words, we conclude G= ∈ �(G, X) ⊂ �2 for infinitely
many = ∈ N, but this contradicts the assumption of G= ∈ � for infinitely many = ∈ N. So we must concldue ? ∈ � . �


