Ryan Ta Winter 2021

Higher-Stakes Homework 3 solutions

1. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be given by

$$f(x, y) = \begin{cases} \frac{x^3}{x^2 + y^2} & \text{if } (x, y) \neq (0, 0), \\ 0 & \text{if } (x, y) = (0, 0). \end{cases}$$

Show that the first-order partial derivatives of f, f_x and f_y , exist at (0, 0). Show, however, that f is not differentiable at (0, 0).

Solution. We have

$$f_x(0,0) = \lim_{h_1 \to 0^+} \frac{f(0+h_1,0) - f(0,0)}{h_1}$$
$$= \lim_{h_1 \to 0^+} \frac{\frac{h_1^3}{h_1^2 + 0^2} - 0}{h_1}$$
$$= \lim_{h_1 \to 0^+} 1$$
$$= 1$$

and

$$f_{y}(0,0) = \lim_{h_{2} \to 0^{+}} \frac{f(0,0+h_{2}) - f(0,0)}{h_{2}}$$
$$= \lim_{h_{1} \to 0^{+}} \frac{\frac{0^{3}}{0^{2} + h_{2}^{2}} - 0}{h_{2}}$$
$$= \lim_{h_{1} \to 0^{+}} 0$$
$$= 0,$$

meaning that the first-order partial derivatives f_x , f_y exist at (0, 0). Next, we will show that f is not differentiable at the origin. Choose for instance the line $h_2 := h_1$, and consider $a := f_x(0, 0) = 1$ and $b := f_y(0, 0) = 0$, so that the linear map

$$A(h_1, h_2) = ah_1 + bh_2$$

= $f_x h_1 + f_y h_1$
= $(f_x + f_y)h_1$
= $(1 + 0)h_1$
= h_1 .

Then, along the path $h_2 := h_1$, we have

$$\begin{split} \lim_{(h_1,h_2)\to(0,0)} \frac{|f(h_1,h_2) - f(0,0) - A(h_1,h_2)|}{||(h_1,h_2)||} &= \lim_{(h_1,h_2)\to(0,0)} \frac{|\frac{h_1^3}{h_1^2 + h_2^2} - 0 - h_1|}{\sqrt{h_1^2 + h_2^2}} \\ &= \lim_{(h_1,h_2)\to(0,0)} \frac{|\frac{h_1^3}{h_1^2 + h_2^2} - h_1|}{\sqrt{h_1^2 + h_2^2}} \\ &= \lim_{(h_1,h_2)\to(0,0)} \frac{|h_1^3 - h_1(h_1^2 + h_2^2)|}{(h_1^2 + h_2^2)^{\frac{3}{2}}} \\ &= \lim_{(h_1,h_2)\to(0,0)} \frac{|-h_1h_2^2|}{(h_1^2 + h_2^2)^{\frac{3}{2}}} \\ &= \lim_{h_1\to0} \frac{h_1h_1^2}{(h_1^2 + h_1^2)^{\frac{3}{2}}} \\ &= \lim_{h_1\to0} \frac{h_1^3}{(2h_1^2)^{\frac{3}{2}}} \\ &= \lim_{h_1\to0} \frac{1}{2} \\ &= \frac{1}{2} \\ &\neq 0 \end{split}$$

and so we conclude by Definition 8.3.1 of the Lebl textbook that f is not differentiable at (0, 0).

2. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be a function defined by

$$f(x, y) = \begin{cases} x^2 + y^2 & \text{if } x \text{ and } y \text{ are rational} \\ 0 & \text{otherwise.} \end{cases}$$

Find all the points $(x, y) \in \mathbb{R}^2$ (if any) where *f* is differentiable. Justify your answer.

Solution. First, we claim that f is differentiable at the point (0,0). We can choose a = 0 and b = 0, so that the linear map becomes $A(h_1, h_2) = ah_1 + bh_2 = 0h_1 + 0h_2 = 0$, and so we have

$$\lim_{(h_1,h_2)\to(0,0)} \frac{|f(h_1,h_2) - f(0,0) - A(h_1,h_2)|}{\|(h_1,h_2)\|} = \lim_{(h_1,h_2)\to(0,0)} \frac{|(h_1^2 + h_2^2) - 0 - 0|}{\sqrt{h_1^2 + h_2^2}}$$
$$= \lim_{(h_1,h_2)\to(0,0)} \sqrt{h_1^2 + h_2^2}$$
$$= \sqrt{0^2 + 0^2}$$
$$= 0.$$

For the case $(h_1, h_2) \in \mathbb{R}^2 \setminus \mathbb{Q}^2$, we can choose a = 0 and b = 0, so that the linear map becomes $A(h_1, h_2) = ah_1 + bh_2 = 0$ $0h_1 + 0h_2 = 0$, and so we have

$$\lim_{(h_1,h_2)\to(0,0)} \frac{|f(h_1,h_2) - f(0,0) - A(h_1,h_2)|}{\|(h_1,h_2)\|} = \lim_{(h_1,h_2)\to(0,0)} \frac{|0 - 0 - 0|}{\sqrt{h_1^2 + h_2^2}}$$
$$= \lim_{(h_1,h_2)\to(0,0)} 0$$
$$= 0.$$

Therefore, f is differentiable at (0, 0). Next, we claim that f is not differentiable at any $(x, y) \neq (0, 0)$. The contrapositive of Proposition 8.3.5 of the Lebl textbook asserts that it suffices for us to prove that f is not continuous at any $(x, y) \neq (0, 0)$. To this end, notice that, for all $(x, y) \neq (0, 0)$, we have $f(x, y) \leq x^2 + y^2$. Consider a sequence $\{(x_n, y_n)\}$ of rational 2-tuples $(x_n, y_n) \in \mathbb{Q}^2$ and a sequence $\{(z_n, w_n)\}$ of irrational 2-tuples $(z_n, w_n) \in \mathbb{R}^2 \setminus \mathbb{Q}^2$, both of which converge to some point $(x_0, y_0) \neq (0, 0)$. Then $\{f(x_n, y_n)\}$ converges to $x_n^2 + y_n^2$ and $\{f(z_n, w_n)\}$ converges to 0, and these limits are unequal for any $(x_0, y_0) \neq (0, 0)$. Therefore, f is not continuous, and hence not differentiable, at any $(x, y) \neq (0, 0)$.

3. Let $f : (-1,1) \to \mathbb{R}$ be continuously differentiable, so that $f(0) = 0, f'(0) \neq 0$. Show that the function F(x, y) = (u(x, y), v(x, y)) given by

$$u(x, y) = f(x)$$
$$v(x, y) = -y + xf(x).$$

is locally invertible near (0, 0) and its inverse has the form

$$x(u, v) = g(u)$$

$$y(u, v) = -v + ug(u).$$

Solution. We can rewrite $F : \mathbb{R}^2 \to \mathbb{R}$ as F(x, y) = (f(x), -y + xf(x)). The Jacobian matrix is

$$F'(x,y) = \begin{bmatrix} \frac{\partial}{\partial x} f(x) & \frac{\partial}{\partial y} f(x) \\ \frac{\partial}{\partial x} (-y + x f(x)) & \frac{\partial}{\partial y} (-y + x f(x)) \end{bmatrix}$$
$$= \begin{bmatrix} f'(x) & 0 \\ f(x) + x f'(x) & -1 \end{bmatrix}.$$

At the origin $(0,0) \in \mathbb{R}^2$, we have

$$F'(0,0) = \begin{bmatrix} f'(0) & 0\\ f(0) & -1 \end{bmatrix}$$

whose determinant is

$$\det F'(0,0) = \det \begin{bmatrix} f'(0) & 0\\ f(0) & -1 \end{bmatrix}$$
$$= f'(0)(-1) - 0f(0)$$
$$= -f'(0).$$

Since we assumed $f'(0) \neq 0$, it follows that we have det $F'(0,0) \neq 0$, meaning that the F'(0,0) is invertible. By the Inverse Function Theorem, there exists open sets $V, W \subset \mathbb{R}^2$ such that $p \in V \subset U$, f(V) = W, and $F|_V$ is one-to-one. In other words, F is locally invertible; there exists a function $g: W \to V$ defined by $g(u, v) := (f|_V)^{-1}(u, v)$. That said, we have

$$\begin{aligned}
x(u, v) &= x \\
&= f^{-1}(f(x)) \\
&= f^{-1}(u(x, y)) \\
&= g(u(x, y)) \\
&= g(u).
\end{aligned}$$

From v(x, y) = -y + xf(x), or abbreviated v = -y + xf(x), we can algebraically rearrange this equation to say y = -v + xf(x). So we have

$$y(u, v) = y$$

= $-v + xf(x)$
= $-v + g(u)f(g(u))$
= $-v + g(u)f(f^{-1}(u))$
= $-v + g(u)u$
= $-v + ug(u)$,

as desired.

4. Define $f : \mathbb{R}^3 \to \mathbb{R}$ by

$$f(x, y, z) = x^2y + 2e^x + z$$

Prove there exists a differentiable function g defined in some neighborhood $\mathcal{B} \subset \mathbb{R}^2$ of (1, -2) such that g(1, -2) = 0 and

$$f(g(y, z), y, z) = 0$$

for all $(y, z) \in \mathcal{B}$. Furthermore, evaluate $\frac{\partial g}{\partial y}(1, -2)$ and $\frac{\partial g}{\partial z}(1, -2)$.

Solution. The Jacobian matrix is

$$\begin{aligned} f'(x, y, z) &= \begin{bmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial z} \end{bmatrix} \\ &= \begin{bmatrix} \frac{\partial}{\partial x} (x^2 y + 2e^x + z) & \frac{\partial}{\partial y} (x^2 y + 2e^x + z) & \frac{\partial}{\partial z} (x^2 y + 2e^x + z) \end{bmatrix} \\ &= \begin{bmatrix} 2xy + 2e^x & x^2 & 1 \end{bmatrix}. \end{aligned}$$

At the point $(0, 1, -2) \in \mathbb{R}^3$, we have

$$f'(0,1,-2) = \begin{bmatrix} 2 & 0 & 1 \end{bmatrix},$$

which is a nonzero matrix. By the Implicit Function Theorem, there exist an open set $\mathcal{B} \subset \mathbb{R}^2$ with $(1, -2) \in \mathbb{R}^2$, an open set $\mathcal{B}' \subset \mathbb{R}$ with $0 \in \mathcal{B}'$, with $\mathcal{B} \times \mathcal{B}' \subset U$, and a $C^1(W)$ map $g : \mathcal{B} \to \mathcal{B}'$, with g(1, 2) = 0, and, for all $(y, z) \in \mathcal{B}$, the point g(y, z) is the unique point in \mathcal{B} such that f(g(y, z), y, z) = 0.

Next, we will evaluate $\frac{\partial g}{\partial y}(1, -2)$ and $\frac{\partial g}{\partial z}(1, -2)$. Since the point g(y, z) is unique, we can write x = g(y, z), allowing us to write

$$0 = f(g(y), y, z)$$

= $g(y, z)^2 y + 2e^{g(y, z)} + z.$

While we can apply the remaining conclusions of the Implicit Function Theorem to compute the partial derivatives, I find it easier if we employ implicit differentiation. That said, we have

$$0 = \frac{\partial}{\partial y} 0$$

= $\frac{\partial}{\partial y} (g(y, z)^2 y + 2e^{g(y, z)} + z)$
= $2g(y, z) \frac{\partial g}{\partial y} (y, z) y + 2e^{g(y, z)} \frac{\partial g}{\partial y} (y, z) + 0$
= $2(yg(y, z) + e^{g(y, z)}) \frac{\partial g}{\partial y} (y, z)$

and

$$\begin{split} 0 &= \frac{\partial}{\partial z} 0 \\ &= \frac{\partial}{\partial z} (g(y,z)^2 y + 2e^{g(y,z)} + z) \\ &= 2g(y,z) \frac{\partial g}{\partial z} (y,z) y + 2e^{g(y,z)} \frac{\partial g}{\partial z} (y,z) + 1 \\ &= 2(yg(y,z) + e^{g(y,z)}) \frac{\partial g}{\partial z} (y,z) + 1. \end{split}$$

At the point (1, -2), we have

$$0 = 2((-2)g(1, -2) + e^{g(1, -2)})\frac{\partial g}{\partial y}(1, -2)$$

= 2((-2)(0) + e⁰) $\frac{\partial g}{\partial y}(1, -2)$
= 2 $\frac{\partial g}{\partial y}(1, -2)$

and

$$0 = 2((-2)g(1, -2) + e^{g(1, -2)})\frac{\partial g}{\partial z}(1, -2) + 1$$

= 2((-2)(0) + e⁰) $\frac{\partial g}{\partial y}(1, -2) + 1$
= 2 $\frac{\partial g}{\partial y}(1, -2) + 1$,

from which we obtain $\frac{\partial g}{\partial y}(1, -2) = 0$ and $\frac{\partial g}{\partial y}(1, -2) = -\frac{1}{2}$, respectively.