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Higher-Stakes Homework 3 solutions
1. Let f : R> — R be given by

s iy #(0,0),
f(x’y)"{ 0 if(xy) = (0,0).

Show that the first-order partial derivatives of f, f, and fy, exist at (0, 0). Show, however, that f is not differentiable at (0, 0).
Solution. We have
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meaning that the first-order partial derivatives f, fy existat (0, 0). Next, we will show that f is not differentiable at the origin.
Choose for instance the line s := hy, and consider a := f(0,0) = 1 and b := £, (0,0) = 0, so that the linear map
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and so we conclude by Definition 8.3.1 of the Lebl textbook that f is not differentiable at (0, 0). O



2. Let f : R> — R be a function defined by

2 2 . .
_ | x*+y® ifxand y are rational
flxy) = : 0 otherwise.

Find all the points (x, y) € R? (if any) where f is differentiable. Justify your answer.

Solution. First, we claim that f is differentiable at the point (0,0). We can choose a = 0 and b = 0, so that the linear map
becomes A(hy, hy) = ahy + bh, = 0hy + 0hy = 0, and so we have
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For the case (hy, hy) € R2 \ QZ, we can choose a = 0 and b = 0, so that the linear map becomes A(hy, hy) = ahy + bhy =
0h; + 0hy =0, and so we have

. |f(‘ll"12) f(o’ O) 11(111,112)| 3 |O O Ol
2
1,h2)—(0,0 niy, n hi,h2)—(0,0 hz hZ

= lim 0
(h1,h2)—(0,0)

=0.
Therefore, f is differentiable at (0, 0). Next, we claim that f is not differentiable at any (x, y) # (0,0). The contrapositive of
Proposition 8.3.5 of the Lebl textbook asserts that it suffices for us to prove that f is not continuous at any (x, y) # (0,0). To
this end, notice that, for all (x,y) # (0,0), we have f(x,y) < x>+ y*. Consider a sequence {(x,,, y,)} of rational 2-tuples
(Xn, yn) € Q7 and a sequence {(z,,w,)} of irrational 2-tuples (z,,w,) € R?\ QZ, both of which converge to some point

(x0,y0) # (0,0). Then {f(xn,yn)} converges to x2 +y2 and { f(z,, wn)} converges to 0, and these limits are unequal for any
(x0, y0) # (0,0). Therefore, f is not continuous, and hence not differentiable, at any (x, y) # (0,0). O

3. Let f : (-1,1) — R be continuously differentiable, so that f(0) = 0, f'(0) # 0. Show that the function F(x,y) =
(u(x,y),v(x,y)) given by
u(x,y) = f(x)
v(x,y) = =y +xf(x).

is locally invertible near (0, 0) and its inverse has the form

x(u,v) = g(u)
y(u,v) = -v+ug(u).

Solution. We can rewrite F : R> — Ras F(x,y) = (f(x), =y + xf(x)). The Jacobian matrix is
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At the origin (0,0) € R2, we have
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whose determinant is
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= f/(0)(=1) = 0f(0)
= —f'(0).



Since we assumed f’(0) # 0, it follows that we have det F’(0,0) # 0, meaning that the F’(0, 0) is invertible. By the Inverse
Function Theorem, there exists open sets V, W C RZ such that peVcU, f(V)=W,and F|y is one-to-one. In other words,
F is locally invertible; there exists a function g : W — V defined by g(u, v) := (f|v) ™" (u, v). That said, we have
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From v(x,y) = —y+xf(x), or abbreviated v = —y +x f (x), we can algebraically rearrange this equation to say y = —v+x f(x).
So we have
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as desired. O

4. Define f : R? — R by
f(x,y,2) =x2y +2e* + 2.

Prove there exists a differentiable function g defined in some neighborhood 8 c R? of (1, —2) such that g(1,-2) = 0 and

f(g(y,2),y,2)=0

for all (y, z) € 8. Furthermore, evaluate Z—ﬁ(l, —2) and g—i(l, =2).

Solution. The Jacobian matrix is
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At the point (0, 1, -2) € R?, we have
ro1,-2)=[2 0 1],

which is a nonzero matrix. By the Implicit Function Theorem, there exist an open set 8 ¢ R? with (1, -2) € R?, an open set
B c Rwith0 e 8, with 8x B’ c U,and a C' (W) map g : B — B’, with g(1,2) = 0, and, for all (y,z) € B, the point
g(y, z) is the unique point in B such that f(g(y,z),y,z) =0.

Ne.xt, we will evaluate g—i(l, —2) and g—‘z(l, —2). Since the point g(y, z) is unique, we can write x = g(y, z), allowing us to
write
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=8(,2)%y +2e809) 4 2.

While we can apply the remaining conclusions of the Implicit Function Theorem to compute the partial derivatives, I find it
easier if we employ implicit differentiation. That said, we have
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At the point (1, -2), we have
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from which we obtain a—i(l, -2) = @ and %(1, -2) = 5 respectively.




